Thermomechanical Simulation of Orthogonal Metal Cutting with PFEM and SPH Using a Temperature-Dependent Friction Coefficient: A Comparative Study
Abstract
:1. Introduction
2. Numerical Simulation Framework
2.1. Balance Equations
2.2. Material and Friction Modeling
2.2.1. Flow Stress Modeling
2.2.2. Friction Modeling
2.3. Particle Finite Element Modeling
2.3.1. Balance Equations
2.3.2. PFEM Spatial Discretization of Metal Cutting Equations
2.3.3. Temporal Discretization in PFEM
2.3.4. PFEM Meshing
Algorithm 1: Particle Finite Element Method Algorithm in Metal Cutting Simulations. |
while
do
if remeshing is needed then Go to step 1. else Go to step 3. end if end while |
2.3.5. PFEM Simulation Setup
2.4. Smoothed Particle Hydrodynamics Modeling
2.4.1. SPH Spatial Discretization of Metal Cutting Equations
2.4.2. Temporal Discretization
2.4.3. SPH Simulation Setup
3. Results and Discussion
3.1. Prediction of Forces
3.2. Prediction of Thermal Loads
3.3. Prediction of Chip Shapes
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. Thermomechanical Properties
Appendix A.1. Workpiece
Property | Symbol | Unit | AISI 1045 | Ti6Al4V |
---|---|---|---|---|
Density | 7870 | 4430 | ||
Young’s modulus | E | GPa | 205 | 110 |
Poisson ratio | – | 0.29 | 0.342 | |
Heat conductivity | k | W/(m K) | 50.7 | 7.44 |
Specific heat capacity | J/(kg K) | 486 | 553 | |
Melting temperature | K | 1773 | 1877 |
Appendix A.2. Tool
Property | Symbol | Unit | Value |
---|---|---|---|
Density | 15.700 | ||
Young’s modulus | E | GPa | 600 |
Poisson ratio | – | 0.2 | |
Heat conductivity | k | W/(m K) | 59 |
Specific heat capacity | J/(kg K) | 15 |
Appendix A.3. Tool–Chip Contact Zone
Property | Symbol | Unit | Value |
---|---|---|---|
Reference temperature | K | 293 | |
Coeff. of plastic work into heat | c | – | 0.9 |
Coeff. of frictional work into heat | h | – | 1 |
Appendix B. Predicted Forces and Temperatures
Case | (m/min) | (mm) | r (m) | (N) | (N) | |||
---|---|---|---|---|---|---|---|---|
1 | 60 | 0.1 | 0 | 10 | 10 | 499.73 | 311.35 | 0.62 |
2 | 0.15 | 689.69 | 427.6 | 0.61 | ||||
3 | 0.2 | 843.01 | 492.79 | 0.58 | ||||
4 | 120 | 0.1 | 0 | 10 | 10 | 407.6 | 210.91 | 0.51 |
5 | 0.15 | 590.68 | 323.79 | 0.54 | ||||
6 | 0.2 | 788.58 | 470.89 | 0.59 | ||||
7 | 180 | 0.1 | 0 | 10 | 10 | 350.48 | 152.76 | 0.43 |
8 | 0.15 | 517.79 | 224.6 | 0.43 | ||||
9 | 0.2 | 696.91 | 322.72 | 0.46 |
Case | (m/min) | (mm) | r (m) | (N) | (N) | |||
---|---|---|---|---|---|---|---|---|
10 | 20 | 0.1 | 0 | 10 | 10 | 383.24 | 164.62 | 0.42 |
11 | 0.15 | 535.51 | 223.84 | 0.41 | ||||
12 | 0.2 | 624.17 | 228.18 | 0.36 | ||||
13 | 40 | 0.1 | 0 | 10 | 10 | 352.62 | 169.89 | 0.48 |
14 | 0.15 | 482.86 | 213.44 | 0.44 | ||||
15 | 0.2 | 623.92 | 263.25 | 0.42 | ||||
16 | 60 | 0.1 | 0 | 10 | 10 | 337 | 155.6 | 0.46 |
17 | 0.15 | 464.26 | 189.02 | 0.40 | ||||
18 | 0.2 | 608 | 240.14 | 0.39 |
Case | (m/min) | (mm) | r (m) | (N) | (N) | |||
---|---|---|---|---|---|---|---|---|
1 | 60 | 0.1 | 0 | 10 | 10 | 703.54 | 323.85 | 0.45 |
2 | 0.15 | 967.55 | 418.72 | 0.43 | ||||
3 | 0.2 | 1191.91 | 492.56 | 0.41 | ||||
4 | 120 | 0.1 | 0 | 10 | 10 | 717.60 | 342.50 | 0.48 |
5 | 0.15 | 958.99 | 422.12 | 0.44 | ||||
6 | 0.2 | 1217.72 | 498.55 | 0.41 | ||||
7 | 180 | 0.1 | 0 | 10 | 10 | 661.76 | 285.42 | 0.43 |
8 | 0.15 | 965.00 | 424.38 | 0.44 | ||||
9 | 0.2 | 1222.50 | 507.84 | 0.42 |
Case | (m/min) | (mm) | r (m) | (N) | (N) | |||
---|---|---|---|---|---|---|---|---|
10 | 20 | 0.1 | 0 | 10 | 10 | 678.79 | 250.46 | 0.37 |
11 | 0.15 | 1027.53 | 398.65 | 0.39 | ||||
12 | 0.2 | 1319.81 | 494.79 | 0.37 | ||||
13 | 40 | 0.1 | 0 | 10 | 10 | 550.84 | 156.25 | 0.28 |
14 | 0.15 | 883.82 | 255.02 | 0.29 | ||||
15 | 0.2 | 1155.34 | 391.25 | 0.34 | ||||
16 | 60 | 0.1 | 0 | 10 | 10 | 528.64 | 119.94 | 0.23 |
17 | 0.15 | 800.95 | 179.74 | 0.22 | ||||
18 | 0.2 | 1011.86 | 185.78 | 0.18 |
Case | (N) | (N) | |
---|---|---|---|
1 | 19.66% | 36.33% | 20.75% |
2 | 17.20% | 32.87% | 18.92% |
3 | 17.51% | 38.55% | 25.51% |
4 | 17.15% | 47.79% | 36.98% |
5 | 19.64% | 41.87% | 27.67% |
6 | 16.46% | 29.72% | 15.87% |
7 | 33.37% | 64.96% | 47.42% |
8 | 30.59% | 57.62% | 38.95% |
9 | 22.57% | 44.64% | 28.51% |
Case | (N) | (N) | |
---|---|---|---|
10 | 35.81% | 45.67% | 15.37% |
11 | 14.86% | 37.12% | 26.15% |
12 | 16.55% | 32.69% | 19.34% |
13 | 18.75% | 33.64% | 18.32% |
14 | 19.79% | 36.66% | 21.04% |
15 | 14.30% | 28.27% | 16.30% |
16 | 18.20% | 39.92% | 26.55% |
17 | 20.09% | 43.74% | 29.60% |
18 | 10.59% | 30.60% | 22.38% |
Case | (N) | (N) | |
---|---|---|---|
1 | 13.1% | 33.8% | 41.4% |
2 | 16.2% | 34.3% | 43.4% |
3 | 16.6% | 38.6% | 47.3% |
4 | 45.9% | 15.2% | 41.9% |
5 | 30.5% | 24.2% | 41.9% |
6 | 29.0% | 25.6% | 42.3% |
7 | 25.8% | 34.5% | 48.0% |
8 | 29.4% | 19.9% | 38.1% |
9 | 35.8% | 12.9% | 35.9% |
Case | (N) | (N) | |
---|---|---|---|
10 | 13.7% | 17.3% | 27.3% |
11 | 63.4% | 12.0% | 31.5% |
12 | 76.4% | 46.0% | 17.3% |
13 | 26.9% | 39.0% | 51.9% |
14 | 46.8% | 24.3% | 48.5% |
15 | 58.7% | 6.6% | 32.8% |
16 | 28.3% | 53.7% | 63.9% |
17 | 37.9% | 46.5% | 61.2% |
18 | 48.8% | 46.3% | 63.9% |
Case | (m/min) | (mm) | r (m) | (K) | (K) | ||
---|---|---|---|---|---|---|---|
1 | 60 | 0.1 | 0 | 10 | 10 | 850 | 643 |
2 | 0.15 | 863 | 646 | ||||
3 | 0.2 | 880 | 660 | ||||
4 | 120 | 0.1 | 0 | 10 | 10 | 1008 | 668 |
5 | 0.15 | 1017 | 667 | ||||
6 | 0.2 | 1025 | 680 | ||||
7 | 180 | 0.1 | 0 | 10 | 10 | 1050 | 710 |
8 | 0.15 | 1080 | 712 | ||||
9 | 0.2 | 1120 | 714 |
Case | (m/min) | (mm) | r (m) | (K) | (K) | ||
---|---|---|---|---|---|---|---|
10 | 20 | 0.1 | 0 | 10 | 10 | 900 | 880 |
11 | 0.15 | 953 | 926 | ||||
12 | 0.2 | 1120 | 940 | ||||
13 | 40 | 0.1 | 0 | 10 | 10 | 1150 | 955 |
14 | 0.15 | 1250 | 950 | ||||
15 | 0.2 | 1260 | 961 | ||||
16 | 60 | 0.1 | 0 | 10 | 10 | 1280 | 975 |
17 | 0.15 | 1350 | 983 | ||||
18 | 0.2 | 1400 | 990 |
Case | (K) | (K) |
---|---|---|
1 | 27.25% | 0.62% |
2 | 18.22% | 1.10% |
3 | 20.22% | 2.64% |
4 | 26.79% | 0.45% |
5 | 13.89% | 1.52% |
6 | 3.02% | 4.78% |
7 | 13.51% | 4.72% |
8 | 4.75% | 8.21% |
9 | 1.63% | 8.51% |
Case | (K) | (K) |
---|---|---|
10 | 28.39% | 23.77% |
11 | 38.12% | 34.79% |
12 | 45.27% | 40.93% |
13 | 46.87% | 38.81% |
14 | 43.18% | 42.86% |
15 | 40.00% | 43.86% |
16 | 39.43% | 40.90% |
17 | 39.90% | 42.46% |
18 | 40.28% | 35.99% |
Case | (m/min) | (mm) | r (m) | (K) | (K) | ||
---|---|---|---|---|---|---|---|
1 | 60 | 0.1 | 0 | 10 | 10 | 671.50 | 522.08 |
2 | 0.15 | 659.18 | 509.08 | ||||
3 | 0.2 | 618.31 | 476.13 | ||||
4 | 120 | 0.1 | 0 | 10 | 10 | 743.82 | 534.79 |
5 | 0.15 | 728.02 | 513.68 | ||||
6 | 0.2 | 676.39 | 487.28 | ||||
7 | 180 | 0.1 | 0 | 10 | 10 | 796.50 | 532.21 |
8 | 0.15 | 798.56 | 546.06 | ||||
9 | 0.2 | 725.65 | 493.09 |
Case | (m/min) | (mm) | r (m) | (K) | (K) | ||
---|---|---|---|---|---|---|---|
10 | 20 | 0.1 | 0 | 10 | 10 | 1289.11 | 801.86 |
11 | 0.15 | 1376.49 | 774.27 | ||||
12 | 0.2 | 1334.20 | 747.94 | ||||
13 | 40 | 0.1 | 0 | 10 | 10 | 1316.03 | 777.58 |
14 | 0.15 | 1361.25 | 767.15 | ||||
15 | 0.2 | 1399.15 | 772.01 | ||||
16 | 60 | 0.1 | 0 | 10 | 10 | 1303.87 | 792.86 |
17 | 0.15 | 1350.74 | 787.08 | ||||
18 | 0.2 | 1334.11 | 762.14 |
Case | (K) | (K) |
---|---|---|
1 | 0.5% | 19.3% |
2 | 9.7% | 20.3% |
3 | 11.3% | 26.0% |
4 | 6.4% | 20.3% |
5 | 18.5% | 21.8% |
6 | 32.0% | 24.9% |
7 | 13.9% | 21.5% |
8 | 22.5% | 17.0% |
9 | 34.2% | 25.1% |
Case | (K) | (K) |
---|---|---|
10 | 83.9% | 12.8% |
11 | 99.5% | 12.7% |
12 | 73.0% | 12.1% |
13 | 68.1% | 13.0% |
14 | 55.9% | 15.4% |
15 | 55.5% | 15.6% |
16 | 42.0% | 14.6% |
17 | 40.0% | 14.1% |
18 | 33.7% | 4.7% |
References
- Rodríguez, J.; Carbonell, J.; Jonsen, P. Numerical methods for the modelling of chip formation. Arch. Comput. Methods Eng. 2020, 27, 387–412. [Google Scholar] [CrossRef]
- Arrazola, P.; Özel, T.; Umbrello, D.; Davies, M.; Jawahir, I. Recent advances in modelling of metal machining processes. CIRP Ann.-Manuf. Technol. 2013, 62, 695–718. [Google Scholar] [CrossRef]
- Sadeghifar, M.; Sedaghati, R.; Jomaa, W.; Songmene, V. A comprehensive review of finite element modeling of orthogonal machining process: Chip formation and surface integrity predictions. Int. J. Adv. Manuf. Technol. 2018, 96, 3747–3791. [Google Scholar] [CrossRef]
- Afrasiabi, M.; Röthlin, M.; Klippel, H.; Wegener, K. Meshfree simulation of metal cutting: An updated Lagrangian approach with dynamic refinement. Int. J. Mech. Sci. 2019, 160, 451–466. [Google Scholar] [CrossRef]
- Rodriguez, J.; Jonsén, P.; Svoboda, A. Simulation of metal cutting using the particle finite-element method and a physically based plasticity model. Comput. Part. Mech. 2017, 4, 35–51. [Google Scholar] [CrossRef]
- Afrasiabi, M. Thermomechanical Simulation of Manufacturing Processes Using GPU-Accelerated Particle Methods. Ph.D. Thesis, ETH Zurich, Zurich, Switzerland, 2020. [Google Scholar] [CrossRef]
- Korkmaz, M.E.; Gupta, M.K. A State of the Art on Simulation and Modelling Methods in Machining: Future Prospects and Challenges. Arch. Comput. Methods Eng. 2022, 30, 1–29. [Google Scholar] [CrossRef]
- Rodriguez, J.M.; Jonsén, P.; Svoboda, A. Dislocation Density Based Material Model Applied in PFEM-simulation of Metal Cutting. Procedia CIRP 2017, 58, 193–197. [Google Scholar] [CrossRef]
- Wedberg, D.; Svoboda, A.; Lindgren, L.E. Modelling high strain rate phenomena in metal cutting simulation. Model. Simul. Mater. Sci. Eng. 2012, 20, 085006. [Google Scholar] [CrossRef]
- Kalhori, V.; Wedberg, D.; Lindgren, L.E. Simulation of mechanical cutting using a physical based material model. Int. J. Mater. Form. 2010, 3, 511–514. [Google Scholar] [CrossRef]
- Afrasiabi, M.; Saelzer, J.; Berger, S.; Iovkov, I.; Klippel, H.; Röthlin, M.; Zabel, A.; Biermann, D.; Wegener, K. A Numerical-Experimental Study on Orthogonal Cutting of AISI 1045 Steel and Ti6Al4V Alloy: SPH and FEM Modeling with Newly Identified Friction Coefficients. Metals 2021, 11, 1683. [Google Scholar] [CrossRef]
- Afrasiabi, M.; Meier, L.; Röthlin, M.; Klippel, H.; Wegener, K. GPU-accelerated meshfree simulations for parameter identification of a friction model in metal machining. Int. J. Mech. Sci. 2020, 176, 105571. [Google Scholar] [CrossRef]
- Arrazola, P.J.; Ozel, T. Investigations on the effects of friction modeling in finite element simulation of machining. Int. J. Mech. Sci. 2010, 52, 31–42. [Google Scholar] [CrossRef]
- Arrazola, P.; Ugarte, D.; Dominguez, X. A new approach for the friction identification during machining through the use of finite element modeling. Int. J. Mach. Tools Manuf. 2008, 48, 173–183. [Google Scholar] [CrossRef]
- Klocke, F.; Döbbeler, B.; Peng, B.; Schneider, S. Tool-based inverse determination of material model of Direct Aged Alloy 718 for FEM cutting simulation. Procedia CIRP 2018, 77, 54–57. [Google Scholar] [CrossRef]
- Zanger, F.; Bollig, P.; Schulze, V. Simulative investigations on different friction coefficient models. Procedia CIRP 2017, 58, 140–145. [Google Scholar] [CrossRef]
- Liang, X.; Liu, Z.; Wang, B.; Chunjin, W.; Cheung, B. Friction behaviors in the metal cutting process: State of the art and future perspectives. Int. J. Extrem. Manuf. 2022, 5, 012002. [Google Scholar] [CrossRef]
- Gingold, R.A.; Monaghan, J.J. Smoothed particle hydrodynamics: Theory and application to non-spherical stars. Mon. Not. R. Astron. Soc. 1977, 181, 375–389. [Google Scholar] [CrossRef]
- Lucy, L.B. A numerical approach to the testing of the fission hypothesis. Astron. J. 1977, 82, 1013–1024. [Google Scholar] [CrossRef]
- Monaghan, J.; Kos, A.; Issa, N. Fluid motion generated by impact. J. Waterw. Port Coast. Ocean. Eng. 2003, 129, 250–259. [Google Scholar] [CrossRef]
- Afrasiabi, M.; Mohammadi, S. Analysis of bubble pulsations of underwater explosions by the smoothed particle hydrodynamics method. In Proceedings of the ECCOMAS International Conference on Particle Based Methods, Barcelona, Spain, 25–27 November 2009. [Google Scholar]
- Marrone, S.; Colagrossi, A.; Le Touzé, D.; Graziani, G. Fast free-surface detection and level-set function definition in SPH solvers. J. Comput. Phys. 2010, 229, 3652–3663. [Google Scholar] [CrossRef]
- Afrasiabi, M.; Roethlin, M.; Wegener, K. Thermal simulation in multiphase incompressible flows using coupled meshfree and particle level set methods. Comput. Methods Appl. Mech. Eng. 2018, 336, 667–694. [Google Scholar] [CrossRef]
- Afrasiabi, M.; Chatzi, E.; Wegener, K. A Particle Strength Exchange Method for Metal Removal in Laser Drilling. Procedia CIRP 2018, 72, 1548–1553. [Google Scholar] [CrossRef]
- Afrasiabi, M.; Wegener, K. 3D thermal simulation of a laser drilling process with meshfree methods. J. Manuf. Mater. Process. 2020, 4, 58. [Google Scholar] [CrossRef]
- Alshaer, A.; Rogers, B.; Li, L. Smoothed Particle Hydrodynamics (SPH) modelling of transient heat transfer in pulsed laser ablation of Al and associated free-surface problems. Comput. Mater. Sci. 2017, 127, 161–179. [Google Scholar] [CrossRef]
- Jonsén, P.; Pålsson, B.I.; Häggblad, H.Å. A novel method for full-body modelling of grinding charges in tumbling mills. Minerals Eng. 2012, 33, 2–12. [Google Scholar] [CrossRef]
- Jonsson, P.; Andreasson, P.; Hellström, J.I.; Jonsén, P.; Staffan Lundström, T. Smoothed Particle Hydrodynamic simulation of hydraulic jump using periodic open boundaries. Appl. Math. Model. 2016, 40, 8391–8405. [Google Scholar] [CrossRef]
- Jonsson, P.; Jonsén, P.; Andreasson, P.; Lundström, T.S.; Hellström, J.G.I. Modelling dam break evolution over a wet bed with smoothed particle hydrodynamics: A parameter study. Engineering 2015, 7, 248. [Google Scholar] [CrossRef]
- Forsström, D.; Lindbäck, T.; Jonsén, P. Prediction of wear in dumper truck body by coupling SPH-FEM. Tribol. Mater. Surf. Interfaces 2014, 8, 111–115. [Google Scholar] [CrossRef]
- Larsson, S.; Gustafsson, G.; Häggblad, H.Å.; Jonsén, P. Experimental and numerical study of potassium chloride flow using smoothed particle hydrodynamics. Minerals Eng. 2018, 116, 88–100. [Google Scholar] [CrossRef]
- Idelsohn, S.R.; Oñate, E.; Pin, F.D. The particle finite element method: A powerful tool to solve incompressible flows with free-surfaces and breaking waves. Int. J. Numer. Methods Eng. 2004, 61, 964–989. [Google Scholar] [CrossRef]
- Idelsohn, S.R.; Oñate, E.; Del Pin, F.; Calvo, N. Fluid–structure interaction using the particle finite element method. Comput. Methods Appl. Mech. Eng. 2006, 195, 2100–2123. [Google Scholar] [CrossRef]
- Mier-Torrecilla, M.d.; Idelsohn, S.; Oñate, E. Advances in the simulation of multi-fluid flows with the particle finite element method. Application to bubble dynamics. Int. J. Numer. Methods Fluids 2011, 67, 1516–1539. [Google Scholar] [CrossRef]
- Larsson, S.; Rodríguez Prieto, J.M.; Gustafsson, G.; Häggblad, H.Å.; Jonsén, P. The particle finite element method for transient granular material flow: Modelling and validation. Comput. Part. Mech. 2021, 8, 135–155. [Google Scholar] [CrossRef]
- Monforte, L.; Arroyo, M.; Carbonell, J.M.; Gens, A. Numerical simulation of undrained insertion problems in geotechnical engineering with the Particle Finite Element Method (PFEM). Comput. Geotech. 2017, 82, 144–156. [Google Scholar] [CrossRef]
- Mulligan, R.P.; Franci, A.; Celigueta, M.; Take, W.A. Simulations of landslide wave generation and propagation using the particle finite element method. J. Geophys. Res. Ocean. 2020, 125, e2019JC015873. [Google Scholar] [CrossRef]
- Oñate, E.; Franci, A.; Carbonell, J.M. A particle finite element method for analysis of industrial forming processes. Comput. Mech. 2014, 54, 85–107. [Google Scholar] [CrossRef]
- Reinold, J.; Meschke, G. Particle finite element simulation of fresh cement paste–inspired by additive manufacturing techniques. PAMM 2019, 19, e201900198. [Google Scholar] [CrossRef]
- Limido, J.; Espinosa, C.; Salaün, M.; Lacome, J.L. SPH method applied to high speed cutting modelling. Int. J. Mech. Sci. 2007, 49, 898–908. [Google Scholar] [CrossRef]
- Villumsen, M.F.; Fauerholdt, T.G. Simulation of Metal Cutting Using Smooth Particle Hydrodynamics. LS-DYNA Anwenderforum, C-III. 2008, p. 17. Available online: https://www.dynamore.it/de/download/papers/forum08/dokumente/C-III-02.pdf (accessed on 10 January 2023).
- Demiral, M. 1365. Smoothed particle hydrodynamics modeling of vibro-assisted turning of Ti alloy: Influence of vibration parameters. J. Vibroeng. 2014, 16, 2685–2695. [Google Scholar]
- Eberhard, P.; Gaugele, T. Simulation of cutting processes using mesh-free Lagrangian particle methods. Comput. Mech. 2013, 51, 261–278. [Google Scholar] [CrossRef]
- Spreng, F.; Eberhard, P. Machining process simulations with smoothed particle hydrodynamics. Procedia CIRP 2015, 31, 94–99. [Google Scholar] [CrossRef]
- Röthlin, M.; Klippel, H.; Afrasiabi, M.; Wegener, K. Metal cutting simulations using smoothed particle hydrodynamics on the GPU. Int. J. Adv. Manuf. Technol. 2019, 102, 3445–3457. [Google Scholar] [CrossRef]
- Roethlin, M.; Klippel, H.; Afrasiabi, M.; Wegener, K. Meshless single grain cutting simulations on the GPU. Int. J. Mechatron. Manuf. Syst. 2019, 12, 272–297. [Google Scholar] [CrossRef]
- Afrasiabi, M.; Klippel, H.; Roethlin, M.; Wegener, K. Smoothed Particle Hydrodynamics Simulation of Orthogonal Cutting with Enhanced Thermal Modeling. Appl. Sci. 2021, 11, 1020. [Google Scholar] [CrossRef]
- Rodriguez, J.M.; Carbonell, J.; Cante, J.; Oliver, J. Continuous chip formation in metal cutting processes using the Particle Finite Element Method (PFEM). Int. J. Solids Struct. 2017, 120, 81–102. [Google Scholar] [CrossRef]
- Prieto, J.R.; Carbonell, J.M.; Cante, J.; Oliver, J.; Jonsén, P. Generation of segmental chips in metal cutting modeled with the PFEM. Comput. Mech. 2017, 61, 639–655. [Google Scholar]
- Rodriguez, J.; Larsson, S.; Carbonell, J.; Jonsén, P. Implicit or explicit time integration schemes in the PFEM modeling of metal cutting processes. Comput. Part. Mech. 2022, 9, 709–733. [Google Scholar] [CrossRef]
- Carbonell, J.M.; Rodríguez, J.; Oñate, E. Modelling 3D metal cutting problems with the particle finite element method. Comput. Mech. 2020, 66, 603–624. [Google Scholar] [CrossRef]
- Johnson, G.R. A constitutive model and data for materials subjected to large strains, high strain rates, and high temperatures. In Proceedings of the Seventh International Symposium on Ballistics, The Hague, The Netherlands, 19–21 April 1983; pp. 541–547. [Google Scholar]
- Dohrmann, C.R.; Bochev, P.B. A stabilized finite element method for the Stokes problem based on polynomial pressure projections. Int. J. Numer. Methods Fluids 2004, 46, 183–201. [Google Scholar] [CrossRef]
- Cremonesi, M.; Franci, A.; Idelsohn, S.; Oñate, E. A state of the art review of the particle finite element method (PFEM). Arch. Comput. Methods Eng. 2020, 27, 1709–1735. [Google Scholar] [CrossRef]
- Rodríguez, J.M.; Larsson, S.; Carbonell, J.M.; Jonsén, P. Dislocation density based flow stress model applied to the PFEM simulation of orthogonal cutting processes of Ti-6Al-4V. Materials 2020, 13, 1979. [Google Scholar] [CrossRef]
- Brookshaw, L. A method of calculating radiative heat diffusion in particle simulations. In Proceedings of the Astronomical Society of Australia; Cambridge University Press: Cambridge, UK, 1985; Volume 6, pp. 207–210. [Google Scholar]
- Monaghan, J.J. Smoothed particle hydrodynamics. Annu. Rev. Astron. Astrophys. 1992, 30, 543–574. [Google Scholar] [CrossRef]
- Wendland, H. Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree. Adv. Comput. Math. 1995, 4, 389–396. [Google Scholar] [CrossRef]
- Dehnen, W.; Aly, H. Improving convergence in smoothed particle hydrodynamics simulations without pairing instability. Mon. Not. R. Astron. Soc. 2012, 425, 1068–1082. [Google Scholar] [CrossRef]
- Monaghan, J.; Gingold, R. Shock simulation by the particle method SPH. J. Comput. Phys. 1983, 52, 374–389. [Google Scholar] [CrossRef]
- Gray, J.; Monaghan, J.; Swift, R. SPH elastic dynamics. Comput. Methods Appl. Mech. Eng. 2001, 190, 6641–6662. [Google Scholar] [CrossRef]
- Cleary, P.W.; Monaghan, J.J. Conduction modelling using smoothed particle hydrodynamics. J. Comput. Phys. 1999, 148, 227–264. [Google Scholar] [CrossRef]
- Monaghan, J.J. Smoothed particle hydrodynamics. Rep. Prog. Phys. 2005, 68, 1703. [Google Scholar] [CrossRef]
- Childs, T.H.; Arrazola, P.J.; Aristimuno, P.; Garay, A.; Sacristan, I. Ti6Al4V metal cutting chip formation experiments and modelling over a wide range of cutting speeds. J. Mater. Process. Technol. 2018, 255, 898–913. [Google Scholar] [CrossRef]
- Afrasiabi, M.; Roethlin, M.; Wegener, K. Contemporary Meshfree Methods for Three Dimensional Heat Conduction Problems. Arch. Comput. Methods Eng. 2020, 27, 1413–1447. [Google Scholar] [CrossRef]
- Afrasiabi, M.; Klippel, H.; Röthlin, M.; Wegener, K. An improved thermal model for SPH metal cutting simulations on GPU. Appl. Math. Model. 2021, 100, 728–750. [Google Scholar] [CrossRef]
- Calvo, N.; Idelsohn, S.R.; Oñate, E. The extended Delaunay tessellation. Eng. Comput. 2003, 20, 583–600. [Google Scholar] [CrossRef]
- Childs, T. Adiabatic Shearing in Metal Machining. In CIRP Encyclopedia of Production Engineering; Laperrière, L., Reinhart, G., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 27–33. [Google Scholar] [CrossRef]
Property | AISI 1045 | Ti6Al4V |
---|---|---|
A (MPa) | 288 | 940 |
B (MPa) | 695 | 965 |
C | 0.0340 | 0.0387 |
m | 1.3558 | 0.9835 |
n | 0.2835 | 0.8372 |
(1/s) | 0.004 | 0.004 |
Material | q | |
---|---|---|
AISI 1045 | 0.81 | 2.09 |
Ti6Al4V | 0.51 | 5.76 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodríguez Prieto, J.M.; Larsson, S.; Afrasiabi, M. Thermomechanical Simulation of Orthogonal Metal Cutting with PFEM and SPH Using a Temperature-Dependent Friction Coefficient: A Comparative Study. Materials 2023, 16, 3702. https://doi.org/10.3390/ma16103702
Rodríguez Prieto JM, Larsson S, Afrasiabi M. Thermomechanical Simulation of Orthogonal Metal Cutting with PFEM and SPH Using a Temperature-Dependent Friction Coefficient: A Comparative Study. Materials. 2023; 16(10):3702. https://doi.org/10.3390/ma16103702
Chicago/Turabian StyleRodríguez Prieto, Juan Manuel, Simon Larsson, and Mohamadreza Afrasiabi. 2023. "Thermomechanical Simulation of Orthogonal Metal Cutting with PFEM and SPH Using a Temperature-Dependent Friction Coefficient: A Comparative Study" Materials 16, no. 10: 3702. https://doi.org/10.3390/ma16103702
APA StyleRodríguez Prieto, J. M., Larsson, S., & Afrasiabi, M. (2023). Thermomechanical Simulation of Orthogonal Metal Cutting with PFEM and SPH Using a Temperature-Dependent Friction Coefficient: A Comparative Study. Materials, 16(10), 3702. https://doi.org/10.3390/ma16103702