The Application of Additive Composites Technologies for Clamping and Manipulation Devices in the Production Process
Abstract
:1. Introduction
2. Materials and Methods
2.1. Composite Material for Additive Technology
2.2. Design of the Clamping Jaws
2.3. Additive Manufacturing of the Clamping Jaws
2.4. Design of the Experiment
2.5. Surface Measurement
3. Results
3.1. Surface Characteristics
3.2. Surface Shape
4. Discussion
5. Conclusions
- Components manufactured by composite additive manufacturing CFF are suitable for real conditions, and their application suitability is directly related to the material used and the working conditions;
- The designed nylon and composite jaws can withstand clamping pressures ranging from 0.5 MPa to 3 MPa;
- At a low clamping pressure of 0.5 MPa, all tested jaws achieve the same results, which means that the standard metal jaws can be used in an industrial environment;
- The type of jaws and clamping pressure directly affect the deformations of the clamped materials. However, nylon and composite jaws do not cause any deformations at the monitored clamping pressures;
- To ensure the continued usability of clamped materials, the application of metal jaws at clamping pressures higher than 1 MPa is appropriate only if the resulting deformation on the clamped part does not affect its functionality. It is crucial to consider the potential formation of spreading cracks and permanent changes in the diameter of the clamped material.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, Z.; Rahman, M. High-Speed Machining; Elsevier: Oxford, UK, 2014; Volume 11, ISBN 9780080965338. [Google Scholar]
- Ezugwu, E.O.; Bonney, J.; Yamane, Y. An Overview of the Machinability of Aeroengine Alloys. J. Mater Process. Technol. 2003, 134, 233–253. [Google Scholar] [CrossRef]
- Dudzinski, D.; Devillez, A.; Moufki, A.; Larrouquère, D.; Zerrouki, V.; Vigneau, J. A Review of Developments towards Dry and High Speed Machining of Inconel 718 Alloy. Int. J. Mach. Tools Manuf. 2004, 44, 439–456. [Google Scholar] [CrossRef]
- Estrems, M.; Arizmendi, M.; Cumbicus, W.E.; López, A. Measurement of Clamping Forces in a 3 Jaw Chuck through an Instrumented Aluminium Ring. Procedia Eng. 2015, 132, 456–463. [Google Scholar] [CrossRef]
- Dobrzynski, M.; Mietka, K. Surface Texture after Turning for Various Workpiece Rigidities. Machines 2021, 9, 9. [Google Scholar] [CrossRef]
- Feng, P.F.; Wu, Z.J.; Yu, D.W.; Uhlmann, E. An Improved Computation Model for Critical Bending Force of Three-Jaw Chucks. J. Mater. Process. Technol. 2008, 208, 124–129. [Google Scholar] [CrossRef]
- Marui, E.; Hashimoto, M.; Kato, S. Damping Capacity of Turning Tools, Part 1: Effect of Clamping Conditions and Optimum Clamping Load. J. Eng. Ind. 1993, 115, 362–366. [Google Scholar] [CrossRef]
- Ivanov, V.; Mital, D.; Karpus, V.; Dehtiarov, I.; Zajac, J.; Pavlenko, I.; Hatala, M. Numerical Simulation of the System “Fixture-Workpiece” for Lever Machining. Int. J. Adv. Manuf. Technol. 2017, 91, 79–90. [Google Scholar] [CrossRef]
- Rahman, M.; Venkatesh, V.C. Effect of Clamping Conditions on Chatter Stability and Machining Accuracy. CIRP Ann. Manuf. Technol. 1985, 34, 339–342. [Google Scholar] [CrossRef]
- Feng, P.F.; Yu, D.W.; Wu, Z.J.; Uhlmann, E. Jaw-Chuck Stiffness and Its Influence on Dynamic Clamping Force during High-Speed Turning. Int. J. Mach. Tools Manuf. 2008, 48, 1268–1275. [Google Scholar] [CrossRef]
- Engelmann, M.; Rojas, A.A.; Regel, J.; Putz, M. Investigation of the Standstill Clamping Force during Milling with Three-Jaw Chuck. In Proceedings of the 30th European Safety and Reliability Conference, ESREL 2020 and 15th Probabilistic Safety Assessment and Management Conference; Research Publishing: Singapore, 2020; pp. 589–596. [Google Scholar]
- Legkiy, N.M. Reducing the Effect of Centrifugal Forces on the Clamping Force in the New Design of a Three-Jaw Lathe Chuck. IOP Conf. Ser. Mater. Sci. Eng. 2020, 971, 022076. [Google Scholar] [CrossRef]
- Finkelstein, N.; Aronson, A.; Tsach, T. Toolmarks Made by Lathe Chuck Jaws. Forensic Sci. Int. 2017, 275, 124–127. [Google Scholar] [CrossRef] [PubMed]
- Lutsiv, I.; Voloshyn, V.; Bytsa, R. Adaptation of Lathe Chucks Clamping Elements to the Clamping Surface. Int. Sci. J. Mach. Technol. Mater. 2015, 9, 64–67. [Google Scholar]
- Hu, S.Y.; Hu, M.J.; Zhang, W.Y. Design and Experiment of Flexible Clamping Device for Pepper Plug Seedlings. Adv. Mech. Eng. 2022, 14, 16878132221107254. [Google Scholar] [CrossRef]
- Tian, Z.W.; Ma, W.; Yang, Q.C.; Yao, S.; Guo, X.Y.; Duan, F.M. Design and Experiment of Gripper for Greenhouse Plug Seedling Transplanting Based on EDM. Agronomy 2022, 12, 1487. [Google Scholar] [CrossRef]
- Hwang, H.Y.; Lee, H.G.; Lee, D.G. Clamping Effects on the Dynamic Characteristics of Composite Machine Tool Structures. Compos. Struct. 2004, 66, 399–407. [Google Scholar] [CrossRef]
- Ngo, T.D.; Kashani, A.; Imbalzano, G.; Nguyen, K.T.Q.; Hui, D. Additive Manufacturing (3D Printing): A Review of Materials, Methods, Applications and Challenges. Compos. B Eng. 2018, 143, 172–196. [Google Scholar] [CrossRef]
- Ferchow, J.; Kälin, D.; Englberger, G.; Schlüssel, M.; Klahn, C.; Meboldt, M. Design and Validation of Integrated Clamping Interfaces for Post-Processing and Robotic Handling in Additive Manufacturing. Int. J. Adv. Manuf. Technol. 2022, 118, 3761–3787. [Google Scholar] [CrossRef]
- Kafle, A.; Luis, E.; Silwal, R.; Pan, H.M.; Shrestha, P.L.; Bastola, A.K. 3d/4d Printing of Polymers: Fused Deposition Modelling (Fdm), Selective Laser Sintering (Sls), and Stereolithography (Sla). Polymers 2021, 13, 3101. [Google Scholar] [CrossRef]
- Peng, C.; Tran, P.; Mouritz, A.P. Compression and Buckling Analysis of 3D Printed Carbon Fibre-Reinforced Polymer Cellular Composite Structures. Compos. Struct. 2022, 300, 116167. [Google Scholar] [CrossRef]
- Basurto-Vázquez, O.; Sánchez-Rodríguez, E.P.; McShane, G.J.; Medina, D.I. Load Distribution on Pet-g 3d Prints of Honeycomb Cellular Structures under Compression Load. Polymers 2021, 13, 1983. [Google Scholar] [CrossRef]
- Yazdani Sarvestani, H.; Akbarzadeh, A.H.; Niknam, H.; Hermenean, K. 3D Printed Architected Polymeric Sandwich Panels: Energy Absorption and Structural Performance. Compos. Struct. 2018, 200, 886–909. [Google Scholar] [CrossRef]
- Dong, G.; Wijaya, G.; Tang, Y.; Zhao, Y.F. Optimizing Process Parameters of Fused Deposition Modeling by Taguchi Method for the Fabrication of Lattice Structures. Addit. Manuf. 2018, 19, 62–72. [Google Scholar] [CrossRef]
- Goh, G.D.; Yap, Y.L.; Agarwala, S.; Yeong, W.Y. Recent Progress in Additive Manufacturing of Fiber Reinforced Polymer Composite. Adv. Mater. Technol. 2019, 4, 1800271. [Google Scholar] [CrossRef]
- Kaw, A.K. Mechanics of Composite Materials; Taylor & Francis: Abingdon, UK, 2006; ISBN 0849313430. [Google Scholar]
- Majko, J.; Saga, M.; Vasko, M.; Handrik, M.; Barnik, F.; Dorčiak, F. FEM Analysis of Long-Fibre Composite Structures Created by 3D Printing. Transp. Res. Procedia 2019, 40, 792–799. [Google Scholar] [CrossRef]
- Ning, F.; Cong, W.; Qiu, J.; Wei, J.; Wang, S. Additive Manufacturing of Carbon Fiber Reinforced Thermoplastic Composites Using Fused Deposition Modeling. Compos. B Eng. 2015, 80, 369–378. [Google Scholar] [CrossRef]
- Prajapati, A.R.; Dave, H.K.; Raval, H.K. Effect of Fiber Volume Fraction on the Impact Strength of Fiber Reinforced Polymer Composites Made by FDM Process. Mater. Today Proc. 2021, 44, 2102–2106. [Google Scholar] [CrossRef]
- Micro Carbon Fiber Filled Nylon That Forms the Foundation of Markforged Composite Parts. Available online: https://markforged.com/materials/plastics/onyx (accessed on 5 May 2023).
- Papa, I.; Silvestri, A.T.; Ricciardi, M.R.; Lopresto, V.; Squillace, A. Effect of Fibre Orientation on Novel Continuous 3D-Printed Fibre-Reinforced Composites. Polymers 2021, 13, 2524. [Google Scholar] [CrossRef]
- Santos, J.D.; Fernández, A.; Ripoll, L.; Blanco, N. Experimental Characterization and Analysis of the In-Plane Elastic Properties and Interlaminar Fracture Toughness of a 3D-Printed Continuous Carbon Fiber-Reinforced Composite. Polymers 2022, 14, 506. [Google Scholar] [CrossRef]
- Beniak, J.; Križan, P.; Šooš, Ľ.; Matuš, M. Roughness and Compressive Strength of FDM 3D Printed Specimens Affected by Acetone Vapour Treatment. IOP Conf. Ser. Mater. Sci. Eng. 2018, 297, 012018. [Google Scholar] [CrossRef]
- Beniak, J.; Holdy, M.; Križan, P.; Matúš, M. Research on Parameters Optimization for the Additive Manufacturing Process. Transp. Res. Procedia 2019, 40, 144–149. [Google Scholar] [CrossRef]
- Pathak, S.; Böhm, M.; Kaufman, J.; Kopeček, J.; Zulić, S.; Stránský, O.; Shukla, A.; Brajer, J.; Beránek, L.; Radhakrisnan, J.; et al. Surface Integrity of SLM Manufactured Meso-Size Gears in Laser Shock Peening without Coating. J Manuf Process 2023, 85, 764–773. [Google Scholar] [CrossRef]
- Majko, J.; Vaško, M.; Handrik, M.; Sága, M. Tensile Properties of Additively Manufactured Thermoplastic Composites Reinforced with Chopped Carbon Fibre. Materials 2022, 15, 4224. [Google Scholar] [CrossRef]
- Martín, M.J.; Auñón, J.A.; Martín, F. Influence of Infill Pattern on Mechanical Behavior of Polymeric and Composites Specimens Manufactured Using Fused Filament Fabrication Technology. Polymers 2021, 13, 2934. [Google Scholar] [CrossRef] [PubMed]
- Zárybnická, L.; Machotová, J.; Pagáč, M.; Rychlý, J.; Vykydalová, A. The Effect of Filling Density on Flammability and Mechanical Properties of 3D-Printed Carbon Fiber-Reinforced Nylon. Polym. Test. 2023, 120, 107944. [Google Scholar] [CrossRef]
- Krzikalla, D.; Měsíček, J.; Halama, R.; Hajnyš, J.; Pagáč, M.; Čegan, T.; Petrů, J. On Flexural Properties of Additive Manufactured Composites: Experimental, and Numerical Study. Compos. Sci. Technol. 2022, 218, 109182. [Google Scholar] [CrossRef]
- Ramalingam, P.S.; Mayandi, K.; Balasubramanian, V.; Chandrasekar, K.; Stalany, V.M.; Munaf, A.A. Effect of 3D Printing Process Parameters on the Impact Strength of Onyx—Glass Fiber Reinforced Composites. Mater. Today Proc. 2021, 45, 6154–6159. [Google Scholar] [CrossRef]
Parameter | Onyx | Carbon Fiber |
---|---|---|
Tensile modulus of elasticity [GPa] | 2.4 | 60 |
Tensile strength [MPa] | 37 | 800 |
Tensile stress at Break [%] | 25 | 1.5 |
Heat deflection temp [°C] | 145 | 105 |
Specimen Nu. | Type of Jaw | Clamping Pressure [MPa] |
---|---|---|
S1 | Steel | 0.5 |
S2 | 1 | |
S3 | 2 | |
S4 | 3 | |
S5 | Multipurpose | 0.5 |
S6 | 1 | |
S7 | 2 | |
S8 | 3 | |
S9 | Outer | 0.5 |
S10 | 1 | |
S11 | 2 | |
S12 | 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Joch, R.; Šajgalík, M.; Drbúl, M.; Holubják, J.; Czán, A.; Bechný, V.; Matúš, M. The Application of Additive Composites Technologies for Clamping and Manipulation Devices in the Production Process. Materials 2023, 16, 3624. https://doi.org/10.3390/ma16103624
Joch R, Šajgalík M, Drbúl M, Holubják J, Czán A, Bechný V, Matúš M. The Application of Additive Composites Technologies for Clamping and Manipulation Devices in the Production Process. Materials. 2023; 16(10):3624. https://doi.org/10.3390/ma16103624
Chicago/Turabian StyleJoch, Richard, Michal Šajgalík, Mário Drbúl, Jozef Holubják, Andrej Czán, Vladimír Bechný, and Miroslav Matúš. 2023. "The Application of Additive Composites Technologies for Clamping and Manipulation Devices in the Production Process" Materials 16, no. 10: 3624. https://doi.org/10.3390/ma16103624
APA StyleJoch, R., Šajgalík, M., Drbúl, M., Holubják, J., Czán, A., Bechný, V., & Matúš, M. (2023). The Application of Additive Composites Technologies for Clamping and Manipulation Devices in the Production Process. Materials, 16(10), 3624. https://doi.org/10.3390/ma16103624