StressLife: A Short-Time Approach for the Determination of a Trend S-N Curve in and beyond the HCF Regime for the Steels 20MnMoNi5-5 and SAE 1045
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.3. Fatigue Life Calculation Method StressLifeHCF
2.4. Fatigue Life Calculation Method StressLifeLHC
2.5. Fatigue Life Calculation Method StressLifeHVC
3. Results and Discussion
3.1. Load Increase Test
3.2. StressLifeHCF
3.3. StressLifeLHC
3.4. StressLifeHVC
4. Conclusions
4.1. StressLifeHCF
- The method enables the generation of an S-N curve with a small specimen effort of a maximum of four specimens.
- By the combination of conventional fatigue testing methods and non-destructive measurement techniques, the information regarding ongoing fatigue processes is highly increased.
- The equation consists of the approaches according to Manson–Coffin and Basquin.
- Through the extension to two load increase tests, the accuracy of the evaluation can be significantly increased.
- By weighting the elastic and plastic portions of the load increase test, the determination of the slope can be optimized.
- The generated S-N curve describes the constant amplitude test data points with a high accuracy.
4.2. StressLifeLHC and StressLifeHVC
- Both methods are modifications of the method, based on the same approaches and calculations.
- These modifications were developed in order to enable a description of an S-N curve beyond the high cycle fatigue regime.
- The relation of the material response and the number of cycles was used to calculate the anchor points PoT (Point of Transition) and P90 (90 % plastic part of the material response).
- The S-N curve was divided into three different ranges. At lower numbers of cycles, only the plastic part of the material response was considered in the calculation, whereas in the case of higher numbers of cycles only the elastic part was used.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Peralta, P. Fatigue of Metals. In Physical Metallurgy, 5th ed.; Laughlin, D.E., Hono, K., Eds.; Elsevier: Amsterdam, The Netherlands, 2014; pp. 1765–1880. [Google Scholar]
- Polák, J. Fatigue of Steels. In Reference Module in Materials Science and Materials Engineering; Hashmi, S., Mridha, S., Eds.; Elsevier: Amsterdam, The Netherlands, 2016. [Google Scholar]
- Manson, S.S. Interfaces Between Fatigue, Creep, and Fracture; National Advisory Committee for Aeronautics: Washington, DC, USA, 1966. [Google Scholar]
- Manson, S.S. Behavior of Materials Under Condition of Thermal Stress; National Aeronautics and Space Administration: Washington, DC, USA, 1953. [Google Scholar]
- Coffin, L.F., Jr. A Study of the Effects of Cyclic Thermal Stresses on a Ductile Metal; Knolls Atomic Power Laboratory: Ballston Spa, NY, USA, 1953. [Google Scholar]
- Basquin, O.H. The Exponential Law of Endurance Tests. In American Society for Testing and Materials Proceedings, Vol. 10; ASTM International: West Conshohocken, PA, USA, 1910; pp. 625–630. [Google Scholar]
- Niesłony, A.; el Dsoki, C.; Kaufmann, H.; Krug, P. New method for evaluation of the Manson-Coffin-Basquin and Ramberg-Osgood equations with respect to compatibility. Int. J. Fatigue 2008, 30, 1967–1977. [Google Scholar] [CrossRef]
- Manson, S.S. Fatigue: A complex subject—Some simple approximations. Exp. Mech. 1965, 5, 193–226. [Google Scholar] [CrossRef]
- Park, J.H.; Song, J.H. Detailed evaluation of methods for estimation of fatigue properties. Int. J. Fatigue 1995, 17, 365–373. [Google Scholar] [CrossRef]
- BÄumel, A.J.; Seeger, T. Materials Data for Cyclic Loading: Supplement 1; Elsevier: Amsterdam, The Netherlands, 1990. [Google Scholar]
- Iida, K. Very Low Cycle Fatigue Life Influenced by Tensile or Compressive Prestrain. In Low Cycle Fatigue: A Symposium; ASTM International: West Conshohocken, PA, USA, 1988; pp. 160–172. [Google Scholar]
- Mitchell, M.R. Fundamentals of modern fatigue analysis—Report 26. Univ. Ill. 1978, 17. [Google Scholar]
- Muralidharan, U.; Manson, S.S. A Modified Universal Slopes Equation for Estimation of Fatigue Characteristics of Metals. J. Eng. Mater. Technol. 1988, 17, 55–58. [Google Scholar] [CrossRef]
- Roessle, M.L.; Fatemi, A. Strain-controlled fatigue properties of steels and some simple approximations. Int. J. Fatigue 2000, 22, 495–511. [Google Scholar] [CrossRef]
- Santecchia, E.; Hamouda, A.M.; Musharavati, F.; Zalnezhad, E.; Cabibbo, M.; El Mehtedi, M.; Spigarelli, S. A Review on Fatigue Life Prediction Methods for Metals. Adv. Mater. Sci. Eng. 2016, 2016, 9573524. [Google Scholar] [CrossRef]
- Golos, K.; Ellyin, F. A Total Strain Energy Density Theory for Cumulative Fatigue Damage. J. Press. Vessel. Technol. 1988, 110, 36–41. [Google Scholar] [CrossRef]
- Ellyin, F.; Kujawski, D. An Energy-Based Fatigue Failure Criterion. Microstruct. Mech. Behav. Mater. 1986, 2, 541–600. [Google Scholar]
- Ellyin, F. Fatigue Life Prediction Under Multiaxial Stress Conditions. Dev. Eng. Mech. 1987, Commemorative Centennial Volume, 133–158. [Google Scholar]
- Starke, P. StressLifetc—NDT-related assessment of the fatigue life of metallic materials. Mater. Test. 2019, 61, 297–303. [Google Scholar] [CrossRef]
- Weber, F.; Wu, H.; Starke, P. A new short-time procedure for fatigue life evaluation based on the linear damage accumulation by Palmgren-Miner. Int. J. Fatigue 2023, 1172, 107653. [Google Scholar] [CrossRef]
- Acosta, R.; Wu, H.; Sridaran, V.R.; Weber, F.; Tenkamp, J.; Walther, F.; Starke, P. SteBLife, a New Approach for the Accelerated Generation of Metallic Materials’ Fatigue Data. Metals 2020, 10, 798. [Google Scholar] [CrossRef]
- Bill, T.; Acosta, R.; Boller, C.; Donnerbauer, K.; Lücker, L.; Walther, F.; Heckmann, K.; Sievers, J.; Schopf, T.; Weihe, S.; et al. A Short-Time Approach for Fatigue Life Evaluation of AISI 347 Steel for Nuclear Power Energy Applications. Appl. Sci. 2021, 11, 11405. [Google Scholar] [CrossRef]
- Acosta, R.; Boller, C.; Doktor, M.; Wu, H.; Jost, H.; Weber, F.; Starke, P. Evaluation of S-N curves including failure probabilities using short-time procedures. Mater. Test. 2021, 63, 705–713. [Google Scholar] [CrossRef]
- Starke, P.; Bäumchen, A.; Wu, H. SteBLife—A new short-time pro-cedure for the calculation of S-N curves and failure probabilities. Mater. Test. 2018, 60, 121–127. [Google Scholar] [CrossRef]
- Ko, T.; Cottrell, S.A. The Formation of Bainite. J. Iron Steelinstitute 1972, 172, 307–313. [Google Scholar]
- Gallagher, M.F.; Speer, J.G.; Matlock, D.K.; Fonstein, N.M. Microstructure development in TRIP-sheet steels containing Si, Al, and P. Iron Steel Soc. 2002, 153–172. [Google Scholar]
- Meneghetti, G. Analysis of the fatigue strength of a stainless steel based on the energy dissipation. Int. J. Fatigue 2007, 29, 81–94. [Google Scholar] [CrossRef]
- Piotrowski, A.; Eifler, D. Characterization of cyclic deformation behavior by mechanical, thermometrical and electrical methods (in german). Mater. Sci. Eng. Technol. 1995, 26, 121–127. [Google Scholar]
- Luong, M.P. Infrared thermographic scanning of fatigue in metals. Nucl. Eng. Des. 1995, 158, 363–376. [Google Scholar] [CrossRef]
- Luong, M.P. Fatigue limit evaluation of metals using an infrared thermographic technique. Mech. Mater. 1998, 28, 155–163. [Google Scholar] [CrossRef]
- Morrow, J.D. Cyclic Plastic Strain Energy and Fatigue of Metals. In Internal Friction, Damping, and Cyclic Plasticity, American Society for Testing and Materials; ASTM International: West Conshohocken, PA, USA, 1965. [Google Scholar] [CrossRef]
- Lee, S.; Pegues, J.W.; Shamsaei, N. Fatigue behavior and modeling for additive manufactured 304L stainless steel: The effect of surface roughness. Int. J. Fatigue 2020, 141, 105856. [Google Scholar] [CrossRef]
- Fonseca, T.M., Jr.; Magnabosco, R. Evaluation of methods for estimating fatigue properties applied to stainless steels and aluminum alloys. Tecnol. Em Metal. Mater. E Mineração 2012, 9, 284–293. [Google Scholar] [CrossRef]
- Wagener, R.; Melz, T. Fatigue life curve—A continuous Wöhler curve from LCF to VHCF: Dedicated to Professor Dr.-Ing. Harald Zenner on the occasion of his eightieth birthday. Mater. Test. 2018, 60, 924–930. [Google Scholar] [CrossRef]
- Aeran, A.; Acosta, R.; Siriwardane, S.C.; Starke, P.; Mikkelsen, O.; Langen, I.; Walther, F. A nonlinear fatigue damage model: Comparison with experimental damage evolution of S355 (SAE 1020) structural steel and application to offshore jacket structures. Int. J. Fatigue 2020, 135, 1–9. [Google Scholar] [CrossRef]
Material | C | Si | Mn | Cr | Ni | Mo | S | |
---|---|---|---|---|---|---|---|---|
1.6310 | Certificate: | 0.218 | 0.246 | 1.385 | 0.076 | 0.762 | 0.487 | 0.003 |
ASTM: | 0.190 | 0.200 | 1.290 | 0.120 | 0.800 | 0.530 | 0.008 | |
1.1191 | Certificate: | 0.470 | 0.230 | 0.720 | 0.670 | 0.070 | 0.014 | 0.013 |
DIN: | 0.500 | 0.400 | 0.800 | 0.400 | 0.400 | 0.100 | 0.035 |
Material | [-] | b [-] | c [-] | B [K] | C [K] | n′ [-] | K′ [] |
---|---|---|---|---|---|---|---|
20MnMoNi5-5 | 0.024 | −0.021 | −0.893 | 0.814 | 42,414.79 | 0.094 | 366.54 |
SAE 1045 | 0.15 | −0.086 | −0.571 | 4.642 | 1558.43 | 0.197 | 255.21 |
Material | [-] | b [-] | c [-] | B [K] | C [K] | n′ [-] | K′ [] |
---|---|---|---|---|---|---|---|
20MnMoNi5-5 | 0.012 | - | −0.944 | - | 67047 | 0.034 | 394.40 |
Material | [-] | b [-] | c [-] | B [K] | C [K] | n′ [-] | K′ [] |
---|---|---|---|---|---|---|---|
SAE 1045 | 0.703 | −0.1557 | - | 20.13 | - | 0.256 | 246.78 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Weber, F.; Koziol, J.; Starke, P. StressLife: A Short-Time Approach for the Determination of a Trend S-N Curve in and beyond the HCF Regime for the Steels 20MnMoNi5-5 and SAE 1045. Materials 2023, 16, 3914. https://doi.org/10.3390/ma16113914
Weber F, Koziol J, Starke P. StressLife: A Short-Time Approach for the Determination of a Trend S-N Curve in and beyond the HCF Regime for the Steels 20MnMoNi5-5 and SAE 1045. Materials. 2023; 16(11):3914. https://doi.org/10.3390/ma16113914
Chicago/Turabian StyleWeber, Fabian, Janina Koziol, and Peter Starke. 2023. "StressLife: A Short-Time Approach for the Determination of a Trend S-N Curve in and beyond the HCF Regime for the Steels 20MnMoNi5-5 and SAE 1045" Materials 16, no. 11: 3914. https://doi.org/10.3390/ma16113914
APA StyleWeber, F., Koziol, J., & Starke, P. (2023). StressLife: A Short-Time Approach for the Determination of a Trend S-N Curve in and beyond the HCF Regime for the Steels 20MnMoNi5-5 and SAE 1045. Materials, 16(11), 3914. https://doi.org/10.3390/ma16113914