Transition-Metal-Based Compounds for Electrochemical Energy Conversion Processes
Author Contributions
Funding
Conflicts of Interest
References
- Sun, C.; Hui, R.; Roller, J. Cathode materials for solid oxide fuel cells: A review. J. Solid State Electrochem. 2010, 14, 1125–1144. [Google Scholar] [CrossRef]
- Dąbrowa, J.; Olszewska, A.; Falkenstein, A.; Schwab, C.; Szymczak, M.; Zajusz, M.; Moździerz, M.; Mikuła, A.; Zielińska, K.; Berent, K.; et al. An innovative approach to design SOFC air electrode materials: High entropy La 1−x Sr x (Co,Cr,Fe,Mn,Ni)O 3−δ ( x = 0, 0.1, 0.2, 0.3) perovskites synthesized by the sol–gel method. J. Mater. Chem. A 2020, 8, 24455–24468. [Google Scholar] [CrossRef]
- Gao, M.R.; Xu, Y.F.; Jiang, J.; Yu, S.H. Nanostructured metal chalcogenides: Synthesis, modification, and applications in energy conversion and storage devices. Chem. Soc. Rev. 2013, 42, 2986–3017. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Hofmann, J.P. High-entropy transition metal chalcogenides as electrocatalysts for renewable energy conversion. Curr. Opin. Electrochem. 2022, 34, 101010. [Google Scholar] [CrossRef]
- Michalec, K.; Kusior, A.; Radecka, M. Photoelectrochemical activity of the nanostructured electrodes based on the SnO2/SnS2 – Heterojunction type II vs S-scheme mechanism. Appl. Surf. Sci. 2023, 608, 155201. [Google Scholar] [CrossRef]
- Maiti, T.; Banerjee, R.; Chatterjee, S.; Ranjan, M.; Bhattacharya, T.; Mukherjee, S.; Jana, S.S.; Dwivedi, A. High-entropy perovskites: An emergent class of oxide thermoelectrics with ultralow thermal conductivity. ACS Sustain. Chem. Eng. 2020, 8, 17022–17032. [Google Scholar] [CrossRef]
- Koza, J.A.; He, Z.; Miller, A.S.; Switzer, J.A. Electrodeposition of Crystalline Co 3 O 4 —A Catalyst for the Oxygen Evolution Reaction. Chem. Mater. 2012, 24, 3567–3573. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mikuła, A.; Kusior, A. Transition-Metal-Based Compounds for Electrochemical Energy Conversion Processes. Materials 2023, 16, 67. https://doi.org/10.3390/ma16010067
Mikuła A, Kusior A. Transition-Metal-Based Compounds for Electrochemical Energy Conversion Processes. Materials. 2023; 16(1):67. https://doi.org/10.3390/ma16010067
Chicago/Turabian StyleMikuła, Andrzej, and Anna Kusior. 2023. "Transition-Metal-Based Compounds for Electrochemical Energy Conversion Processes" Materials 16, no. 1: 67. https://doi.org/10.3390/ma16010067
APA StyleMikuła, A., & Kusior, A. (2023). Transition-Metal-Based Compounds for Electrochemical Energy Conversion Processes. Materials, 16(1), 67. https://doi.org/10.3390/ma16010067