Spiropyran-Based Soft Substrate with SPR, Anti-Reflection and Anti-NRET for Enhanced Visualization/Fluorescence Dual Response to Metal Ions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Materials
2.2. Synthesis of 3-(3′,3′-Dimethyl-6-nitrospiro[chromene-2,2′-indolin]-1′-yl) Propionic Acid (SP-COOH)
- (1)
- 2,3,3-Trimethylindolenine (30.59 mmol, 4.9 mL) and 3-iodopropanic acid (30.17 mmol, 6.03 g) were dissolved in 10 mL 2-butanone. The mixture was heated at 100 °C for 5 h under nitrogen and under reflux. The precipitate was suspended in 50 mL H2O and washed three times with 50 mL dichloromethane. The organic layers were combined and washed three times with 25 mL water. The aqueous layers were combined and filtered. The solvent was removed by reduced-pressure rotary evaporation to give 1-(2-carboxyethyl)-2,3,3-trimethyl-3H-indol-1-ium iodide as a pale-yellow solid (8.26 g, 22.94 mmol, 76.0% yield). 1H NMR (400 MHz, CDCl3, Me4Si) δ 7.97–8.03 (m, 1H), 7.84–7.89 (m, 1H), 7.58–7.64 (m, 2H), 4.67 (t, J = 6.8 Hz, 2H), 3.00 (t, J = 6.8 Hz, 2H), 2.89 (s, 3H), 1.55 (s, 6H).
- (2)
- 1-(2-Carboxyethyl)-2,3,3-trimethyl-3H-indol-1-ium iodide (6.66 mmol, 2.39 g), 2-hydroxy-5-nitrosalicylaldehyde (6.67 mmol, 1.12 g) and piperidine (8.02 mmol, 0.8 mL) were dissolved in 10 mL 2-butanone. The mixture was heated at 100 °C for 3 h under nitrogen and under reflux. The reaction mixture was cooled to room temperature overnight, yielding the raw product as a yellow precipitate, which was filtered, washed with 2-butanone (10 mL) and cold methanol (10 mL) and dried under high vacuum to yield SP-COOH as a bright yellow-green solid (1.80 g, 4.74 mmol, 71.2% yield). 1H NMR (400 MHz, DMSO-d6, Me4Si) δ 12.19 (s, 1H), 8.21 (d, J = 2.8 Hz, 1H), 8.01 (dd, J = 2.8 Hz, J = 2.8 Hz, 1H), 7.22 (d, J = 10.4 Hz, 1H), 7.11–7.14 (m, 2H), 6.87 (d, J = 8.8 Hz, 1H), 6.80 (t, J = 14.8 Hz, 1H), 6.67 (d, J = 7.6 Hz, 1H), 5.98 (d, J = 10.4 Hz, 1H), 3.34–3.53 (m, 2H), 2.41–2.61 (m, 2H), 1.19 (s, 3H), 1.08 (s, 3H).
2.3. Fabrication of PDMS/PMMA-Au/SP Substrate
2.4. Characterization
3. Results and Discussion
3.1. Fabrication Process and Morphology Characterization of PDMS/PMMA-Au/SP Substrate
3.2. Molecular Modification of PDMS/PMMA-Au/SP Substrate Surface
3.3. Optimization of the Preparation Process of PDMS/PMMA-Au/SP Composite Substrate
3.3.1. Optimization of Au Nanoparticle Concentration
3.3.2. Optimization of TBDS Addition
3.3.3. Optimization of ATMS Addition
3.3.4. Optimization of Spiropyran Grafting Time
3.4. Fluorescence Enhancement Property of PDMS/PMMA-Au/SP Substrate
3.5. Metal Ion Detection
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Razavi, B.; Roghani-Mamaqani, H.; Salami-Kalajahi, M. Development of highly sensitive metal-ion chemosensor and key-lock anticounterfeiting technology based on oxazolidine. Sci. Rep. 2022, 12, 1079. [Google Scholar] [CrossRef] [PubMed]
- Keyvan Rad, J.; Balzade, Z.; Mahdavian, A.R. Spiropyran-based advanced photoswitchable materials: A fascinating pathway to the future stimuli-responsive devices. J. Photochem. Photobiol. C 2022, 51, 100487. [Google Scholar] [CrossRef]
- Kozlenko, A.S.; Ozhogin, I.V.; Pugachev, A.D.; Lukyanova, M.B.; El-Sewify, I.M.; Lukyanov, B.S. A modern look at spiropyrans: From single molecules to smart materials. Top. Curr. Chem. 2023, 381, 8. [Google Scholar] [CrossRef]
- Klajn, R. Spiropyran-based dynamic materials. Chem. Soc. Rev. 2014, 43, 148–184. [Google Scholar] [CrossRef] [Green Version]
- Liu, G.; Cui, C.; Jiang, L.; Gao, H.; Gao, J. Visible light-induced hydrogels towards reversible adsorption and desorption based on trivalent chromium in aqueous solution. React. Funct. Polym. 2021, 163, 104886. [Google Scholar] [CrossRef]
- Arjmand, F.; Mohamadnia, Z. Fabrication of a light-responsive polymer nanocomposite containing spiropyran as a sensor for reversible recognition of metal ions. Polym. Chem. 2022, 13, 937–945. [Google Scholar] [CrossRef]
- Gao, Y.; Yin, Q.; Geng, X.; Zhang, X.; Li, W.; Gao, Y.; Geng, X.; Zhang, X.; Li, W. Synthesis and photochromic behavior of comb-like acrylate polymer nanoparticle containing spiropyran. Dyes Pigm. 2021, 189, 109237. [Google Scholar] [CrossRef]
- Wu, J.; Cui, Z.; Yu, Y.; Han, H.; Tian, D.; Hu, J.; Qu, J.; Cai, Y.; Luo, J.; Li, J. A 3D smart wood membrane with high flux and efficiency for separation of stabilized oil/water emulsions. J. Hazard. Mater. 2023, 441, 129900. [Google Scholar] [CrossRef]
- Yang, R.; Ren, X.; Mei, L.; Pan, G.; Li, X.Z.; Wu, Z.; Zhang, S.; Ma, W.; Yu, W.; Fang, H.H.; et al. Reversible three-color fluorescence switching of an organic molecule in the solid state via “pump–trigger” optical manipulation. Angew. Chem. Int. Ed. 2022, 61, e202117158. [Google Scholar]
- Zhu, L.; Wu, W.; Zhu, M.-Q.; Han, J.J.; Hurst, J.K.; Li, A.D.Q. Reversibly photoswitchable dual-color fluorescent nanoparticles as new tools for live-cell imaging. J. Am. Chem. Soc. 2007, 129, 3524–3526. [Google Scholar] [CrossRef] [Green Version]
- Zhu, L.; Zhu, M.-Q.; Hurst, J.K.; Li, A.D.Q. Light-controlled molecular switches modulate nanocrystal fluorescence. J. Am. Chem. Soc. 2005, 127, 8968–8970. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Radu, A.; Byrne, R.; Alhashimy, N.; Fusaro, M.; Scarmagnani, S.; Diamond, D. Spiropyran-based reversible, light-modulated sensing with reduced photofatigue. J. Photochem. Photobiol. A 2009, 206, 109–115. [Google Scholar] [CrossRef] [Green Version]
- Fries, K.H.; Driskell, J.D.; Samanta, S.; Locklin, J. Spectroscopic analysis of metal ion binding in spiropyran containing copolymer thin films. Anal. Chem. 2010, 82, 3306–3314. [Google Scholar] [CrossRef] [PubMed]
- Terpstra, A.S.; Hamad, W.Y.; MacLachlan, M.J. Photopatterning freestanding chiral nematic mesoporous organosilica films. Adv. Funct. Mater. 2017, 27, 1703346. [Google Scholar] [CrossRef]
- Wang, Y.; Feng, L.; Zhu, H.; Miao, H.; Li, Y.; Liu, X.; Shi, G. Noncontact metal-spiropyran-metal nanostructured substrates with Ag and Au@SiO2 nanoparticles deposited in nanohole arrays for surface-enhanced fluorescence and trace detection of metal ions. ACS Appl. Nano Mater. 2021, 4, 3780–3789. [Google Scholar] [CrossRef]
- Zheng, Y.B.; Kiraly, B.; Cheunkar, S.; Huang, T.J.; Weiss, P.S. Incident-angle-modulated molecular plasmonic switches: A case of weak exciton-plasmon coupling. Nano Lett. 2011, 11, 2061–2065. [Google Scholar] [CrossRef]
- Rad, J.K.; Ghomi, A.R.; Mahdavian, A.R. Preparation of photoswitchable polyacrylic nanocomposite fibers containing Au nanorods and spiropyran: Optical and plasmonic properties. Langmuir 2022, 38, 8428–8441. [Google Scholar] [CrossRef]
- Rad, J.K.; Mahdavian, A.R.; Khoei, S.; Shirvalilou, S. Enhanced photogeneration of reactive oxygen species and targeted photothermal therapy of C6 glioma brain cancer cells by folate-conjugated gold-photoactive polymer nanoparticles. ACS Appl. Mater. Interfaces 2018, 10, 19483–19493. [Google Scholar] [CrossRef]
- Li, J.-F.; Li, C.-Y.; Aroca, R.F. Plasmon-enhanced fluorescence spectroscopy. Chem. Soc. Rev. 2017, 46, 3962–3979. [Google Scholar] [CrossRef]
- Boisselier, E.; Astruc, D. Gold nanoparticles in nanomedicine: Preparations, imaging, diagnostics, therapies and toxicity. Chem. Soc. Rev. 2009, 38, 1759–1782. [Google Scholar] [CrossRef]
- Dübner, M.; Spencer, N.D.; Padeste, C. Light-responsive polymer surfaces via postpolymerization modification of grafted polymer-brush structures. Langmuir 2014, 30, 14971–14981. [Google Scholar] [CrossRef] [PubMed]
- Jin, X.; Zhu, Q.; Feng, L.; Li, X.; Zhu, H.; Miao, H.; Zeng, Z.; Wang, Y.; Li, Y.; Wang, L.; et al. Light-trapping sers substrate with regular bioinspired arrays for detecting trace dyes. ACS Appl. Mater. Interfaces 2021, 13, 11535–11542. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Li, Y.; Wang, H.; Miao, H.; Zhu, H.; Liu, X.; Lin, H.; Shi, G. Fabrication of a three-dimensional bionic Si/TiO2/MoS2 photoelectrode for efficient solar water splitting. ACS Appl. Energy Mater. 2021, 4, 730–736. [Google Scholar] [CrossRef]
- Li, Y.; Feng, L.; Li, J.; Li, X.; Chen, J.; Wang, L.; Qi, D.; Liu, X.; Shi, G. Fabrication of an insect-like compound-eye SERS substrate with 3D Ag nano-bowls and its application in optical sensor. Sensor Actuators B-Chem. 2021, 330, 129357. [Google Scholar] [CrossRef]
- Sun, H.; Li, X.; Chen, J.; Zhu, H.; Miao, H.; Li, Y.; Liu, X.; Shi, G. A novel photothermal, self-healing and anti-reflection water evaporation membrane. Soft Matter 2021, 17, 4730–4737. [Google Scholar] [CrossRef]
- Zhang, S.; Chen, J.; Zheng, J.; Chen, X.; Xu, H.; Petrescu, F.I.T.; Ungureanu, L.M.; Li, Y.; Shi, G. A Simple Polypyrrole/Polyvinylidene Fluoride Membrane with Hydrophobic and Self-Floating Ability for Solar Water Evaporation. Nanomaterials 2022, 12, 859. [Google Scholar] [CrossRef]
- Zhang, S.; Zhao, H.; Li, X.; Li, Y.; Jin, Y.; Liu, X.; Shi, G.; Wong, P.K. A hierarchical SiPN/CN/MoSx photocathode with low internal resistance and strong light-absorption for solar hydrogen production. Appl. Catal. B-Environ. 2007, 7, 3388–3393. [Google Scholar] [CrossRef]
- Gersten, J.; Nitzan, A. Spectroscopic properties of molecules interacting with small dielectric particles. J. Chem. Phys. 1981, 75, 1139–1152. [Google Scholar] [CrossRef]
- Wokaun, A.; Lutz, H.-P.; King, A.P.; Wild, U.P.; Ernst, R.R. Energy transfer in surface enhanced luminescence. J. Chem. Phys. 1983, 79, 509–514. [Google Scholar] [CrossRef]
- Moskovits, M. Surface-enhanced spectroscopy. Rev. Mod. Phys. 1985, 57, 783–826. [Google Scholar] [CrossRef]
- Bunker, B.C.; Kim, B.I.; Houston, J.E.; Rosario, R.; Garcia, A.A.; Hayes, M.; Gust, D.; Picraux, S.T. Direct observation of photo switching in tethered spiropyrans using the interfacial force microscope. Nano Lett. 2003, 3, 1723–1727. [Google Scholar] [CrossRef]
- Tian, W.; Zhang, J.; Yu, J.; Wu, J.; Zhang, J.; He, J.; Wang, F. Phototunable full-color emission of cellulose-based dynamic fluorescent materials. Adv. Funct. Mater. 2018, 28, 1703548. [Google Scholar] [CrossRef]
- Samanta, S.; Locklin, J. Formation of photochromic spiropyran polymer brushes via surface-initiated, ring-opening metathesis polymerization: Reversible photocontrol of wetting behavior and solvent dependent morphology changes. Langmuir 2008, 24, 9558–9565. [Google Scholar] [CrossRef] [PubMed]
- Thomas, S.W.; Joly, G.D.; Swager, T.M. Chemical sensors based on amplifying fluorescent conjugated polymers. Chem. Rev. 2007, 107, 1339–1386. [Google Scholar] [CrossRef]
- Weitz, D.A.; Garoff, S.; Hanson, C.D.; Gramila, T.J.; Gersten, J.I. Flourescent lifetimes and yields of molecules adsorbed on silver-island films. J. Lumin. 1981, 24, 83–86. [Google Scholar] [CrossRef]
- Glass, A.M.; Liao, P.F.; Bergman, J.G.; Olson, D.H. Interaction of metal particles with adsorbed dye molecules: Absorption and luminescence. Opt. Lett. 1980, 5, 368–370. [Google Scholar] [CrossRef]
- Suzuki, T.; Kato, T.; Shinozaki, H. Photo-reversible Pb2+-complexation of thermosensitive poly(N-isopropyl acrylamide-co-spiropyran acrylate) in water. Chem. Commun. 2004, 18, 2036–2037. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, Y.; Petrescu, F.I.T.; Wang, Y.; Li, X.; Li, Y.; Shi, G. Spiropyran-Based Soft Substrate with SPR, Anti-Reflection and Anti-NRET for Enhanced Visualization/Fluorescence Dual Response to Metal Ions. Materials 2023, 16, 3746. https://doi.org/10.3390/ma16103746
Jin Y, Petrescu FIT, Wang Y, Li X, Li Y, Shi G. Spiropyran-Based Soft Substrate with SPR, Anti-Reflection and Anti-NRET for Enhanced Visualization/Fluorescence Dual Response to Metal Ions. Materials. 2023; 16(10):3746. https://doi.org/10.3390/ma16103746
Chicago/Turabian StyleJin, Yuebo, Florian Ion Tiberiu Petrescu, Yuan Wang, Xin Li, Ying Li, and Gang Shi. 2023. "Spiropyran-Based Soft Substrate with SPR, Anti-Reflection and Anti-NRET for Enhanced Visualization/Fluorescence Dual Response to Metal Ions" Materials 16, no. 10: 3746. https://doi.org/10.3390/ma16103746
APA StyleJin, Y., Petrescu, F. I. T., Wang, Y., Li, X., Li, Y., & Shi, G. (2023). Spiropyran-Based Soft Substrate with SPR, Anti-Reflection and Anti-NRET for Enhanced Visualization/Fluorescence Dual Response to Metal Ions. Materials, 16(10), 3746. https://doi.org/10.3390/ma16103746