Combustion Synthesis of Magnesium-Aluminum Oxynitride MgAlON with Tunable Composition
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Combustion Synthesis of MgAlON Powders: Macrokinetic Parameters and Reaction Mechanisms
3.2. MgAlON Powders: Phase Composition of Combustion Products
3.3. Combustion Synthesis of Single-Phase MgAlON Powders
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- McCauley, J.W. A Simple Model for Aluminum Oxynitride Spinels. J. Am. Ceram. Soc. 1978, 61, 372–373. [Google Scholar] [CrossRef]
- McCauley, J.W.; Patel, P.; Chen, M.; Gilde, G.; Strassburger, E.; Paliwal, B.; Ramesh, K.T.; Dandekar, D.P. AlON: A brief history of its emergence and evolution. J. Eur. Ceram. Soc. 2009, 29, 223–236. [Google Scholar] [CrossRef]
- Corbin, N.D. Aluminum oxynitride spinel: A review. J. Eur. Ceram. Soc. 1989, 5, 143–154. [Google Scholar] [CrossRef]
- Boey, F.Y.C.; Song, X.L.; Gu, Z.Y.; Tok, A. AlON phase formation in a tape-cast Al2O3/AlN composite. J. Mater. Process. Technol. 1999, 89–90, 478–480. [Google Scholar] [CrossRef]
- Ganesh, I. A review on magnesium aluminate (MgAl2O4) spinel: Synthesis, processing and applications. Int. Mater. Rev. 2013, 58, 63–112. [Google Scholar] [CrossRef]
- Shi, Z.; Zhao, Q.; Guo, B.; Ji, T.; Wang, H. A review on processing polycrystalline magnesium aluminate spinel (MgAl2O4): Sintering techniques, material properties and machinability. Mater. Des. 2020, 193, 108858. [Google Scholar] [CrossRef]
- Warner, C.T.; Hartnett, T.M.; Fisher, D.; Sunne, W. Characterization of ALON Optical Ceramic. In Proceedings of the Window and Dome Technologies and Materials IX, Orlando, FL, USA, 18 May 2005; Volume 5786. [Google Scholar]
- Tong, S.-H.; Li, Y.; Yan, M.-W.; Jiang, P.; Ma, J.-J.; Yue, D.-D. In situ reaction mechanism of MgAlON in Al–Al2O3–MgO composites at 1700 °C under flowing N2. Int. J. Miner. Met. Mater. 2017, 24, 1061–1066. [Google Scholar] [CrossRef]
- Zhang, R.; Wang, H.; Tian, M.; Wang, Y.; Liu, M.; Wang, H.; Zhang, G. Pressureless reaction sintering and hot isostatic pressing of transparent MgAlON ceramic with high strength. Ceram. Int. 2018, 44, 17383–17390. [Google Scholar] [CrossRef]
- Yan, M.; Li, Y.; Li, H.; Sun, Y.; Chen, H.; Ma, C.; Sun, J. Evolution mechanism of MgAlON in the Al-Al2O3–MgO composite at 1800 °C in flowing nitrogen. Ceram. Int. 2017, 44, 3856–3861. [Google Scholar] [CrossRef]
- Morey, O.; Goeuriot, P. “MgAlON” spinel structure: A new crystallographic model of solid solution as suggested by 27Al solid state NMR. J. Eur. Ceram. Soc. 2005, 25, 501–507. [Google Scholar] [CrossRef]
- Schramm, A.; Thümmler, M.; Fabrichnaya, O.; Brehm, S.; Kraus, J.; Kortus, J.; Rafaja, D.; Scharf, C.; Aneziris, C.G. Reaction Sintering of MgAlON at 1500 °C from Al2O3, MgO and AlN and Its Wettability by AlSi7Mg. Crystals 2022, 12, 654. [Google Scholar] [CrossRef]
- Jiang, X.; Shan, Y.; Sun, X.; Huang, C.; Ma, L.; Xu, J.; Li, J. A two-step heating strategy for low-temperature fabrication of high sinterability and fine MgAlON powder with MgAl2O4 as Mg source. Ceram. Int. 2022, 48, 30348–30355. [Google Scholar] [CrossRef]
- Liu, X.; Wang, H.; Tu, B.; Wang, W.; Fu, Z. Novel divalent europium doped MgAlON transparent ceramic for shortwave ultraviolet erasable windows. Scr. Mater. 2015, 105, 30–33. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, C.; Takahashi, K.; Nishimura, T.; Segawa, H.; Hirosaki, N.; Xie, R.-J. Uniform and fine Mg-γ-AlON powders prepared from MgAl2O4: A promising precursor material for highly-transparent Mg-γ-AlON ceramics. J. Eur. Ceram. Soc. 2018, 39, 928–933. [Google Scholar] [CrossRef]
- Granon, A.; Goeuriot, P.; Thevenot, F.; Guyader, J.; L’Haridon, P.; Laurent, Y. Reactivity in the Al2O3-AlN-MgO system. The MgAlON spinel phase. J. Eur. Ceram. Soc. 1994, 13, 365–370. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, Y.; Chen, J.; Jiang, R.; Shi, Z.; Yang, G.; Hu, W.; Xu, Q.; Xie, X.; Tan, Y.; et al. Preparation and elastic–plastic indentation response of MgAlON transparent ceramics. Ceram. Int. 2022, 48, 855–863. [Google Scholar] [CrossRef]
- Chen, Q.; Wang, Y.; Qi, J.; Wang, H. A contrast of carbothermal reduction synthesis of MgAlON and AlON powders for transparent ceramics. J. Alloy. Compd. 2019, 791, 856–863. [Google Scholar] [CrossRef]
- Ma, B.; Wang, Y.; Zhang, W.; Chen, Q. Pressureless sintering and fabrication of highly transparent MgAlON ceramic from the carbothermal powder. J. Alloy. Compd. 2018, 745, 617–623. [Google Scholar] [CrossRef]
- Ma, B.; Zhang, W.; Wang, Y.; Xie, X.; Song, H.; Yao, C.; Zhang, Z.; Xu, Q. Hot isostatic pressing of MgAlON transparent ceramic from carbothermal powder. Ceram. Int. 2018, 44, 4512–4515. [Google Scholar] [CrossRef]
- Borovinskaya, I.P.; Loryan, V.E.; Zakorzhevsky, V.V. Combustion Synthesis of Nitrides for Development of Ceramic Materials of New Generation. In Nitride Ceramics: Combustion Synthesis, Properties, and Applications; Wiley: Hoboken, NJ, USA, 2014; pp. 1–48. [Google Scholar]
- Akopdzhanyan, T.G.; Rupasov, S.I.; Vorotilo, S. Chemically activated combustion synthesis of AlON under high nitrogen pressure. Combust. Flame 2021, 232, 111560. [Google Scholar] [CrossRef]
- Kharatyan, S.L.; Merzhanov, A.G. Coupled SHS Reactions as a useful tool for synthesis of materials: An overview. Int. J. Self-Propagating High-Temp. Synth. 2012, 21, 59–73. [Google Scholar] [CrossRef]
- Ksandopulo, G.I.; Baidel’Dinova, A.N. Combustion in a System of Conjugated Layers and High-Temperature Synthesis of Materials. Russ. J. Appl. Chem. 2004, 77, 364–368. [Google Scholar] [CrossRef]
- Merzhanov, A.G. Thermally coupled processes of self-propagating high-temperature synthesis. Dokl. Phys. Chem. 2010, 434, 159–162. [Google Scholar] [CrossRef]
- Prokofiev, B.G.; Smolyakov, V.K. Gasless combustion of a system of thermally coupled layers. Combust. Explos. Shock Waves 2016, 52, 62–66. [Google Scholar] [CrossRef]
- Sytschev, A.E.; Vrel, D.; Boyarchenko, O.D.; Roshchupkin, D.V.; Sachkova, N.V. Combustion synthesis in bi-layered (Ti−Al)/(Ni−Al) system. J. Mater. Process. Technol. 2017, 240, 60–67. [Google Scholar] [CrossRef]
- Linde, A.V.; Studenikin, I.A.; Kondakov, A.A.; Grachev, V.V. Thermally coupled SHS processes in layered (Fe2O3 + 2Al)/(Ti + Al)/(Fe2O3 + 2Al) structures: An experimental study. Combust. Flame 2019, 208, 364–368. [Google Scholar] [CrossRef]
- Chukhlomina, L.N. Chemically and thermally conjugate synthesis of silicon nitride based compositions using ferrosilicon. Glas. Ceram. 2009, 66, 288–292. [Google Scholar] [CrossRef]
- Licheri, R.; Orrù, R.; Cao, G. Chemically-activated combustion synthesis of TiC–Ti composites. Mater. Sci. Eng. A 2004, 367, 185–197. [Google Scholar] [CrossRef]
- Li, Y.; Yang, D.; Liu, C.; Yang, P.; Mu, P.; Wen, J.; Chen, S.; Li, Y. Preparation and characterization of novel nonstoichiometric magnesium aluminate spinels. Ceram. Int. 2018, 44, 15104–15109. [Google Scholar] [CrossRef]
- Pichlbauer, S.; Harmuth, H.; Lenčéš, Z.; Šajgalík, P. Preliminary investigations of the production of MgAlON bonded refractories. J. Eur. Ceram. Soc. 2012, 32, 2013–2018. [Google Scholar] [CrossRef]
- Bandyopadhyay, S.; Rixecker, G.; Aldinger, F.; Maiti, H.S. Effect of Controlling Parameters on the Reaction Sequences of Formation of Nitrogen-Containing Magnesium Aluminate Spinel from MgO, Al2O3, and AlN. J. Am. Ceram. Soc. 2004, 87, 480–482. [Google Scholar] [CrossRef]
- Morey, O.; Goeuriot, P.; Grosseau, P.; Guilhot, B.; Benabdesselam, M.; Iacconi, P. Spectroscopic analysis of “MgAlON” spinel powders: Influence of nitrogen content. Solid State Ionics 2003, 159, 381–388. [Google Scholar] [CrossRef]
Target Phase | Al (Used in Nitriding Reaction), wt.% | Al2O3, wt.% | MgO, wt.% | Al (Used in Oxidation Reaction), wt.% | Mg(ClO4)2, wt.% |
---|---|---|---|---|---|
Mga10 | 11.1 | 71.4 | 2.7 | 5.8 | 9 |
Mga30 | 8.6 | 68.4 | 8.2 | 5.8 | 9 |
Mga40 | 7.4 | 66.9 | 10.9 | 5.8 | 9 |
Mga50 | 6.2 | 65.4 | 13.6 | 5.8 | 9 |
Mga60 | 4.9 | 63.9 | 16.4 | 5.8 | 9 |
Mga70 | 3.7 | 62.4 | 19.1 | 5.8 | 9 |
Target Phase | Al (Used in Nitriding Reaction), wt.% | Al2O3, wt.% | MgO, wt.% | Al (Used in Oxidation Reaction), wt.% | Mg(ClO4)2, wt.% |
---|---|---|---|---|---|
Mga30 | 8.6 | 73 | 8.2 | 4 | 6.2 |
Mga30 | 8.6 | 70.7 | 8.2 | 5 | 7.5 |
Mga30 | 8.6 | 68.2 | 8.2 | 6 | 9 |
Mga30 | 8.6 | 65.8 | 8.2 | 7 | 10.4 |
Mga30 | 8.6 | 63.4 | 8.2 | 8 | 11.8 |
Target Phase | Al (Used in Nitriding Reaction), wt.% | Al2O3, wt.% | MgO, wt.% | Al (Used in Oxidation Reaction), wt.% | Mg(ClO4)2, wt.% |
---|---|---|---|---|---|
Mga10 | 11.2 | 74.9 | 2.7 | 4.4 | 6.8 |
Mga30 | 8.6 | 70.7 | 8.2 | 5 | 7.5 |
Mga50 | 6.1 | 64.4 | 13.6 | 6.2 | 9.7 |
Mga70 | 3.7 | 59.2 | 18.9 | 7.2 | 11 |
Mga90 | 1.2 | 54.1 | 24.1 | 8.1 | 12.5 |
Target Phase | N | O | Mg | Al | Lattice Parameter, nm | Specific Surface Area, m/g2 |
---|---|---|---|---|---|---|
MgA10 | 3.3 | 44.4 | 2.1 | 50.2 | 0.79673 | 3.8 |
MgA30 | 2.5 | 43.3 | 4.9 | 49.3 | 0.79853 | 3.8 |
MgA50 | 1.8 | 44.7 | 7.9 | 45.6 | 0.80069 | 3.8 |
MgA70 | 1.1 | 43.9 | 11.1 | 43.9 | 0.80278 | 3.8 |
MgA90 | 0.4 | 46.2 | 14.4 | 39 | 0.80551 | 3.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akopdzhanyan, T.; Abzalov, D.; Moskovskikh, D.; Abedi, M.; Romanovski, V. Combustion Synthesis of Magnesium-Aluminum Oxynitride MgAlON with Tunable Composition. Materials 2023, 16, 3648. https://doi.org/10.3390/ma16103648
Akopdzhanyan T, Abzalov D, Moskovskikh D, Abedi M, Romanovski V. Combustion Synthesis of Magnesium-Aluminum Oxynitride MgAlON with Tunable Composition. Materials. 2023; 16(10):3648. https://doi.org/10.3390/ma16103648
Chicago/Turabian StyleAkopdzhanyan, Tigran, Danil Abzalov, Dmitry Moskovskikh, Mohammad Abedi, and Valentin Romanovski. 2023. "Combustion Synthesis of Magnesium-Aluminum Oxynitride MgAlON with Tunable Composition" Materials 16, no. 10: 3648. https://doi.org/10.3390/ma16103648
APA StyleAkopdzhanyan, T., Abzalov, D., Moskovskikh, D., Abedi, M., & Romanovski, V. (2023). Combustion Synthesis of Magnesium-Aluminum Oxynitride MgAlON with Tunable Composition. Materials, 16(10), 3648. https://doi.org/10.3390/ma16103648