Numerical Investigation on the Compressive Behavior of Desert Sand-Based Backfill Material: Parametric Study
Abstract
:1. Introduction
2. Experimental Study
3. PFC3D Numerical Model Establishment
3.1. Contact Constitutive Model
3.2. Model Construction
3.3. Parameter Calibration
4. Analysis of Influencing Factors
4.1. Effect of Sand Content on Uniaxial Compressive Strength
4.2. Effect of Porosity on Uniaxial Compressive Strength
4.3. Effect of Desert Sand Particle Size Distribution on Uniaxial Compressive Strength
4.4. Effect of Model Size on Uniaxial Compressive Strength
5. Conclusions
- (1)
- The initial setting time of the high-water filling material modified by desert sand is reduced; the compressive strength and elastic modulus of the high-water filling material can be effectively improved by the high-water sand mixed with high content, and the compressive strength of the specimen decreases with the increase in the water–cement ratio;
- (2)
- With the increase in desert sand content, the compressive strength of desert sand-based filling materials decreases first and then increases, and all specimens with sand content between 40 and 60% have good compressive performance;
- (3)
- The uniaxial compressive strength of numerical simulation is related to the particle size distribution of desert sand. In a certain range, increasing the particle size distribution of desert sand can improve the compressive performance of desert sand-based backfill material specimens;
- (4)
- The specimen size effect of desert sand-based backfill material is significant, and its compressive performance decreases with the increase in model size.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bai, E.; Guo, W.; Tan, Y.; Huang, G.; Guo, M.; Ma, Z. Roadway Backfill Mining with Super-High-Water Material to Protect Surface Buildings: A Case Study. Appl. Sci. 2019, 10, 107. [Google Scholar] [CrossRef]
- Péra, J.; Ambroise, J. New applications of calcium sulfoaluminate cement. Cem. Concr. Res. 2004, 34, 671–676. [Google Scholar] [CrossRef]
- García-Maté, M.; Santacruz, I.; Ángeles, G.; León-Reina, L.; Aranda, M.A. Rheological and hydration characterization of calcium sulfoaluminate cement pastes. Cem. Concr. Compos. 2012, 34, 684–691. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, B.; Li, X.; Liu, C.; Wang, C.; Wang, F.; Chen, D. Research on roof damage mechanism and control technology of gob-side entry retaining under close distance gob. Eng. Fail. Anal. 2022, 138, 106331. [Google Scholar] [CrossRef]
- Zhao, H. State-of-the-art of standing supports for gob-side entry retaining technology in China. J. S. Afr. Inst. Min. Metall. 2019, 119, 891–906. [Google Scholar] [CrossRef]
- Buzylo, V.; Pavlychenko, A.; Borysovska, O. Ecological aspects of filling of worked-out area during underground coal mining. In E3S Web of Conferences; EDP Sciences: Ulis, France, 2020; Volume 201, p. 01038. [Google Scholar]
- Chang, Q.; Tang, W.; Xu, Y.; Zhou, H. Research on the width of filling body in gob-side entry retaining with high-water materials. Int. J. Min. Sci. Technol. 2018, 28, 519–524. [Google Scholar] [CrossRef]
- Zhao, H.; Ren, T.; Remennikov, A. A hybrid tubular standing support for underground mines: Compressive behaviour. Int. J. Min. Sci. Technol. 2021, 31, 215–224. [Google Scholar] [CrossRef]
- Shaat, A.; Fam, A. Axial loading tests on short and long hollow structural steel columns retrofitted using carbon fibre reinforced polymers. Can. J. Civ. Eng. 2006, 33, 458–470. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, C.; Wu, F.; Lu, Y.; Zhou, X. Study on the characteristics of compressive strength and hydration mechanism of high-water-content materials modified by furnace slag and silica fume. In IOP Conference Series Earth and Environmental Science; IOP Publishing: Bristol, UK, 2019; Volume 330, p. 042028. [Google Scholar]
- García-Maté, M.; De la Torre, A.G.; León-Reina, L.; Aranda, M.A.G.; Santacruz, I. Hydration studies of calcium sulfoaluminate cements blended with fly ash. Cem. Concr. Res. 2013, 54, 12–20. [Google Scholar] [CrossRef]
- Jiang, Y.; Liu, C.; Xie, H.; Li, J.; Luo, P. Test and analysis of main physical and mechanical parameters of modified high-water-concretion. Sichuan Daxue Xuebao (Gongcheng Kexue Ban)/J. Sichuan Univ. (Eng. Sci. Ed.) 2015, 47, 65–69. [Google Scholar]
- Diao, Z.F.; Liu, C.W.; Zhang, L.W.; Sun, W.; Feng, B. Deformation Characteristics and Mechanical Response of Modified High-Water Material Mixed with Sludge under Typical Loading Methods. Sci. Technol. Eng. 2018, 18, 262–266. [Google Scholar]
- Zhang, Z.; Liu, C.W.; Ye, D.Y. Experimental study on modification of polyethylene plastic for high water filling materials. Min. Res. Dev. 2020, 40, 50. [Google Scholar]
- Feng, B.; Liu, C.; Xie, H.; Meisu, W.U.; Jiang, Y. Experimental Study on the Size and the Shape of High-water-content Material that Modified. Adv. Eng. Sci. 2017, 49, 121–127. [Google Scholar]
- Zhang, Y.; Wang, Y.; Li, T.; Xiong, Z.; Sun, Y. Effects of lithium carbonate on performances of sulphoaluminate cement-based dual liquid high-water material and its mechanisms. Constr. Build. Mater. 2018, 161, 374–380. [Google Scholar] [CrossRef]
- Wang, Y.; Yu, J.; Wang, J.; Guan, X. Effects of Aluminum Sulfate and Quicklime/Fluorgypsum Ratio on the Properties of Calcium Sulfoaluminate (CSA) Cement-Based Double Liquid Grouting Materials. Materials 2019, 12, 1222. [Google Scholar] [CrossRef]
- Al-Harthy, A.S.; Halim, M.A.; Taha, R.; Al-Jabri, K.S. The properties of concrete made with fine dune sand. Constr. Build. Mater. 2007, 21, 1803–1808. [Google Scholar] [CrossRef]
- Benabed, B.; Azzouz, L.; Kadri, E.H.; Kenai, S.; Belaidi, A.S.E. Effect of fine aggregate replacement with desert dune sand on fresh properties and strength of self-compacting mortars. J. Adhes. Sci. Technol. 2014, 28, 2182–2195. [Google Scholar] [CrossRef]
- Bosco, E.; Claessens, R.J.M.A.; Suiker, A.S. Multi-scale prediction of chemo-mechanical properties of concrete materials through asymptotic homogenization. Cem. Concr. Res. 2020, 128, 105929. [Google Scholar] [CrossRef]
- Zhao, H.; Sun, W.; Wu, X.; Gao, B. The effect of coarse aggregate gradation on the properties of self-compacting concrete. Mater. Des. 2012, 40, 109–116. [Google Scholar] [CrossRef]
- Cundall, P.A.; Strack, O.D. A discrete numerical model for granular assemblies. Geotechnique 1979, 29, 47–65. [Google Scholar] [CrossRef]
- Yan, Y.; Ji, S. Discrete element modeling of direct shear tests for a granular material. Int. J. Numer. Anal. Methods Geomech. 2009, 34, 978–990. [Google Scholar] [CrossRef]
- He, Y.; Evans, T.J.; Yu, A.B.; Yang, R.Y. Numerical Modelling of Die and Unconfined Compactions of Wet Particles. Procedia Eng. 2015, 102, 1390–1398. [Google Scholar] [CrossRef]
- Ahmadi, A.; Larsson, S.; Wersäll, C. Scaling granular material with polygonal particles in discrete element modeling. Particuology 2023, 75, 151–164. [Google Scholar] [CrossRef]
- Pena, A.A.; Lizcano, A.; Alonso-Marroquin, F.; Herrmann, H.J. Biaxial test simulations using a packing of polygonal particles. Int. J. Numer. Anal. Methods Geomech. 2008, 32, 143–160. [Google Scholar] [CrossRef]
- Tanoli, A.Y.; Yan, B.; Xiong, Y.L.; Ye, G.L.; Khalid, U.; Xu, Z.H. Numerical analysis on zone-divided deep excavation in soft clays using a new small strain elasto–plastic constitutive model. Undergr. Space 2022, 7, 19–36. [Google Scholar] [CrossRef]
- Li, Z.; Rao, Q.H. Quantitative determination of PFC3D microscopic parameters. J. Cent. South Univ. 2021, 28, 911–925. [Google Scholar] [CrossRef]
- Lopez, R.; Larsson, S.; Silfwerbrand, J. A discrete element material model including particle degradation suitable for rockfill embankments. Comput. Geotech. 2019, 115, 103166. [Google Scholar] [CrossRef]
- Abu Seif, E.S.S.; Sonbul, A.R.; Hakami, B.A.H.; El-Sawy, E.K. Experimental study on the utilization of dune sands as a construction material in the area between Jeddah and Mecca, Western Saudi Arabia. Bull. Eng. Geol. Environ. 2016, 75, 1007–1022. [Google Scholar] [CrossRef]
- Pavičić, I.; Briševac, Z.; Vrbaški, A.; Grgasović, T.; Duić, Ž.; Šijak, D.; Dragičević,, I. Geometric and fracta1 characterization of pore systems in the upper triassic do1omites based on image processing techniques examp1e from umberak mts nw croatia. Sustainability 2021, 13, 7668. [Google Scholar] [CrossRef]
- Sun, Y.; Xie, S.; Wu, C.; Cui, J.; Chen, D.; Guo, F.; Jiang, Z.; Ren, Y.; Lu, W. Influence of the ultra-fine fly ash dosages on the mechanical properties of the sulfoaluminate cement-based high water backfilling material. Sci. Rep. 2023, 13, 1564. [Google Scholar] [CrossRef]
- Chen, D.; Sun, Y.; Xie, S.; Wang, E.; Wu, X.; Qi, P. Change in the Mechanic Properties and Electrical Resistivity of High Water Backfill Material under Electrochemical Treatment. Adv. Mater. Sci. Eng. 2020, 2020, 3248294. [Google Scholar] [CrossRef]
- Li, G.; Liu, H.; Deng, W.; Wang, H.; Yan, H. Behavior of CFRP-Confifined Sand-Based Material Columns under Axial Compression. Polymers 2021, 13, 3994. [Google Scholar] [CrossRef]
- Li, G.; Wang, H.; Liu, Z.; Liu, H.; Yan, H.; Liu, Z. Effects of Aeolian Sand and Water−Cement Ratio on Performance of a Novel Mine Backfill Material. Sustainability 2023, 15, 569. [Google Scholar] [CrossRef]
- Salazar, A.; Saez, E.; Pardo, G. Modeling the direct shear test of a coarse sand using the 3D Discrete Element Method with a rolling friction model. Comput. Geotech. 2015, 67, 83–93. [Google Scholar] [CrossRef]
- Lee, H.; Jeon, S. An experimental and numerical study of fracture coalescence in pre-cracked specimens under uniaxial compression. Int. J. Solids Struct. 2010, 48, 979–999. [Google Scholar] [CrossRef]
- Smolnik, G. DEM (PFC3D) numerical simulation of the influence of grain orientation on the strength of the Kimachi sandstone. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2019. [Google Scholar]
- Ren, J.; Xiao, M.; Liu, G. Rock Macro–Meso Parameter Calibration and Optimization Based on Improved BP Algorithm and Response Surface Method in PFC 3D. Energies 2022, 15, 6290. [Google Scholar] [CrossRef]
- Liu, J.; Min, D.U.; Xiu-li, D.U.; Zhen-bao, L.I. Size effect on the failure of stirrp-confined reinforced concrete columns under axial compression. Eng. Mech. 2018, 35, 93–101. [Google Scholar]
- Bažant, Z.P. Size effect in blunt fracture: Concrete, rock, metal. J. Eng. Mech. 1984, 110, 518–535. [Google Scholar] [CrossRef]
Specimen | W/C | Sc | Width (mm) | Height (mm) |
---|---|---|---|---|
H-1-00 | 1 | 0% | 50.20 | 100.40 |
H-1-30 | 1 | 30% | 50.10 | 100.60 |
H-1-60 | 1 | 60% | 50.50 | 101.20 |
H-1.5-00 | 1.5 | 0% | 50.30 | 100.20 |
H-1.5-60 | 1.5 | 60% | 50.20 | 100.50 |
H-2-00 | 2 | 0% | 50.60 | 100.80 |
H-2-60 | 2 | 60% | 50.10 | 100.40 |
Specimen | emod/Pa | kratio | pb_kratio | pb_emod/Pa | pb_ten/Pa | pb_coh/Pa | fric |
---|---|---|---|---|---|---|---|
HWBM | 18 × 109 | 1.0 | 1.0 | 18 × 109 | 4.0 × 106 | 3.0 × 106 | 0.35 |
Sand | 200 × 109 | 1.0 | 1.0 | 200 × 109 | 25.0 × 106 | 21.0 × 106 | 0.55 |
Variable | Indoor Test | Numerical Simulation | Specimen | ||
---|---|---|---|---|---|
Mechanical Parameters | Failure Form | Failure Form | Mechanical Parameters | ||
Peak intensity/MPa | 9.20 | 9.24 | H-1-00 | ||
Elastic modulus/GPa | 0.57 | 0.56 | |||
Peak strain/10−3 | 0.30 | 0.29 | |||
Peak intensity/MPa | 9.04 | 9.09 | H-1-30 | ||
Elastic modulus/GPa | 0.82 | 0.78 | |||
Peak strain/10−3 | 0.20 | 0.21 | |||
Peak intensity/MPa | 13.52 | 13.55 | H-1-60 | ||
Elastic modulus/GPa | 1.28 | 1.19 | |||
Peak strain/10−3 | 0.12 | 0.13 |
Specimen | Porosity | Balls | Contacts | Fractures | fc/MPa |
---|---|---|---|---|---|
H-1-00 | 0.26 | 3302 | 11,957 | 5602 | 10.80 |
0.28 | 3217 | 11,435 | 5333 | 9.94 | |
0.30 | 3129 | 10,925 | 4948 | 9.24 | |
0.32 | 3041 | 10,333 | 4635 | 8.68 | |
0.34 | 2956 | 9650 | 4420 | 8.35 | |
H-1-30 | 0.26 | 5804 | 24,044 | 12,470 | 10.30 |
0.28 | 5622 | 22,522 | 11,703 | 9.67 | |
0.30 | 5436 | 20,633 | 10,426 | 8.68 | |
0.32 | 5258 | 19,113 | 8735 | 7.79 | |
0.34 | 5137 | 17,442 | 7598 | 6.57 | |
H-1-60 | 0.26 | 9814 | 42,359 | 10,800 | 15.47 |
0.28 | 9478 | 39,403 | 10,394 | 15.23 | |
0.30 | 9226 | 37,230 | 9566 | 13.33 | |
0.32 | 8974 | 34,786 | 8296 | 11.33 | |
0.34 | 8720 | 31,631 | 8248 | 9.59 |
Specimen | Size/mm (Width × Height) | fc/MPa | εu/10−3 |
---|---|---|---|
H-1-00 | 50 × 100 | 9.24 | 0.29 |
75 × 150 | 8.97 | 0.27 | |
100 × 200 | 8.75 | 0.26 | |
H-1-30 | 50 × 100 | 8.68 | 0.20 |
75 × 150 | 8.42 | 0.18 | |
100 × 200 | 8.20 | 0.17 | |
H-1-60 | 50 × 100 | 13.33 | 0.13 |
75 × 150 | 12.85 | 0.12 | |
100 × 200 | 12.03 | 0.11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, H.; Liu, H.; Li, G.; Wang, X.; Hang, Y. Numerical Investigation on the Compressive Behavior of Desert Sand-Based Backfill Material: Parametric Study. Materials 2023, 16, 3878. https://doi.org/10.3390/ma16103878
Yan H, Liu H, Li G, Wang X, Hang Y. Numerical Investigation on the Compressive Behavior of Desert Sand-Based Backfill Material: Parametric Study. Materials. 2023; 16(10):3878. https://doi.org/10.3390/ma16103878
Chicago/Turabian StyleYan, Haitian, Honglin Liu, Guodong Li, Xiangyu Wang, and Yinjian Hang. 2023. "Numerical Investigation on the Compressive Behavior of Desert Sand-Based Backfill Material: Parametric Study" Materials 16, no. 10: 3878. https://doi.org/10.3390/ma16103878
APA StyleYan, H., Liu, H., Li, G., Wang, X., & Hang, Y. (2023). Numerical Investigation on the Compressive Behavior of Desert Sand-Based Backfill Material: Parametric Study. Materials, 16(10), 3878. https://doi.org/10.3390/ma16103878