Synthesis, Structural and Magnetic Properties of Cobalt-Doped GaN Nanowires on Si by Atmospheric Pressure Chemical Vapor Deposition
Abstract
:1. Introduction
2. Experiment
2.1. Atmospheric Pressure Chemical Vapor Deposition (APCVD) of GaN NWs
2.2. Ion Implantation
2.3. Annealing
2.4. Characterization Techniques
3. Results and Discussion
3.1. As Grown Undoped GaN NWs and Cobalt Ion Implantation
3.2. Optimization of Annealing Temperature from Photoluminescence and SEM
3.3. X-ray Diffraction Analysis
3.4. High-Resolution Transmission Electron Microscope and Energy Dispersive X-ray Spectroscope Analysis
3.5. Magnetic Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bi, W.; Kuo, H.; Ku, P.; Shen, B. (Eds.) Handbook of GaN Semiconductor Materials and Devices; CRC Press: London, UK, 2017. [Google Scholar]
- Feng, Z.C. (Ed.) Handbook of Solid-State Lighting and LEDs; CRC Press, Taylor & Francis Group: London, UK; New York, NY, USA, 2017. [Google Scholar]
- Chen, R.S.; Ganguly, A.; Chen, L.C.; Chen, K.H. Recent Advances in GaN Nanowires: Surface-Controlled Conduction and Sensing Applications. In GaN and ZnO-based Materials and Devices; Springer Series in Materials Science; Pearton, S., Ed.; Chapter 10; Springer: Berlin/Heidelberg, Germany, 2012; Volume 156, pp. 295–315. [Google Scholar] [CrossRef]
- Lee, T.; Kim, J.H.; Choi, Y.J.; Park, J.G.; Rho, H. Polarized Raman studies of single GaN nanowire and GaN/AlN heteronanowire structures. Thin Solid Films 2019, 671, 147–151. [Google Scholar] [CrossRef]
- Patsha, A.; Dhara, S.; Chattopadhyay, S.; Chen, K.H.; Chen, L.C. Optoelectronic properties of single and array of 1-D III-nitride nanostructures: An approach to light-driven device and energy resourcing. J. Mater. Nanosci. 2018, 5, 1–22. Available online: https://pubs.thesciencein.org/journal/index.php/jmns/article/view/198 (accessed on 17 November 2022).
- Mariana, S.; Gülink, J.; Hamdana, G.; Yu, F.; Strempel, K.; Spende, H.; Yulianto, N.; Granz, T.; Prades, J.D.; Peiner, E.; et al. Vertical GaN Nanowires and Nanoscale Light-Emitting-Diode Arrays for Lighting and Sensing Applications. ACS Appl. Nano Mater. 2019, 2, 4133–4142. [Google Scholar] [CrossRef]
- Winner, J.; Kraut, M.; Hudeczek, R.; Stutzmann, M. GaN nanowire arrays for photocatalytic applications II: Influence of a dielectric shell and liquid environments. Appl. Phys. B 2019, 125, 77. [Google Scholar] [CrossRef]
- Buß, J.H.; Fernández-Garrido, S.; Brandt, O.; Hägele, D.; Rudolph, J. Electron spin dynamics in mesoscopic GaN nanowires. Appl. Phys. Lett. 2019, 114, 092406. [Google Scholar] [CrossRef] [Green Version]
- Zhao, C.; Alfaraj, N.; Subedi, R.C.; Liang, J.W.; Alatawi, A.A.; Alhamoud, A.A.; Alias, E.; Mohamed, M.S.; Ng, T.K.; Ooi, B.S. III-nitride nanowires on unconventional substrates: From materials to optoelectronic device applications. Prog. Quantum Electron. 2019, 61, 1–31. [Google Scholar] [CrossRef]
- Behzadirad, M.; Rishinaramangalam, A.K.; Feezell, D.; Busani, T.; Reuter, C.; Reum, A.; Holz, M.; Gotszalk, T.; Mechold, A.; Hofmann, M.; et al. Field emission scanning probe lithography with GaN nanowires on active cantilevers. J. Vac. Sci. Technol. B 2020, 38, 032806. [Google Scholar] [CrossRef]
- Liu, M.; Tan, L.; Rashid, R.T.; Cen, Y.; Cheng, S.; Botton, G.; Mi, Z.; Li, C.J. GaN nanowire as a reusable photoredox catalyst for radical coupling of carbonyl under blacklight-irradiation. Chem. Sci. 2020, 30, 02718A. [Google Scholar] [CrossRef]
- Zhang, L.; Li, Y.; Xiu, X.; Xin, G.; Xie, Z.; Tao, T.; Liu, B.; Chen, P.; Zhang, R.; Zheng, Y. Preparation of vertically aligned GaN@Ga2O3 core-shell heterostructured nanowire arrays and their photocatalytic activity for degradation of Rhodamine B. Superlattices Microstruct. 2020, 143, 106556. [Google Scholar] [CrossRef]
- Tchutchulashvili, G.; Chusnutdinow, S.; Mech, W.; Korona, K.P.; Reszka, A.; Sobanska, M.; Zytkiewicz, Z.R.; Sadowski, W. GaN Nanowire Array for Charge Transfer in Hybrid GaN/P3HT:PC71BM Photovoltaic Heterostructure Fabricated on Silicon. Materials 2020, 13, 4755. [Google Scholar] [CrossRef]
- Johar, M.A.; Song, G.G.; Waseem, A.; Hassan, M.A.; Bagal, I.V.; Cho, Y.H.; Ryu, S.W. Universal and scalable route to fabricate GaN nanowire-based LED on amorphoussubstrate by MOCVD. Appl. Mater. Today 2020, 19, 100541. [Google Scholar] [CrossRef]
- Sergent, S.; Damilano, B.; Vézian, S.; Chenot, S.; Tsuchizawa, T.; Notomi, M. Lasing up to 380 K in a sublimated GaN nanowire. Appl. Phys. Lett. 2020, 116, 223101. [Google Scholar] [CrossRef]
- Saket, O.; Wang, J.; Amador-Mendez, N.; Morassi, M.; Kunti, A.; Bayle, F.; Collin, S.; Jollivet, A.; Babichev, A.; Sodhi, T.; et al. Investigation of the effect of the doping order in GaN nanowire p-n junctions grown by molecular beam epitaxy. Nanotechnology 2020, 32, 085705. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Zhong, Y.; Zhao, S. Intrinsic excitation-dependent room-temperature internal quantum efficiency of AlGaN nanowires with varying Al contents. J. Vac. Sci. Technol. B 2021, 39, 022803. [Google Scholar] [CrossRef]
- Khan, M.A.H.; Debnath, R.; Motayed, A.; Rao, M.V. Back-Gate GaN Nanowire-Based FET Device for Enhancing Gas Selectivity at Room Temperature. Sensors 2021, 21, 624. [Google Scholar] [CrossRef] [PubMed]
- Doundoulakis, G.; Pavlidis, D. Electrical Characteristics of Vertical GaN Nanowire Vacuum Field Emitter Devices. IEEE Trans. Electron Devices 2021, 68, 3034–3039. [Google Scholar] [CrossRef]
- Khan, M.A.H.; Thomson, B.; Yu, J.; Debnath, R.; Motayed, A.; Rao, M.V. Scalable metal oxide functionalized GaN nanowire for precise SO detection. Sens. Actuators B Chem. 2020, 318, 128223. [Google Scholar] [CrossRef]
- Kim, S.U.; Ra, Y.H. Modeling and Epitaxial Growth of Homogeneous Long-InGaN Nanowire Structures. Nanomaterials 2021, 11, 9. [Google Scholar] [CrossRef]
- Nguyen, A.T.; Ho, Y.W.; Yu, W.C.; Zan, H.W.; Meng, H.F.; Chou, Y.C. Stable and Reversible Photoluminescence from GaN Nanowires in Solution Tuning by Ionic Concentration. Nanoscale Res. Lett. 2021, 16, 45. [Google Scholar] [CrossRef]
- Noh, S.; Han, S.; Shin, J.; Lee, J.; Choi, I.; Oh, H.M.; Ryu, M.Y.; Kim, J.S. Photoelectrochemical Water Splitting using GaN Nanowires with Reverse-Mesa Structures as Photoanode Material. Appl. Sci. Converg. Technol. 2022, 31, 51–55. [Google Scholar] [CrossRef]
- Gridchin, V.O.; Dvoretckaia, L.N.; Kotlyar, K.P.; Reznik, R.R.; Parfeneva, A.V.; Dragunova, A.S.; Kryzhanovskaya, N.V.; Dubrovskii, V.G.; Cirlin, G.E. Selective Area Epitaxy of GaN Nanowires on Si Substrates Using Microsphere Lithography: Experiment and Theory. Nanomaterials 2022, 12, 2341. [Google Scholar] [CrossRef] [PubMed]
- Pandey, A.; Malhotra, Y.; Wang, P.; Sun, K.; Liu, X.; Mi, Z. N-polar InGaN/GaN nanowires: Overcoming the efficiency cliff of red-emitting micro-LEDs. Photonics Res. 2022, 10, 1107. [Google Scholar] [CrossRef]
- Dvoretckaia, L.; Gridchin, V.; Mozharov, A.; Maksimova, A.; Dragunova, A.; Melnichenko, I.; Mitin, D.; Vinogradov, A.; Mukhin, I.; Cirlin, G. Light-Emitting Diodes Based on InGaN/GaN Nanowires onMicrosphere-Lithography-Patterned Si Substrates. Nanomaterials 2022, 12, 1993. [Google Scholar] [CrossRef] [PubMed]
- Dong, W.J.; Zhou, P.; Xiao, Y.; Navid, I.A.; Lee, J.L.; Mi, Z. Silver Halide Catalysts on GaN Nanowires/Si Heterojunction Photocathodes for CO2 Reduction to Syngas at High Current Density. ACS Catal. 2022, 12, 2671–2680. [Google Scholar] [CrossRef]
- Fu, X.; Nie, H.; Sun, Z.; Feng, M.; Chen, X.; Liu, C.; Liu, F.; Yu, D.; Liao, Z. Bending strain effects on the optical and optoelectric properties of GaN nanowires. Nano Res. 2022, 15, 4575–4581. [Google Scholar] [CrossRef]
- Liu, B.; Liu, Q.; Yang, W.; Li, J.; Zhang, X.; Yuldashev, S.; Yao, J. Self-Nucleated Nonpolar GaN Nanowires with Strong and Enhanced UV Luminescence. Cryst. Growth Des. 2022, 22, 4787–4793. [Google Scholar] [CrossRef]
- Farooq, M.U.; Zou, B.; Ghaffar, A.; Kiani, M.S.; Atiq, S.; Bashir, S.; Naseem, S. The contribution of Cr(III)-doping on the modulation of magnetic and luminescence properties of GaN nanowires. Superlattices Microstruct. 2019, 132, 106159. [Google Scholar] [CrossRef]
- Li, Y.; Chen, Z.; Cao, C.; Usman, Z.; Feng, Y.; Pan, Z.; Wu, Z. The controllable synthesis, structural, and ferromagnetic properties of Co doped GaN nanowires. Appl. Phys. Lett. 2012, 100, 232404. [Google Scholar] [CrossRef]
- Shi, L.B.; Liu, J.J.; Fei, Y. Defect formation and magnetic properties of Co-doped GaN crystal and nanowire. Physica B 2013, 426, 45–51. [Google Scholar] [CrossRef]
- Xie, R.; Xing, H.; Zeng, Y.; Huang, Y.; Lu, A.; Chen, X. Room temperature ferromagnetism in Cu–Gd co-doped GaN nanowires: A first-principles study. Phys. Lett. A 2019, 383, 54. [Google Scholar] [CrossRef]
- Maraj, M.; Nabi, G.; Usman, K.; Wang, E.; Wei, W.; Wang, Y.; Sun, W.H. High Quality Growth of Cobalt Doped GaN Nanowires with Enhanced Ferromagnetic and Optical Response. Materials 2020, 13, 3537. [Google Scholar] [CrossRef] [PubMed]
- Farooq, M.U.; Atiq, S.; Zahir, M.; Kiani, M.S.; Ramay, S.M.; Zou, B.; Zhang, J. Spin-polarized exciton formation in Co-doped GaN nanowires. Mater. Chem. Phys. 2020, 245, 122756. [Google Scholar] [CrossRef]
- Lu, F.; Liu, L.; JTian, J. Electronic Structure Investigation of GaN Nanowire Doped with Transition Metals Particles via First Principle. Particles 2022, 39, 2100150. [Google Scholar] [CrossRef]
- Lin, J.X.; Thaomonpun, J.; Thongpool, V.; Chen, W.J.; Huang, C.H.; Sun, S.J.; Remes, Z.; Tseng, Y.T.; Liao, Y.F.; Hsu, H.S. Enhanced Photodegradation in Metal Oxide Nanowires with Co-Doped Surfaces under a Low Magnetic Field. ACS Appl. Mater. Interfaces 2021, 13, 23173–23180. [Google Scholar] [CrossRef]
- Kazmi, J.; Ooi, P.C.; Raza, A.R.A.; Goh, B.T.; Karim, S.S.A.; Samat, M.H.; Lee, M.K.; Wee, M.F.M.R.; Taib, M.F.M.; Mohamed, M.A. Appealing stable room-temperature ferromagnetism by well-aligned 1D Co-doped zinc oxide nanowires. J. Alloys Compd. 2021, 872, 159741. [Google Scholar] [CrossRef]
- Wu, L.N.; Zhang, G.J.; Yang, S.T.; Guo, J.X.; Wu, S.Y. Theoretical examination of defect structures and spin Hamiltonian parameters of manganese (II)- and cobalt (II)-doped ZnO nanowires. J. Phys. Chem. Solids 2022, 165, 110657. [Google Scholar] [CrossRef]
- Shi, Y.T.; Ren, F.F.; Xu, W.Z.; Chen, X.; Ye, J.; Li, L.; Zhou, D.; Zhang, R.; Zheng, Y.; Tan, H.H.; et al. Realization of p-type gallium nitride by magnesium ion implantation for vertical power devices. Sci. Rep. 2019, 9, 8796. [Google Scholar] [CrossRef] [Green Version]
- Ebrish, M.A.; Anderson, T.J.; Jacobs, A.G.; Gallagher, J.C.; Hite, J.K.; Mastro, M.A.; Feigelson, B.N.; Wang, Y.; Liao, M.; Goorsky, M.; et al. Process Optimization for Selective Area Doping of GaN by Ion Implantation. J. Electron. Mater. 2021, 50, 4642–4649. [Google Scholar] [CrossRef]
- Faye, D.N.; Biquard, X.; Nogales, E.; Felizardo, M.; Peres, M.; Redondo-Cubero, A.; Auzelle, T.; Daudin, B.; Tizei, L.H.G.; Kociak, M.; et al. Incorporation of Europium into GaN Nanowires by Ion Implantation. J. Phys. Chem. C 2019, 123, 11874–11887. [Google Scholar] [CrossRef]
- He, J.; Wang, Z.S.; Li, M.; Fu, D.J. Structural and magnetic characterization of cobalt implanted GaN films. Nucl. Instrum. Methods Phys. Res. B 2011, 269, 1041–1045. [Google Scholar] [CrossRef]
- Zhou, X.T.; Sham, T.K.; Shan, Y.Y.; Duan, X.F.; Lee, S.T.; Rosenberg, R.A. One-dimensional zigzag gallium nitride nanostructures. J. Appl. Phys. 2015, 97, 104315. [Google Scholar] [CrossRef]
- Sawahata, J.; Bang, H.; Takiguchi, M.; Seo, J.; Yanagihara, H.; Kita, E.; Akimoto, K. Structural and magnetic properties of Co doped GaN. Phys. Status Solidi 2005, 2, 2458–2462. [Google Scholar] [CrossRef]
- Lee, J.H.; Choi, I.H.; Shin, S.; Lee, S.; Lee, J.; Whang, C.; Lee, S.C.; Lee, K.R.; Baek, J.H.; Chae, K.H.; et al. Room-temperature ferromagnetism of Cu-implanted GaN. Appl. Phys. Lett. 2007, 90, 032504. [Google Scholar] [CrossRef] [Green Version]
- Sheu, J.K.; Chi, G.C. The doping process and dopant characteristics of GaN. J. Phys. Condens. Matter 2002, 14, R657. [Google Scholar] [CrossRef]
- Murphy, A.; Bezryadin, A. Asymmetric nanowire SQUID: Linear current-phase relation, stochastic switching, and symmetries. Phys. Rev. B 2017, 96, 094507. [Google Scholar] [CrossRef] [Green Version]
- Park, Y.H.; Ha, R.; Park, T.E.; Kim, S.W.; Seo, D.; Choi, H.J. Magnetic InxGa1−xN nanowires at room temperature using Cu dopant and annealing. Nanoscale Res. Lett. 2015, 10, 3. Available online: http://www.nanoscalereslett.com/content/10/1/3 (accessed on 17 November 2022). [CrossRef] [Green Version]
- Faramehr, S.; Janković, N.; Igić, P. Analysis of GaN MagHEMTs. Semicond. Sci. Technol. 2018, 33, 095015. [Google Scholar] [CrossRef]
- Guzmán, G.; Maestre, D.; Herrera, M. Hole-mediated ferromagnetism in GaN doped with Cu and Mn. J. Mater. Sci. Mater. Electron. 2020, 31, 15070–15078. [Google Scholar] [CrossRef]
- Gas, K.; Kunert, G.; Dluzewski, P.; Jakiela, R.; Hommel, D.; Sawicki, M. Improved-sensitivity integral SQUID magnetometry of (Ga,Mn)N thin films in proximity to Mg-doped GaN. J. Alloys Compd. 2021, 868, 159119. [Google Scholar] [CrossRef]
Parameters | Values |
---|---|
Carrier Flow Rate | 80 sccm |
Carrier gas | Argon |
NH3 Flow Rate | 10 sccm |
Growth Temperature | 920 °C |
Growth Time | 1 h |
Growth Pressure | 760 torr |
Switching Temperature | 920 °C |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, Z.C.; Liu, Y.-L.; Yiin, J.; Chen, L.-C.; Chen, K.-H.; Klein, B.; Ferguson, I.T. Synthesis, Structural and Magnetic Properties of Cobalt-Doped GaN Nanowires on Si by Atmospheric Pressure Chemical Vapor Deposition. Materials 2023, 16, 97. https://doi.org/10.3390/ma16010097
Feng ZC, Liu Y-L, Yiin J, Chen L-C, Chen K-H, Klein B, Ferguson IT. Synthesis, Structural and Magnetic Properties of Cobalt-Doped GaN Nanowires on Si by Atmospheric Pressure Chemical Vapor Deposition. Materials. 2023; 16(1):97. https://doi.org/10.3390/ma16010097
Chicago/Turabian StyleFeng, Zhe Chuan, Yu-Lun Liu, Jeffrey Yiin, Li-Chyong Chen, Kuei-Hsien Chen, Benjamin Klein, and Ian T. Ferguson. 2023. "Synthesis, Structural and Magnetic Properties of Cobalt-Doped GaN Nanowires on Si by Atmospheric Pressure Chemical Vapor Deposition" Materials 16, no. 1: 97. https://doi.org/10.3390/ma16010097
APA StyleFeng, Z. C., Liu, Y. -L., Yiin, J., Chen, L. -C., Chen, K. -H., Klein, B., & Ferguson, I. T. (2023). Synthesis, Structural and Magnetic Properties of Cobalt-Doped GaN Nanowires on Si by Atmospheric Pressure Chemical Vapor Deposition. Materials, 16(1), 97. https://doi.org/10.3390/ma16010097