The Spontaneous Escape Behavior of Silver from Graphite-like Carbon Coatings and Its Effect on Corrosion Resistance
Abstract
:1. Introduction
2. Experimental Procedures
2.1. Coatings Deposition Conditions
2.2. Microscopic Characterization
3. Result and Discussion
3.1. The Infiuence of the Silver Target Current (IAg) on the Spontaneous Escape Behavior of Silver
3.2. The Influence of Deposition Temperature on the Spontaneous Escape Behavior of Silver
3.3. Effect of CH4 Gas Flow on the Spontaneous Escape Behavior of Silver
3.4. Discussion of the Spontaneous Escape Behavior of Silver from the GLC Coatings
3.5. Electrochemical Corrosion of the Ag-GLC Coatings
4. Conclusions
- The silver target current directly decided the silver content incorporated into the GLC coating and increased the coating thickness, but it played a minor role in enhancing the corrosion resistance of the GLC coatings.
- When the silver target current was fixed, the deposition temperature did not change the initial content of silver particles incorporated into the GLC coatings. However, increasing the deposition temperature effectively reduced the number of silver particles escaping from the GLC coatings. Meanwhile, as it rose up to 400 °C and 500 °C, the corrosion resistance of the GLC coating was clearly enhanced.
- Compared to the Ag-GLC coatings prepared by argon under the same conditions, after using CH4 gas flow, the escaped silver particles were obviously refined, but these Ag-GLC coatings had a poor adhesion with the substrate. Hence, the use of CH4 gas flow actually led to a worsening of the corrosion resistance of the coating.
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dong, H.M.; He, S.; Wang, X.Z.; Zhang, C.Z.; Sun, D.E. Study on conductivity and corrosion resistance of N-doped and Cr/N co-doped DLC films on bipolar plates for PEMFC. Diam. Relat. Mat. 2020, 110, 108156. [Google Scholar] [CrossRef]
- Li, W.L.; Liu, T.; Li, Z.X.; Wang, Y.F.; Li, Y.F.; Lei, J.J. Corrosion resistance and conductivity of amorphous carbon coated SS316L and TA2 bipolar plates in proton-exchange membrane fuel cells. Diam. Relat. Mat. 2021, 118, 108156. [Google Scholar] [CrossRef]
- Hu, R.T.; Tang, J.N.; Zhu, G.M.; Deng, Q.Y.; Lu, J.L. The effect of duty cycle and bias voltage for graphite-like carbon film coated 304 stainless steel as metallic bipolar plate. J. Alloys Compd. 2019, 772, 1067–1078. [Google Scholar] [CrossRef]
- Wu, M.G.; Lu, C.D.; Hong, T.; Chen, G.H.; Wen, D.H. Chromium interlayer amorphous carbon film for 304 stainless steel bipolar plate of proton exchange membrane fuel cell. Surf. Coat. Technol. 2016, 307, 374–381. [Google Scholar]
- Wlodarczyk, R.; Zasada, D.; Morel, S.; Kacprzak, A. A comparison of nickel coated and uncoated sintered stainless steel used as bipolar plates in low-temperature fuel cells. Int. J. Hydrogen Energy 2016, 41, 17644–17651. [Google Scholar] [CrossRef]
- Jin, C.K.; Lee, K.H.; Kang, C.G. Performance and characteristics of titanium nitride, chromium nitride, multi-coated stainless steel 304 bipolar plates fabricated through a rubber forming process. Int. J. Hydrogen Energy 2015, 40, 6681–6688. [Google Scholar] [CrossRef]
- Feng, K.; Cai, X.; Sun, H.L.; Li, Z.G.; Chu, P.K. Carbon coated stainless steel bipolar plates in polymer electrolyte membrane fuel cells. Diam. Relat. Mat. 2010, 19, 1354–1361. [Google Scholar] [CrossRef]
- Yan, W.Q.; Zhang, Y.F.; Chen, Y.F.; Luo, J.; Pang, J.; Zhang, X.; Liao, B.; Ying, M.J. Corrosion behavior and interfacial conductivity of amorphous hydrogenated carbon and titanium carbide composite (a-C: H/TiC) films prepared on titanium bipolar plates in PEMFCs. Diam. Relat. Mat. 2021, 120, 108628. [Google Scholar] [CrossRef]
- Yuan, Q.H.; Zeng, X.S.; Wang, Y.C.; Luo, L.; Ding, Y.; Li, D.J.; Liu, Y. Microstructure and mechanical properties of Mg-4.0Zn alloy reinforced by NiO-coated CNTs. J. Mater. Sci. Technol. 2017, 33, 452–460. [Google Scholar] [CrossRef]
- Folkenant, M.; Nygren, K.; Malinovskis, P.; Palisaitis, P.; Persson, P.Å.; Lewin, E.; Jansson, U. Structure and properties of Cr–C/Ag coatings deposited by magnetron sputtering. Surf. Coat. Technol. 2015, 281, 184–192. [Google Scholar] [CrossRef]
- Wang, L.; Tao, Y.K.; Zhang, Z.; Wang, Z.; Feng, Q.; Wang, H.J.; Li, H. Molybdenum carbide coated 316L stainless steel for bipolar plates of proton exchange membrane fuel cells. Int. J. Hydrogen Energy 2019, 44, 4940–4950. [Google Scholar] [CrossRef]
- Liu, N.; Zhu, N.; Wei, Q.P.; Long, H.Y.; Deng, Z.J.; Yu, Z.M.; Xie, Y.N.; Wang, J.; Ma, J.; Zhou, K.C. A niobium and nitrogen Co-doped DLC film electrode and its electrochemical properties. J. Electrochem. Soc. 2017, 164, H1091–H1098. [Google Scholar] [CrossRef]
- Liu, M.; Xu, H.F.; Fu, J.; Tian, Y. Conductive and corrosion behaviors of silver-doped carbon-coated stainless steel as PEMFC bipolar plates. Int. J. Miner. Metall. Mater. 2016, 23, 844–849. [Google Scholar] [CrossRef]
- Huang, I.B.; Hwang, C.C. Surface treatments of stainless steel by electroless silver coatings as a bipolar plate for proton exchange membrane fuel cells. J. Fuel Cell Sci. Technol. 2015, 12, 061001. [Google Scholar] [CrossRef]
- Yan, F.Y.; Jiang, B.L.; Liu, B.J.; Yang, C.; Dong, D.; Shi, J. Retention mechanism and conductivity corrosion resistance performance of Ag doped GLC and TiN films for metal bipolar plates. Vacuum 2023, 208, 111702. [Google Scholar] [CrossRef]
- Paul, R.; Bhattacharyya, S.R.; Bhar, R.; Pal, A.K. Modulation of residual stress in diamond like carbon films with incorporation of nanocrystalline gold. Appl. Surf. Sci. 2011, 257, 10451–10458. [Google Scholar] [CrossRef]
- He, L.Y.; Li, K.; Xiong, J. Study on the surface segregation evolution of Ag-TiO(x)nanocomposite coatings. J. Exp. Nanosci. 2020, 15, 381–389. [Google Scholar] [CrossRef]
- Manninen, N.K.; Galindo, R.E.; Carvalho, S.; Cavaleiro, A. Silver surface segregation in Ag-DLC nanocomposite coatings. Surf. Coat. Technol. 2015, 267, 90–97. [Google Scholar] [CrossRef]
- Jing, P.P.; Ma, D.L.; Gong, Y.L.; Luo, X.Y.; Zhang, Y.; Weng, Y.J.; Leng, Y.X. Influence of Ag doping on the microstructure, mechanical properties, and adhension stability of diamond-like carbon films. Surf. Coat. Technol. 2021, 405, 126542. [Google Scholar] [CrossRef]
- Cloutier, M.; Turgeon, S.; Busby, Y.; Tatoulian, Y.; Pireaux, J.J.; Mantovani, D. Controlled distribution and clustering of silver in Ag-DLC nanocomposite coatings using a hybrid plasma approach. ACS Appl. Mater. Interfaces 2016, 8, 21020–21027. [Google Scholar] [CrossRef]
- Shao, W.T.; Zhang, X.Y.; Jiang, B.L.; Liu, C.C.; Li, H.T. Spontaneous escape behavior of silver from graphite-like carbon coating and its inhibition mechanism. J. Mater. Sci. Technol. 2017, 33, 1402–1408. [Google Scholar] [CrossRef]
- Wang, H.; Wang, L.P.; Wang, X.F. Structure characterization and antibacterial properties of Ag-DLC films fabricated by dual-targets HiPIMS. Surf. Coat. Technol. 2021, 410, 126967. [Google Scholar] [CrossRef]
- Galindo, R.E.; Manninen, N.K.; Palacio, C.; Carvalho, S. Advanced surface characterization of silver nanocluster segregation in Ag-TiCN bioactive coatings by RBS, GDOES, and ARXPS. Anal. Bioanal. Chem. 2013, 405, 6259–6269. [Google Scholar] [CrossRef]
- Wang, Y.F.; Wang, J.; Zhang, G.G.; Wang, L.P.; Yan, P.X. Microstructure and tribology of TiC(Ag)/a-C:H nanocomposite coatings deposited by unbalanced magnetron sputtering. Surf. Coat. Technol. 2012, 206, 3299–3308. [Google Scholar] [CrossRef]
- Chen, X.Y.; Xie, B.; Zhang, Y.; Wang, W.W.; Ding, M.J.; Yu, P. Effect of the growth temperature on the composition and dielectric properties of CaZrO3 thin coating by radio frequency magnetron sputtering. Thin Solid Films 2020, 708, 138099. [Google Scholar] [CrossRef]
- Yan, F.Y.; Jiang, B.L.; Shao, W.T.; Shi, J. Majorization of GLC properties by the introduction of silver nanowires as conductive framework for metal bipolar plates. Appl. Surf. Sci. 2020, 533, 147493–147503. [Google Scholar] [CrossRef]
- Wettergren, K.; Schweinberger, F.F.; Delana, D.; Ridge, C.J.; Crampton, A.S.; Rotzer, M.D.; Hansen, T.W.; Zhdanov, V.P.; Heiz, U.; Langhammer, C. High sintering resistance of size-selected platinum cluster catalysts by suppressed Ostwald ripening. Nano Lett. 2014, 14, 5803–5809. [Google Scholar] [CrossRef]
- Zhdanov, V.P.; Kasemo, B. Nontraditional models of Ostwald ripening on solid surfaces: From physics to biology. Surf. Sci. 1999, 437, 307–316. [Google Scholar] [CrossRef]
Deposition Parameters (T, °C; IAg, A) | 300 0.01 | 300 0.02 | 300 0.03 | 300 0.05 | 200 0.03 | 400 0.03 | 500 0.03 |
---|---|---|---|---|---|---|---|
Area covered with Ag (%) | 3.2 | 5.0 | 27.0 | 25.1 | 20.3 | 8.0 | 10.0 |
Temperature (°C) IAg (A) | 300 0.01 | 300 0.02 | 300 0.03 | 300 0.05 | 200 0.03 | 400 0.03 | 500 0.03 |
---|---|---|---|---|---|---|---|
Coating thickness (μm) | 1.50 | 1.54 | 1.70 | 1.84 | 1.64 | 1.65 | 1.52 |
Initial Ag content (vol.%) | 3.5 | 5.2 | 9.5 | 17.2 | 9.5 | 9.5 | 9.5 |
Ag residue content (at.%) | 2.31 | 3.35 | 5.12 | 9.72 | 5.11 | 5.52 | 5.58 |
Samples | Ecorr (mV) (SCE) | Icorr (μA cm−2) |
---|---|---|
Uncoated 6061 | −681 | 296.90 |
Pure carbon coating | −21 | 12.55 |
0.01 A—300 °C | −320 | 18.81 |
0.03 A—300 °C | −154 | 27.62 |
0.05 A—300 °C | 14 | 23.89 |
0.03 A—200 °C | −395 | 30.95 |
0.03 A—300 °C | −154 | 27.62 |
0.03 A—400 °C | 56 | 7.69 |
0.03 A—500 °C | 95 | 3.16 |
0.03 A—500 °C (CH4) | −379 | 30.86 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, D.; Wang, W.; Liu, C.; Angurel, L.A.; de la Fuente, G.F.; Jiang, B. The Spontaneous Escape Behavior of Silver from Graphite-like Carbon Coatings and Its Effect on Corrosion Resistance. Materials 2023, 16, 3909. https://doi.org/10.3390/ma16113909
Li D, Wang W, Liu C, Angurel LA, de la Fuente GF, Jiang B. The Spontaneous Escape Behavior of Silver from Graphite-like Carbon Coatings and Its Effect on Corrosion Resistance. Materials. 2023; 16(11):3909. https://doi.org/10.3390/ma16113909
Chicago/Turabian StyleLi, Deye, Wenqiang Wang, Cancan Liu, Luis Alberto Angurel, Germán F. de la Fuente, and Bailing Jiang. 2023. "The Spontaneous Escape Behavior of Silver from Graphite-like Carbon Coatings and Its Effect on Corrosion Resistance" Materials 16, no. 11: 3909. https://doi.org/10.3390/ma16113909
APA StyleLi, D., Wang, W., Liu, C., Angurel, L. A., de la Fuente, G. F., & Jiang, B. (2023). The Spontaneous Escape Behavior of Silver from Graphite-like Carbon Coatings and Its Effect on Corrosion Resistance. Materials, 16(11), 3909. https://doi.org/10.3390/ma16113909