Comparative Study of Ozonated Glycerol and Macrogol Ointment on Bone Matrix Production by Human Osteosarcoma Cell Line Saos-2
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ozonated Macrogol Ointment
2.2. Viscosity Measurement
2.3. DNA Synthesis and MTT Assays
2.4. Enzyme-Linked Immunosorbent Assay (ELISA)
2.5. ALP Activity
2.6. Statistical Analysis
3. Results
3.1. Viscosity Measurement of Ozonated Glycerol and Macrogol Ointment
3.2. Effect of Ozonated Macrogol Ointment on the Proliferation of Saos-2 Cells
3.3. Effect of Ozonated Macrogol Ointment on Type 1 Collagen Production and ALP Activity by Saos-2 Cells
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Premjit, Y.; Sruthi, N.U.; Pandiselvam, R.; Kothakota, A. Aqueous ozone: Chemistry, physiochemical properties, microbial inactivation, factors influencing antimicrobial effectiveness, and application in food. Compr. Rev. Food Sci. Food Saf. 2022, 21, 1054–1085. [Google Scholar] [CrossRef] [PubMed]
- Bocci, V. Oxygen-Ozone Therapy: A Critical Evaluation; Springer: Dordrecht, The Netherlands, 2002. [Google Scholar]
- Srikanth, A.; Sathish, M.; Harsha, A.V.S. Application of ozone in the treatment of periodontal disease. J. Pharm. Bioallied Sci. 2013, 5, 89–94. [Google Scholar] [CrossRef] [PubMed]
- Saini, R. Ozone therapy in dentistry: A strategic review. J. Nat. Sci. Biol. Med. 2011, 2, 151–153. [Google Scholar] [CrossRef]
- Arpita, R.; Swetha, J.; Babu; Sudhir, R. Recent Trends in Non-Surgical Periodontal Care for the General Dentist—A Review. Bangladesh J. Dent. Res. Educ. 2014, 4, 78–82. [Google Scholar] [CrossRef]
- Murakami, M.; Nagano, K.; Hamaoka, K.; Kato, D.; Kawai, T.; Murakami, H.; Hasegawa, Y. Ozone Water Bactericidal and Cleaning Effects on Oral Diseases-related Planktonic and Bacterial Biofilms. J. Hard Tissue Biol. 2021, 30, 27–32. [Google Scholar] [CrossRef]
- Sghaireen, M.G.; Alzarea, B.K.; Alduraywish, A.A.; Alam, M.K.; Srivastava, K.C.; Khader, Y.; Dar-Odeh, N.; Ganji, K.K. Effect of Aqueous Ozone Solution Irrigation on Healing after Treatment with Dental Implants: A Cross-over Randomized Controlled Clinical Trial. J. Hard Tissue Biol. 2020, 29, 263–266. [Google Scholar] [CrossRef]
- Sakai, D.; Makita, Y.; Masuno, K.; Fujiwara, S.; Okazaki, J.; Wang, P.-L. Local hemostatic effect of aqueous ozone in cutting wound surface. J. Hard Tissue Biol. 2011, 23, 245–248. [Google Scholar] [CrossRef]
- Niinomi, K.; Kanaishi, A.; Akihiko, S. The bactericidal effects of ozone gel. J. Showa Univ. Dent. Soc. 2004, 24, 103–109. [Google Scholar]
- Wang, P.-L.; Shiota, G.; Shiba, A. Safety Evaluation of Ozone Gel for Skin and Eye on Animal Experiments. J. Hard Tissue Biol. 2011, 20, 313–318. [Google Scholar] [CrossRef]
- Hanada, K.; Okuda, D.; Ogi, R.; Kojima, S.; Tsuruoka, R.; Shiota, G. Ozonized glycerin (OG)-based cosmetic products lighten age spots on human facial skin. J. Cosmet. Dermatol. 2022, 21, 3133–3139. [Google Scholar] [CrossRef]
- Fukui, T.; Masuno, K.; Makita, Y.; Fujiwara, S.; Shiota, G.; Imamura, Y.; Shiba, A.; Wang, P.-L. Antimicrobial effects of ozone gel against periodontal bacteria. J. Hard Tissue Biol. 2014, 23, 445–448. [Google Scholar] [CrossRef]
- Wang, P.-L.; Tachi, Y.; Masuno, K.; Okusa, N.; Imamura, Y. The Effect of Ozone Gel on Bone Matrix Production by Human Osteosarcoma Cell Line Saos-2. J. Hard Tissue Biol. 2018, 27, 195–198. [Google Scholar] [CrossRef]
- Takeda, Y.; Jamsransuren, D.; Makita, Y.; Kaneko, A.; Matsuda, S.; Ogawa, H.; Oh, H. Inactivation of SARS-CoV-2 by Ozonated Glycerol. Food Environ. Virol. 2021, 13, 316–321. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.-L.; Tachi, Y.; Masuno, K.; Okusa, N.; Imamura, Y. The study of ozone ointment on human gingival fibroblasts cell proliferation ability and anti-inflammatory. J. Hard Tissue Biol. 2018, 27, 209–212. [Google Scholar] [CrossRef]
- Rodan, S.B.; Imai, Y.; Thiede, M.A.; Wesolowski, G.; Thompson, D.; Bar-Shavit, Z.; Shull, S.; Mann, K.; Rodan, G.A. Charac-terization of a human osteosarcoma cell line (Saos-2) with osteoblastic properties. Cancer Res. 1987, 47, 4961–4966. [Google Scholar]
- Mori, T.; Moriyama, S.; Nakagawa, T.; Tsubaki, J. Measurement of Apparent Viscosity of Various Fluids by Using B-Type and Vibration-Type Viscometers. Nihon Reoroji Gakkaishi 2017, 45, 157–165. [Google Scholar] [CrossRef]
- Imamura, Y.; Fujigaki, Y.; Oomori, Y.; Usui, S.; Wang, P.-L. Cooperation of Salivary Protein Histatin 3 with Heat Shock Cognate Protein 70 Relative to the G1/S Transition in Human Gingival Fibroblasts. J. Biol. Chem. 2009, 284, 14316–14325. [Google Scholar] [CrossRef]
- Imamura, Y.; Wang, P.-L. Salivary histatin 3 inhibits heat shock cognate protein 70-mediated inflammatory cytokine production through toll-like receptors in human gingival fibroblasts. J. Inflamm. 2014, 11, 4. [Google Scholar] [CrossRef]
- Christenson, R.H. Biochemical Markers of Bone Metabolism: An Overview. Clin. Biochem. 1997, 30, 573–593. [Google Scholar] [CrossRef]
- Harris, H. The human alkaline phosphatases: What we know and what we don’t know. Clin. Chim. Acta. 1989, 186, 133–150. [Google Scholar] [CrossRef]
- Ito, T.; Sasaki, M.; Taguchi, T. Enhanced ALP activity of MG63 cells cultured on hydroxyapatite-poly(ethylene glycol) hydrogel composites prepared using EDTA-OH. Biomed. Mater. 2015, 10, 015025. [Google Scholar] [CrossRef] [PubMed]
Concentration of Ozone (ppm) | Ozonated Glycerol 1 | Ozonated Macrogol Ointment | |
---|---|---|---|
MTT assay (%) | 0.5 | 135.0 ± 1.5 | 156.8 ± 13.1 |
DNA synthesis (fold) | 0.5 | 2.0 ± 0.04 | 2.4 ± 0.16 |
type 1 collagen (pg/μg) | 0.5 | 36.2 ± 3.4 | 35.3 ± 4.3 |
ALP (%) | 0.5 | 224.6 ± 15 | 157.8 ± 5.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Okusa, N.; Oh, H.; Masuno, K.; Makita, Y.; Imamura, Y. Comparative Study of Ozonated Glycerol and Macrogol Ointment on Bone Matrix Production by Human Osteosarcoma Cell Line Saos-2. Materials 2023, 16, 3857. https://doi.org/10.3390/ma16103857
Okusa N, Oh H, Masuno K, Makita Y, Imamura Y. Comparative Study of Ozonated Glycerol and Macrogol Ointment on Bone Matrix Production by Human Osteosarcoma Cell Line Saos-2. Materials. 2023; 16(10):3857. https://doi.org/10.3390/ma16103857
Chicago/Turabian StyleOkusa, Nobutaka, Hourei Oh, Kazuya Masuno, Yoshimasa Makita, and Yasuhiro Imamura. 2023. "Comparative Study of Ozonated Glycerol and Macrogol Ointment on Bone Matrix Production by Human Osteosarcoma Cell Line Saos-2" Materials 16, no. 10: 3857. https://doi.org/10.3390/ma16103857
APA StyleOkusa, N., Oh, H., Masuno, K., Makita, Y., & Imamura, Y. (2023). Comparative Study of Ozonated Glycerol and Macrogol Ointment on Bone Matrix Production by Human Osteosarcoma Cell Line Saos-2. Materials, 16(10), 3857. https://doi.org/10.3390/ma16103857