Structural Aspects of the Formation of Multilayer Composites from Dissimilar Materials upon High-Pressure Torsion
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Material Preparation
2.3. Experimental Methods
3. Results
3.1. X-ray Diffraction
3.2. Scanning Electron Microscopy
3.3. High-Resolution Transmission Electron Microscopy
3.4. Chemical Composition of MMC after HPT
3.5. Mechanical Properties
4. Discussion of Results
5. Conclusions
- The possibility of MMC formation upon room-temperature HPT of two different alloys, Ti50Ni25Cu25 and Fe50Ni33B17, is shown. At the same time, the alloys undergo opposite structural phase transformations when they are tested separately under the same HPT conditions.
- It has been established that, upon joint HPT, the Fe50Ni33B17 alloy remains amorphous, whereas the Ti50Ni25Cu25 alloy undergoes a transition from the crystalline to the amorphous phase. As a result, starting from the degree of deformation to n ≥ 2, two amorphous Ti50Ni25Cu25 and Fe50Ni33B17 alloys are cooperatively deformed and consolidated into the MMC.
- Upon the consolidation of the two amorphous alloys, the following types of transition regions between different amorphous phases were observed by transmission electron microscopy: (1) a loose transition region 1–10 nm thick and (2) a narrow, almost invisible transition region.
- The experimentally determined chemical compositions of the Ti50Ni25Cu25 and Fe50Ni33B17 alloy fragments in the regions of consolidation after HPT correspond to the initial compositions of the alloys. Therefore, all types of transition zones between the layers prevent significant interdiffusion of chemical elements between the Fe50Ni33B17 and Ti50Ni25Cu25 layers.
- The experimental results indicate that the amorphous layers of the alloys under study are consolidated by their joint severe plastic deformation upon HPT.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Guzdek, P.; Wzorek, M. Magnetoelectric properties in bulk and layered composites. Microelectron. Int. 2015, 32, 110–114. [Google Scholar] [CrossRef]
- Kumar, S.D.; Ramesh, G.; Subramanian, V. Enhanced self-biased direct and converse magnetoelectric effect in Pb(In1/2Nb1/2)O3-PbTiO3/NiFe2O4 bi-layer laminate composite. J. Mater. Sci. Mater. Electron. 2015, 26, 2682–2687. [Google Scholar] [CrossRef]
- Bi, X.; Hu, Y.; Li, R.; Zhao, H.; Li, T. A novel method for preparing Al/Mg/Al laminated composite material, processing maps and interface diffusion analysis. J. Alloys Compd. 2022, 900, 163417. [Google Scholar] [CrossRef]
- Chen, J.; Yang, Y.; Song, C.; Zhang, M.; Wu, S.; Wang, D. Interfacial microstructure and mechanical properties of 316L/CuSn10 multi-material bimetallic structure fabricated by selective laser melting. Mater. Sci. Eng. A 2019, 752, 75–85. [Google Scholar] [CrossRef]
- Li, P.; Zhou, J.; Li, L.; Gong, Y.; Lu, J.; Meng, X.; Zhang, T. Influence of depositing sequence and materials on interfacial characteristics and mechanical properties of laminated composites. Mater. Sci. Eng. A 2021, 827, 142092. [Google Scholar] [CrossRef]
- Li, P.; Zhou, J.; Li, L.; Zhang, T.; Gou, Y.; Meng, X.; Lyu, J. Tensile fracture behavior of 316L stainless steel components fabricated with hybrid directed energy deposition and thermal milling manufacturing. Appl. Phys. A 2021, 127, 212. [Google Scholar] [CrossRef]
- Sundeev, R.V.; Shalimova, A.V.; Sitnikov, N.N.; Chernogorova, O.P.; Glezer, A.M.; Presnyakov, M.Y.; Karateev, I.A.; Pechina, E.A.; Shelyakov, A.V. Effect of high-pressure torsion on the structure and properties of the natural layered amorphous-crystalline Ti2NiCu composite. J. Alloys Compd. 2022, 845, 156273. [Google Scholar] [CrossRef]
- Edalati, K.; Horita, Z. A Review on High-Pressure Torsion (HPT) from 1935 to 1988. Mater. Sci. Eng. A 2016, 652, 325–352. [Google Scholar] [CrossRef]
- Bazarnik, P.; Huang, Y.; Lewandowska, M.; Langdon, T.G. Enhanced Grain Refinement and Microhardness by Hybrid Processing Using Hydrostatic Extrusion and High-Pressure Torsion. Mater. Sci. Eng. A 2018, 712, 513–520. [Google Scholar] [CrossRef]
- Estrin, Y.; Vinogradov, A. Extreme Grain Refinement by Severe Plastic Deformation: A Wealth of Challenging Science. Acta Mater. 2013, 63, 782–817. [Google Scholar] [CrossRef]
- Cao, Y.; Ni, S.; Liao, X.; Song, M.; Zhu, Y. Structural Evolutions of Metallic Materials Processed by Severe Plastic Deformation. Mater. Sci. Eng. R Rep. 2018, 133, 1–59. [Google Scholar] [CrossRef]
- Edalati, K.; Toh, S.; Watanabe, M.; Horita, Z. In Situ Production of Bulk Intermetallic-Based Nanocomposites and Nanostructured Intermetallics by High-Pressure Torsion. Scr. Mater. 2012, 66, 386–389. [Google Scholar] [CrossRef]
- Zhilyaev, A.P.; Langdon, T.G. Using High-Pressure Torsion for Metal Processing: Fundamentals and Applications. Prog. Mater. Sci. 2008, 53, 893–979. [Google Scholar] [CrossRef]
- Edalati, K.; Bachmaier, A.; Beloshenko, V.A.; Beygelzimer, Y.; Blank, V.D.; Botta, W.J.; Bryla, K.; Divinski, S.; Enikeev, N.A.; Estrin, Y. Nanomaterials by Severe Plastic Deformation: Review of Historical Developments and Recent Advances. Mater. Res. Lett. 2022, 10, 163–256. [Google Scholar] [CrossRef]
- Sundeev, R.V.; Glezer, A.M.; Shalimova, A.V. Crystalline to Amorphous Transition in Solids upon High-Pressure Torsion. J. Alloys Compd. 2014, 611, 292–296. [Google Scholar] [CrossRef]
- Bachmaier, A.; Pippan, R. High-Pressure Torsion Deformation Induced Phase Transformations and Formations: New Material Combinations and Advanced Properties. Mater. Trans. 2019, 60, 1256–1269. [Google Scholar] [CrossRef]
- Beygelzimer, Y.; Estrin, Y.; Kulagin, R. Synthesis of Hybrid Materials by Severe Plastic Deformation: A New Paradigm of SPD Processing. Adv. Eng. Mater. 2015, 17, 1853–1861. [Google Scholar] [CrossRef]
- Rogachev, S.O.; Nikulin, S.A.; Rozhnov, A.B.; Khatkevich, V.M.; Nechaykina, T.A.; Gorshenkov, M.V.; Sundeev, R.V. Multilayer “Steel/Vanadium alloy/Steel” Hybrid Material Obtained by High-Pressure Torsion at Different Temperatures. Metall. Mater. Trans. A 2017, 48, 6091–6101. [Google Scholar] [CrossRef]
- Rogachev, S.O.; Sundeev, R.V.; Tabachkova, N.Y. High Pressure Torsion-Induced Amorphous Phase in a Multilayer V-10Ti-5Cr/Zr-2.5Nb/V-10Ti-5Cr Hybrid Material. Mater. Lett. 2019, 234, 220–223. [Google Scholar] [CrossRef]
- Luo, D.; Huminiuc, T.; Huang, Y.; Polcar, T.; Langdon, T.G. The Fabrication of High Strength Zr/Nb Nanocomposites Using High-Pressure Torsion. Mater. Sci. Eng. A 2020, 790, 139693. [Google Scholar] [CrossRef]
- Han, J.-K.; Jang, J.; Langdon, T.G.; Kawasaki, M. Bulk-State Reactions and Improving the Mechanical Properties of Metals Through High-Pressure Torsion. Mater. Trans. 2019, 60, 1131–1136. [Google Scholar] [CrossRef]
- Akbarpour, M.R.; Farvizi, M.; Lee, D.J.; Rezaei, H.; Kim, H.S. Effect of High-Pressure Torsion on the Microstructure and Strengthening Mechanisms of Hot-Consolidated Cu–CNT Nanocomposite. Mater. Sci. Eng. A 2015, 638, 289–295. [Google Scholar] [CrossRef]
- Suarez, S.; Lasserre, F.; Soldera, F.; Pippan, R.; Mücklich, F. Microstructural Thermal Stability of CNT-reinforced Composites Processed by Severe Plastic Deformation. Mater. Sci. Eng. A 2015, 626, 122–127. [Google Scholar] [CrossRef]
- Han, J.-K.; Herndon, T.; Jang, J.; Langdon, T.G.; Kawasaki, M. Synthesis of Hybrid Nanocrystalline Alloys by Mechanical Bonding through High-Pressure Torsion. Adv. Eng. Mater. 2020, 22, 1901289. [Google Scholar] [CrossRef]
- Hernández-Escobar, D.; Kawasaki, M.; Boehlert, C.J. Metal Hybrids Processed by High-Pressure Torsion: Synthesis, Microstructure, Mechanical Properties and Developing Trends. Int. Mater. Rev. 2022, 67, 231–265. [Google Scholar] [CrossRef]
- Vasiliev, S.V.; Limanovskii, A.I.; Tkachenko, V.M.; Tsvetkov, T.V.; Svyrydova, K.A.; Burkhovetskii, V.V.; Tkatch, V.I. Amorphous-Crystalline Al-based Laminates with Enhanced Plasticity Produced by High Pressure Torsion. Mater. Lett. 2022, 318, 132155. [Google Scholar] [CrossRef]
- Vasiliev, S.V.; Limanovskii, A.I.; Tkachenko, V.M.; Tsvetkov, T.V.; Svyrydova, K.A.; Burkhovetskii, V.V.; Sayapin, V.N.; Terekhov, S.V.; Tkatch, V.I. Fabrication of Consolidated Layered Samples by High-Pressure Torsion Processing of Rapidly Solidified Al-based Ribbons with Amorphous and Crystalline Structures. Mater. Today Commun. 2020, 24, 101080. [Google Scholar] [CrossRef]
- Korznikova, G.; Czeppe, T.; Khalikova, G.; Gunderov, D.; Korznikova, E.; Litynska-Dobrzynska, L.; Szlezynger, M. Microstructure and Mechanical Properties of Cu-graphene Composites Produced by Two High Pressure Torsion Procedures. Mater. Charact. 2020, 161, 110122. [Google Scholar] [CrossRef]
- Kulagin, R.; Beygelzimer, Y.; Ivanisenko, Y.; Mazilkin, A.; Straumal, B.; Hahn, H. Instabilities of Interfaces Between Dissimilar Metals Induced by High Pressure Torsion. Mater. Lett. 2018, 222, 172–175. [Google Scholar] [CrossRef]
- Sundeev, R.V.; Shalimova, A.V.; Glezer, A.M.; Pechina, E.A.; Gorshenkov, M.V.; Nosova, G.I. In Situ Observation of the “Crystalline ⇒ Amorphous State” Phase Transformation in Ti2NiCu Upon High-Pressure Torsion. Mater. Sci. Eng. A 2017, 679, 1–6. [Google Scholar] [CrossRef]
- Sundeev, R.V.; Glezer, A.M.; Menushenkov, A.P.; Shalimova, A.V.; Chernysheva, O.V.; Umnova, N.V. Effect of High Pressure Torsion at Different Temperatures on the Local Atomic Structure of Amorphous Fe-Ni-B Alloys. Mater. Des. 2017, 135, 77–83. [Google Scholar] [CrossRef]
- Rogachev, S.O.; Sundeev, R.V.; Kozlov, D.A.; Khalidova, D.V. Structure and Hardening of Layered Steel/Copper/Steel Material Subjected to Co-deformation by High-Pressure Torsion. Phys. Metals Metallogr. 2019, 120, 191–196. [Google Scholar] [CrossRef]
- ISO/FDIS 14577-1:2002; Metallic Materials—Instrumented Indentation Test for Hardness and Materials Parameters. ISO Central Secretariat: Geneva, Switzerland, 2002.
- Khoklova, I.A.; Ishchenko, D.A.; Khokhlov, M.A. Indentation from Macro- to Nanometer Level and Examples of Investigation of Properties of Materials with a Special Structure. Techn. Diagn. Non-Destr. Test. 2017, 1, 30–36. [Google Scholar] [CrossRef]
- Firstov, S.A.; Rogul, T.G.; Gorban, V.F.; Pechkovsky, E.P. Ultimate Strengthening, Theoretical and Limit Tool Hardness. Key Eng. Mater. 2009, 409, 128–136. [Google Scholar] [CrossRef]
- Bakai, A.S. The Polycluster Concept of Amorphous Solids. In Topics in Applied Physics: Glassy Metals III; Springer: Berlin/Heidelberg, Germany, 1994; Volume 72, pp. 209–255. [Google Scholar] [CrossRef]
- Landau, L.D.; Lifshitz, E.M. Statistical Physics, 3rd ed.; Part 1. V.5; Butterworth-Heinemann: Oxford, UK, 1980; p. 562. [Google Scholar]
- Edalati, K.; Emami, H.; Ikeda, Y.; Iwaoka, H.; Tanaka, I.; Akiba, E.; Horita, Z. New Nanostructured Phases with Reversible Hydrogen Storage Capability in Immiscible Magnesium–Zirconium System Produced by High-Pressure Torsion. Acta Mater. 2016, 108, 293–303. [Google Scholar] [CrossRef]
- Li, F.X.; Hao, P.D.; Yi, J.H.; Chen, Z.; Prashanth, K.G.; Maity, T.; Eckert, J. Microstructure and Strength of Nano-/Ultrafine-Grained Carbon Nanotube-Reinforced Titanium Composites Processed by High-Pressure Torsion. Mater. Sci. Eng. A 2018, 722, 122–128. [Google Scholar] [CrossRef]
- Tolmachev, T.; Pilyugin, V.; Ancharov, A.; Patselov, A.; Chernyshev, E.; Zolotarev, K. On the Structural Features of Mechanically Alloyed Cu-Ag and Au-Co by Severe Cold and Cryogenic Plastic Deformation. Phys. Procedia 2016, 84, 349–354. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sundeev, R.; Shalimova, A.; Rogachev, S.; Chernogorova, O.; Glezer, A.; Ovcharov, A.; Karateev, I.; Tabachkova, N. Structural Aspects of the Formation of Multilayer Composites from Dissimilar Materials upon High-Pressure Torsion. Materials 2023, 16, 3849. https://doi.org/10.3390/ma16103849
Sundeev R, Shalimova A, Rogachev S, Chernogorova O, Glezer A, Ovcharov A, Karateev I, Tabachkova N. Structural Aspects of the Formation of Multilayer Composites from Dissimilar Materials upon High-Pressure Torsion. Materials. 2023; 16(10):3849. https://doi.org/10.3390/ma16103849
Chicago/Turabian StyleSundeev, Roman, Anna Shalimova, Stanislav Rogachev, Olga Chernogorova, Alexander Glezer, Alexey Ovcharov, Igor Karateev, and Natalia Tabachkova. 2023. "Structural Aspects of the Formation of Multilayer Composites from Dissimilar Materials upon High-Pressure Torsion" Materials 16, no. 10: 3849. https://doi.org/10.3390/ma16103849
APA StyleSundeev, R., Shalimova, A., Rogachev, S., Chernogorova, O., Glezer, A., Ovcharov, A., Karateev, I., & Tabachkova, N. (2023). Structural Aspects of the Formation of Multilayer Composites from Dissimilar Materials upon High-Pressure Torsion. Materials, 16(10), 3849. https://doi.org/10.3390/ma16103849