Adducts of the Zinc Salt of Dinitramic Acid
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthetic Methods
2.1.1. Synthesis of [Zn(chz)3(dn)2] (6)
2.1.2. One-Pot Synthesis of Adduct 7 from 1, 5, and Glyoxal
2.1.3. Synthesis of Adduct 8 from 6 and Glyoxal
2.2. Pyrotechnic Formulations
- 70% potassium perchlorate and 30% aluminum;
- 48% potassium nitrate and 52% zirconium.
2.3. Preparation of Ingredients
2.4. Preparation of Pyrotechnic Compositions
2.5. Measurements of Burning Rate of Pyrotechnic Mixtures
3. Results and Discussion
3.1. Synthesis and Characterization of Compounds
3.2. Testing of Compound 6 for the Effect on Pyrotechnic Composition Burning Rate
4. Conclusions
- A coordination compound, tris(carbohydrazide-N,O)zinc(II)dinitramide, was synthesized herein through a reaction between zinc dinitramide and carbohydrazide. The structure of the compound was identified by physicochemical analytical methods and proven by X-ray diffraction.
- The reaction of zinc dinitramide with carbohydrazide and glyoxal via one-pot synthesis furnished the respective adducts, depending on the molar ratio of the starting reactants. Mass spectroscopy showed the adduct to structurally contain carbohydrazide and macrocyclic (1,2,4,5,8,9,11,12-octaazacyclotetradeca-5,7,12,14- tetraene-3,7-dione). The resultant adducts comprising zinc dinitramide are not soluble in water or organic solvents.
- The coordination compound, tris(carbohydrazide-N,O)zinc(II)dinitramic acid, was tested herein as a modifier of the burning rate of pyrotechnic mixtures. The zinc salt of dinitramide was discovered to reduce the burning rates of KClO4/Al and KNO3/Zr and can be employed as an inhibitor of the burning rate of pressed pyrotechnic charges.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bottaro, C.; Schmitt, R.J.; Penwell, P.E.; Ross, D.S. Method of Forming Dinitramide Salts. US Patent 5,198,204, 30 March 1993. [Google Scholar]
- Lukyanov, O.A.; Gorclik, V.P.; Tartakovsky, V.A. Dinitramide and its salts. Russ. Chem. Bull. 1994, 43, 89–92. [Google Scholar] [CrossRef]
- Lukyanov, O.A.; Anikin, O.V.; Gorelik, V.P.; Tartakovsky, V.A. Dinitramide and its Salts. Russ. Chem. Bull. 1994, 43, 1457–1461. [Google Scholar] [CrossRef]
- Larsson, A.; Wingborg, N. Chapter 7—Green Propellants Based on Ammonium Dinitramide (ADN). In Advances in Spacecraft Technologies; Hall, J., Ed.; IntechOpen: Rijeka, Croatia, 2011; p. 608. [Google Scholar]
- Johansson, M.; De Flon, J.; Petterson, A.; Wanhatalo, M.; Wingborg, N. Spray Prilling of ADN and Testing of ADN-Based Solid Propellants. In Proceedings of the 3rd International Conference on Green Propellants for Space Propulsion, Poitiers, France, 17–20 September 2006. [Google Scholar]
- Sjöberg, P.; Skifs, H. A Stable Liquid Mono-Propellant based on AND. In Proceedings of the 40th International Annual Conference of ICT, Karlsruhe, Germany, 23–26 June 2009. [Google Scholar]
- Sims, S.; Fischer, S.; Tagliabue, C. ADN Solid propellants with high burning rates as booster material for hypersonic applications. Propellants Explos. Pyrotech. 2022, 47, e202200028. [Google Scholar] [CrossRef]
- Highsmith, T.K.; Hinshaw, C.J.; Wardle, R.B. Phase-Stabilised Ammonium Nitrate and Method of Making Same. US Patent 5,292,387, 8 March 1994. [Google Scholar]
- Schaller, U.; Lang, J.; Gettwert, V.; Hurttlen, J.; Weiser, V.; Keicher, T. 4-Amino-1-butyl-1,2,4-triazolium dinitramide—Synthesis, characterization and combustion of a low-temperature dinitramide-based energetic ionic liquid (EIL). Propellants Explos. Pyrotech. 2022, 47, e202200054. [Google Scholar] [CrossRef]
- Kumar, P. An overview over dinitramide anion and compounds based on it. Indian Chem. Eng. 2020, 62, 232–242. [Google Scholar] [CrossRef]
- Vandel, A.P.; Lobanova, A.A.; Loginova, V.S. Application of Dinitramide Salts (Review). Russ. J. Appl. Chem. 2009, 82, 1763. [Google Scholar] [CrossRef]
- Klapoetke, T.M.; Martin, F.A.; Mayr, N.T.; Stierstorfer, J. Synthesis and characterization of 3,5-diamino-1,2,4-triazolium dinitramide. ZAAC 2010, 636, 2555–2564. [Google Scholar] [CrossRef] [Green Version]
- Blomquist, H.R. Amine Salts of Dinitramide as Gas Generator Compositions for Inflatable Vehicle Occupant Protection Devices U.S. US Patent 6,004,410A, 21 December 1999. [Google Scholar]
- Klapoetke, T.M.; Stierstorfer, J. Azidoformamidinium and 5-aminotetrazolium dinitramide-two highly energetic isomers with a balanced oxygen content. Dalton Trans. 2009, 4, 643–653. [Google Scholar] [CrossRef]
- Fischer, N.; Joas, M.; Klapotke, T.M.; Stierstorfer, J.D. Transition metal complexes of 3-amino-1-nitroguanidine as laser ignitable primary explosives: Structures and properties. Inorg. Chem. 2013, 52, 13791–13802. [Google Scholar] [CrossRef]
- Nosratzadegan, K.; Mahdavi, M.; Ghani, K.; Barati, K. New energetic complex of copper(II) dinitramide based nitrogen-rich ligand aminoguanidine (CH6N4): Synthesis, structural and energetic properties. Propellants Explos. Pyrotech. 2019, 44, 830–836. [Google Scholar] [CrossRef]
- Gruhne, M.S.; Wurzenberger, M.H.H.; Lommel, M.; Stierstorfer, J. A Smart access to the dinitramide anion—The use of dinitraminic acid for the preparation of nitrogen-rich energetic copper(II) complexes. Chem. Eur. J. 2021, 27, 9112–9123. [Google Scholar] [CrossRef] [PubMed]
- Il’yasov, S.G.; Glukhacheva, V.S.; Il’yasov, D.S.; Zhukov, E.E.; Eltsov, I.V.; Gatilov, Y.V. A novel energetic nickel coordination compound based on carbohydrazide and dinitramide. Mendeleev Commun. 2022, 32, 344–346. [Google Scholar] [CrossRef]
- Trache, D.; Maggi, F.; Palmucci, I.; DeLuca, L.T.; Khimeche, K.; Fassina, M.; Dossi, S.; Colombo, G. Effect of amide-based compounds on the combustion characteristics of composite solid rocket propellants. Arab. J. Chem. 2019, 12, 3639–3651. [Google Scholar] [CrossRef] [Green Version]
- Xu, S.; Pang, A.M.; Wang, Y.; Pan, X.Z.; Li, S.W.; Li, H.T.; Kong, J. A Review on the use of burning rate suppressants in AP-based composite propellants. Propellants Explos. Pyrotech. 2022, 47, e202000327. [Google Scholar] [CrossRef]
- Kalman, J. Are all solid propellant burning rate modifiers catalysts? Propellants Explos. Pyrotech. 2022, 47, e202200148. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, T.; Zhang, J.; Yang, L.; Cui, Y.; Hu, X.; Liu, Z. Synthesis, crystal structure and thermal decomposition character of [Zn(CHZ)3][C(NO2)3]2)·(H2O)2 (carbohydrazide). Struct. Chem. 2008, 19, 321. [Google Scholar] [CrossRef]
- Qi, S.; Li, Z.; Zhang, T.; Zhou, Z.; Yang, L.; Zhang, J.; Qiao, X.; Yu, K. Crystal structure, thermal analysis and sensitivity property of [Zn(CHZ)3](ClO4)2]. Acta Chim. Sin. 2011, 69, 987. [Google Scholar]
- Akiyoshi, M.; Nakamura, H.; Hara, Y. The thermal behavior of the zinc complexes as a non-azide gas generant for safer driving—Zn complexes of the carbohydraide and semicarbazide. Propellants Explos. Pyrotech. 2000, 25, 41–46. [Google Scholar] [CrossRef]
- Fischer, N.; Klapötke, T.M.; Stierstorfer, J. Explosives based on diaminourea. Propellants Explos. Pyrotech. 2011, 36, 225–232. [Google Scholar] [CrossRef]
- Glukhacheva, V.S.; Il’yasov, S.G.; Obraztsov, A.A.; Gatilov, Y.V.; Eltsov, I.V. A new synthetic route to heteroanthracenes. Eur. J. Org. Chem. 2018, 10, 1265–1273. [Google Scholar] [CrossRef]
- Glukhacheva, V.S.; Obraztsov, A.A.; Ilꞌyasov, S.G. Synthesis of 1,2,4,5,8,9,11,12-octaazacyclotetradeca-5,7,12,14-tetraene-3,10-dione solvates. South-Sib. Sci. Bull. 2017, 4, 140–144. Available online: http://s-sibsb.ru/images/articles/2017/4/S-SibSB_Issue_20.pdf (accessed on 11 September 2022).
- Mishra, L.K.; Madhubala; Jha, R.R.; Preethyalex; Rakeshroshan. Template synthesis of macrocyclic complexes of bivalent Co(II), Ni(II), Pd(II), Zn(II) and Cd(II) ions with cyclic glyoxal carbohydrazone (1,2,4,5,8,9,11,12-octaazacyclotetradeca-5,7,12,14-tetraene-3,10-dione). Orient. J. Chem. 2012, 28, 1877–1881. [Google Scholar] [CrossRef]
- Ilꞌyasov, S.G.; Glukhacheva, V.S.; Ilꞌyasov, D.S.; Zhukov, E.E. Macrocycle as a “container” for dinitramide salts. Materials 2022, 15, 6958. [Google Scholar] [CrossRef] [PubMed]
- Gilardi, R.D.; Butcher, R.J. A novel class of flexible energetic salts, part 4: The crystal structures of hexaaquomagnesium (II), hexaaquomanganese (II), and hexaaquozinc (II) dihydrate salts of dinitramide. J. Chem. Crystallogr. 1998, 28, 105–110. [Google Scholar] [CrossRef]
- Sheldrick, G.M. SADABS, Program for Area Detector Adsorption Correction; Institute for Inorganic Chemistry, University of Göttingen: Göttingen, Germany, 1996. [Google Scholar]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C Struct. Chem. 2015, 71, 3. [Google Scholar] [CrossRef] [Green Version]
- SpectraBase. Available online: https://spectrabase.com/spectrum/20zPcXUclqe (accessed on 18 June 2022).
- Zeng, Z.; Gao, H.; Twamley, B.; Shreeve, J.M. Energetic mono and dibasic 5-dinitromethyltetrazolates: Synthesis, properties, and particle processing. J. Mater. Chem. 2007, 17, 3819–3826. [Google Scholar] [CrossRef]
- Ren, J.; Chen, D.; Fan, G.; Xiong, Y.; Zhang, Z.; Yu, Y.; Li, H. Synthesis, characterization and property analysis: A novel energetic ionic salt of dicarbohydrazide bis[3-(5-nitroimino-1,2,4-triazole)]. New J. Chem. 2019, 43, 6422–6428. [Google Scholar] [CrossRef]
- Wang, R.; Guo, Y.; Zeng, Z.; Shreeve, J.M. Nitrogen-rich nitroguanidyl-functionalized tetrazolate energetic salts. Chem. Commun. 2009, 19, 2697–2699. [Google Scholar] [CrossRef]
Comp. | Frequency, cm−1 | ||||||
---|---|---|---|---|---|---|---|
6 | 1644 s. | 1605 s. | 1536 v.s. | 1430 s., 1344 m. | 1204 v.s., 1178 v.s. | 1088, 1031, 1022 | 828, 762, 731 |
9 | 1644 v.s. | 1604, 1542 s., | 1537 v.s. | 1427, 1344 m. | 1202 v.s., 1177 v.s. | 1096, 1022 s. | 828, 762, 732 |
7 | 1693 v.s. | Abs. | 1519 v.s. | 1443 w., 1361 m. | 1187 s., | 1020 | 826, 762, 740 |
8 | 1665 s. | 1616 s. | 1523 v.s. | 1444 m., 1354 m. | 1180 s. | 1014 | 826, 756 |
5 | Abs. | Abs. | 1537 v.s. | 1432 s., 1344 m. | 1205 v.s., 1177 v.s. | 1031, 1023 s. doublet | 827, 762, 732 |
1 | 1639 s. | 1539 | Abs. | 1455, 1344 m., 1320 | Abs. | 1048 | Abs. |
2 [26] | 1666 s. | 1587 s. | Abs. | 1308 | Abs. | 1008 w. | Abs. |
Functional groups | υ C=O | δ NH | ν N=N-O | δ NH | ν N=N-O | N-N, N-N-N | NO2 |
Comp. | Stage I | Stage II | Stage III | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Onset, °C | Peak, °C | End Set, °C | Specific Heat Release, J/g | On Set, °C | Peak, °C | End Set, °C | Specific Heat Release, J/g | On Set, °C | Peak, °C | End Set, °C | Specific Heat Release, J/g | |
6 | 177 | 179 * | 180 | −142 | 210 | 222 | 237 | 1000 | - | - | - | - |
10 | 31 | 37 * | 42 | −31 | 184 | 216 | 218 | 1307 | 255 | 261 * | 262 | -9 |
7 | 43 | 101 | 109 | 99 | 188 | 214 | 236 | 81 | 265 | 274 | 283 | 381 |
8 | 61 | 97 | 145 | 90 | 188 | 212 | 236 | 162 | 255 | 266 | 280 | 301 |
2 [26] | - | - | - | - | - | - | - | - | 288 | 298 | 291 | 1056 |
1 | 156 | 157 * | 160 | −321 | - | - | - | - | - | - | - | - |
Comp. | Color | Density, g/cm3 | T dec., °C | Sensitivity | Zn Content, % | |
---|---|---|---|---|---|---|
Impact (10 kg), mm | Friction, kgf/cm2 | |||||
6 | Yellow hue | 1.9216 | 222 | <50 | 1400 | 12.04 |
8 | Dark yellow | 1.7283 | 266 | 70 | 3600 | 6.75 |
7 | Dark yellow | 1.6237 | 274 | 70 | 3200 | 3.99 |
10 | – | – | – | <50 | 2500 | – |
11 | – | – | – | <50 | 2400 | – |
Additive | ∇u (KClO4/Al), % | ∇u (KNO3/Zr), % |
---|---|---|
0.5% 6 | −34.55 | −32.57 |
1.0% 6 | −36.21 | −37.95 |
1.5% 6 | −42.18 | −42.62 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Il’yasov, S.G.; Glukhacheva, V.S.; Il’yasov, D.S.; Zhukov, E.E.; Eltsov, I.V.; Nefedov, A.A.; Gatilov, Y.V. Adducts of the Zinc Salt of Dinitramic Acid. Materials 2023, 16, 70. https://doi.org/10.3390/ma16010070
Il’yasov SG, Glukhacheva VS, Il’yasov DS, Zhukov EE, Eltsov IV, Nefedov AA, Gatilov YV. Adducts of the Zinc Salt of Dinitramic Acid. Materials. 2023; 16(1):70. https://doi.org/10.3390/ma16010070
Chicago/Turabian StyleIl’yasov, Sergey G., Vera S. Glukhacheva, Dmitri S. Il’yasov, Egor E. Zhukov, Ilia V. Eltsov, Andrey A. Nefedov, and Yuri V. Gatilov. 2023. "Adducts of the Zinc Salt of Dinitramic Acid" Materials 16, no. 1: 70. https://doi.org/10.3390/ma16010070
APA StyleIl’yasov, S. G., Glukhacheva, V. S., Il’yasov, D. S., Zhukov, E. E., Eltsov, I. V., Nefedov, A. A., & Gatilov, Y. V. (2023). Adducts of the Zinc Salt of Dinitramic Acid. Materials, 16(1), 70. https://doi.org/10.3390/ma16010070