Functional Materials for Fabrication of Carbon-Based Perovskite Solar Cells: Ink Formulation and Its Effect on Solar Cell Performance
Abstract
:1. Introduction
2. Printing Techniques
2.1. Spin Coating
2.1.1. Blocking Layer
2.1.2. Electron Transport Layer
2.1.3. Perovskite/Carbon Interface
2.2. Screen Printing
2.2.1. Blocking Layer
2.2.2. Electron Transport Layer
2.2.3. Insulating ZrO2 Layer
2.2.4. p-Type Mesoporous Metal Oxide: Hole Transporting/Extracting Materials
2.2.5. Carbon Layer
2.3. Inkjet Printing
2.4. Slot-Die Coating
2.5. Blade Coating
2.6. Spray Coating
3. Scale-Up
3.1. Screen-Printed Modules
3.2. Other Printing Techniques
4. Summary and Future Scope
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. J. Am. Chem. Soc. 2009, 131, 6050–6051. [Google Scholar] [CrossRef]
- Lin, Q.; Armin, A.; Burn, P.L.; Meredith, P. Organohalide Perovskites for Solar Energy Conversion. Acc. Chem. Res. 2016, 49, 545–553. [Google Scholar]
- Stefanelli, M.; Vesce, L.; Di Carlo, A. Upscaling of Carbon-Based Perovskite Solar Module. Nanomaterials 2023, 13, 313. [Google Scholar]
- Keremane, K.S.; Prathapani, S.; Haur, L.J.; Bruno, A.; Priyadarshi, A.; Adhikari, A.V.; Mhaisalkar, S.G. Improving the Performance of Carbon-Based Perovskite Solar Modules (70 cm2) by Incorporating Cesium Halide in Mesoporous TiO2. ACS Appl. Energy Mater. 2021, 4, 249–258. [Google Scholar] [CrossRef]
- Best Research-Cell Efficiency Chart|Photovoltaic Research|NREL. Available online: https://www.nrel.gov/pv/cell-efficiency.html (accessed on 26 March 2023).
- R&D for Energy Transition-Fraunhofer Institute for Solar Energy Systems ISE-Fraunhofer ISE. Available online: https://www.ise.fraunhofer.de/en.html (accessed on 21 February 2023).
- Wang, R.; Mujahid, M.; Duan, Y.; Wang, Z.; Xue, J.; Yang, Y. A Review of Perovskites Solar Cell Stability. Adv. Funct. Mater. 2019, 29, 1808843. [Google Scholar] [CrossRef]
- Lee, J.-W.; Meng, L.; Yang, Y. Semiconducting Metal Oxides for High Performance Perovskite Solar Cells. In The Future of Semiconductor Oxides in Next-Generation Solar Cells; Elsevier: Amsterdam, The Netherlands, 2018; pp. 241–265. [Google Scholar]
- Grancini, G.; Roldán-Carmona, C.; Zimmermann, I.; Mosconi, E.; Lee, X.; Martineau, D.; Narbey, S.; Oswald, F.; De Angelis, F.; Graetzel, M.; et al. One-Year Stable Perovskite Solar Cells by 2D/3D Interface Engineering. Nat. Commun. 2017, 8, 15684. [Google Scholar] [CrossRef]
- Hu, Y.; Si, S.; Mei, A.; Rong, Y.; Liu, H.; Li, X.; Han, H. Stable Large-Area (10 × 10 cm2) Printable Mesoscopic Perovskite Module Exceeding 10% Efficiency. Solar RRL 2017, 1, 1600019. [Google Scholar] [CrossRef]
- Chen, H.; Yang, S. Methods and Strategies for Achieving High-Performance Carbon-Based Perovskite Solar Cells without Hole Transport Materials. J. Mater. Chem. A Mater. 2019, 7, 15476–15490. [Google Scholar] [CrossRef]
- Hu, H.; Birkhold, S.; Sultan, M.; Fakharuddin, A.; Koch, S.; Schmidt-Mende, L. Surface Band Bending Influences the Open-Circuit Voltage of Perovskite Solar Cells. ACS Appl. Energy Mater. 2019, 2, 4045–4052. [Google Scholar] [CrossRef]
- Caprioglio, P.; Stolterfoht, M.; Wolff, C.M.; Unold, T.; Rech, B.; Albrecht, S.; Neher, D. On the Relation between the Open-Circuit Voltage and Quasi-Fermi Level Splitting in Efficient Perovskite Solar Cells. Adv. Energy Mater. 2019, 9, 1901631. [Google Scholar] [CrossRef]
- Greatcell Solar Materials. Available online: https://www.greatcellsolarmaterials.com/ (accessed on 13 February 2023).
- Solaronix—Innovative Solutions for Solar Professionals. Available online: https://www.solaronix.com/ (accessed on 13 February 2023).
- Wonder Solar Powering the World. Available online: http://www.wondersolar.cn/ (accessed on 13 February 2023).
- Zhang, L.; Liu, T.; Liu, L.; Hu, M.; Yang, Y.; Mei, A.; Han, H. The Effect of Carbon Counter Electrodes on Fully Printable Mesoscopic Perovskite Solar Cells. J. Mater. Chem. A Mater. 2015, 3, 9165–9170. [Google Scholar] [CrossRef]
- Que, M.; Zhang, B.; Chen, J.; Yin, X.; Yun, S. Carbon-Based Electrodes for Perovskite Solar Cells. Mater. Adv. 2021, 2, 5560–5579. [Google Scholar] [CrossRef]
- Wei, Z.; Chen, H.; Yan, K.; Zheng, X.; Yang, S. Hysteresis-Free Multi-Walled Carbon Nanotube-Based Perovskite Solar Cells with a High Fill Factor. J. Mater. Chem. A Mater. 2015, 3, 24226–24231. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, H.; Mei, Y.; Liu, H.; Wang, S.; Li, X. Carbon Nanotube Bridging Method for Hole Transport Layer-Free Paintable Carbon-Based Perovskite Solar Cells. ACS Appl. Mater. Interfaces 2019, 11, 916–923. [Google Scholar] [CrossRef]
- Zhou, J.; Wu, J.; Li, N.; Li, X.; Zheng, Y.-Z.; Tao, X. Efficient All-Air Processed Mixed Cation Carbon-Based Perovskite Solar Cells with Ultra-High Stability. J. Mater. Chem. A Mater. 2019, 7, 17594–17603. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, S.; Zhang, H.; Feng, Y.; Tian, W.; Yan, Y.; Bian, J.; Wang, Y.; Jin, S.; Zakeeruddin, S.M.; et al. Efficient Stable Graphene-Based Perovskite Solar Cells with High Flexibility in Device Assembling via Modular Architecture Design. Energy Environ. Sci. 2019, 12, 3585–3594. [Google Scholar] [CrossRef]
- Liu, J.; Lei, M.; Wang, G. Communication—Enhancing Hole Extraction in Carbon-Based CsPbBr3 Inorganic Perovskite Solar Cells without Hole-Transport Layer. ECS J. Solid State Sci. Technol. 2020, 9, 041004. [Google Scholar] [CrossRef]
- Bhandari, S.; Roy, A.; Ali, M.S.; Mallick, T.K.; Sundaram, S. Cotton Soot Derived Carbon Nanoparticles for NiO Supported Processing Temperature Tuned Ambient Perovskite Solar Cells. Sci. Rep. 2021, 11, 23388. [Google Scholar] [CrossRef]
- Pitchaiya, S.; Eswaramoorthy, N.; Natarajan, M.; Santhanam, A.; Asokan, V.; Madurai Ramakrishnan, V.; Rangasamy, B.; Sundaram, S.; Ravirajan, P.; Velauthapillai, D. Perovskite Solar Cells: A Porous Graphitic Carbon Based Hole Transporter/Counter Electrode Material Extracted from an Invasive Plant Species Eichhornia Crassipes. Sci. Rep. 2020, 10, 6835. [Google Scholar] [CrossRef]
- Geng, C.; Xie, Y.; Wei, P.; Liu, H.; Qiang, Y.; Zhang, Y. An Efficient Co-NC Composite Additive for Enhancing Interface Performance of Carbon-Based Perovskite Solar Cells. Electrochim. Acta 2020, 358, 136883. [Google Scholar] [CrossRef]
- Guo, M.; Wei, C.; Liu, C.; Zhang, K.; Su, H.; Xie, K.; Zhai, P.; Zhang, J.; Liu, L. Composite Electrode Based on Single-Atom Ni Doped Graphene for Planar Carbon-Based Perovskite Solar Cells. Mater. Des. 2021, 209, 109972. [Google Scholar] [CrossRef]
- Xie, Y.; Cheng, J.; Liu, H.; Liu, J.; Maitituersun, B.; Ma, J.; Qiang, Y.; Shi, H.; Geng, C.; Li, Y.; et al. Co-Ni Alloy@carbon Aerogels for Improving the Efficiency and Air Stability of Perovskite Solar Cells and Its Hysteresis Mechanism. Carbon 2019, 154, 322–329. [Google Scholar] [CrossRef]
- Chen, L.; Duan, Q.; Dong, W.; Zhu, A.; Zhang, A.; Zhang, X.; Zhong, J.; Huang, F.; Cheng, Y.; Xiao, J. Sprayed and Mechanical-Modified Graphite Layer as Transferred Electrode for High-Efficiency Perovskite Solar Cells. Carbon 2023, 202, 161–166. [Google Scholar] [CrossRef]
- Chu, L.; Liu, W.; Qin, Z.; Zhang, R.; Hu, R.; Yang, J.; Yang, J.; Li, X. Boosting Efficiency of Hole Conductor-Free Perovskite Solar Cells by Incorporating p-Type NiO Nanoparticles into Carbon Electrodes. Sol. Energy Mater. Sol. Cells 2018, 178, 164–169. [Google Scholar] [CrossRef]
- Taylor, J.F. Spin Coating: An Overview. Met. Finish. 2001, 99, 16–21. [Google Scholar] [CrossRef]
- Sahu, N.; Parija, B.; Panigrahi, S. Fundamental Understanding and Modeling of Spin Coating Process: A Review. Indian J. Phys. 2009, 83, 493–502. [Google Scholar] [CrossRef]
- Scriven, L.E. Physics and Applications of DIP Coating and Spin Coating. MRS Proc. 1988, 121, 717. [Google Scholar] [CrossRef]
- Yang, Y.-B.; Chen, P.; Li, H.-S.; Zhao, Q.; Li, T.-T.; Wu, Y.; Zhang, Y.; Gao, X.-P.; Li, G.-R. Reversible Degradation in Hole Transport Layer-Free Carbon-Based Perovskite Solar Cells. Solar RRL 2022, 6, 2200281. [Google Scholar] [CrossRef]
- Dileep, R.; Kesavan, G.; Reddy, V.; Rajbhar, M.K.; Shanmugasundaram, S.; Ramasamy, E.; Veerappan, G. Room-Temperature Curable Carbon Cathode for Hole-Conductor Free Perovskite Solar Cells. Solar Energy 2019, 187, 261–268. [Google Scholar] [CrossRef]
- Li, J.; Rossignol, F.; Macdonald, J. Inkjet Printing for Biosensor Fabrication: Combining Chemistry and Technology for Advanced Manufacturing. Lab Chip 2015, 15, 2538–2558. [Google Scholar] [CrossRef]
- Singh, M.; Haverinen, H.M.; Dhagat, P.; Jabbour, G.E. Inkjet Printing-Process and Its Applications. Adv. Mater. 2010, 22, 673–685. [Google Scholar] [CrossRef]
- Yang, Y.; Hoang, M.T.; Yao, D.; Pham, N.D.; Tiong, V.T.; Wang, X.; Sun, W.; Wang, H. High Performance Carbon-Based Planar Perovskite Solar Cells by Hot-Pressing Approach. Sol. Energy Mater. Sol. Cells 2020, 210, 110517. [Google Scholar] [CrossRef]
- Jin, J.; Yang, M.; Deng, W.; Xin, J.; Tai, Q.; Qian, J.; Dong, B.; Li, W.; Wang, J.; Li, J. Highly Efficient and Stable Carbon-Based Perovskite Solar Cells with the Polymer Hole Transport Layer. Solar Energy 2021, 220, 491–497. [Google Scholar] [CrossRef]
- Yin, R.; Wang, K.; Huo, X.; Sun, Y.; Sun, W.; Gao, Y.; You, T.; Yin, P. A One-Step Ionic Liquid Interface-to-Bulk Modification for Stable Carbon-Based CsPbI3 Perovskite Solar Cells with Efficiency Over 15%. Adv. Mater. Interfaces 2022, 9, 2201488. [Google Scholar] [CrossRef]
- Zamanpour, F.; Behrouznejad, F.; Ghavaminia, E.; Khosroshahi, R.; Zhan, Y.; Taghavinia, N. Fast Light-Cured TiO2 Layers for Low-Cost Carbon-Based Perovskite Solar Cells. ACS Appl. Energy Mater. 2021, 4, 7800–7810. [Google Scholar] [CrossRef]
- Yin, R.; Wang, K.-X.; Cui, S.; Fan, B.-B.; Liu, J.-W.; Gao, Y.-K.; You, T.-T.; Yin, P.-G. Dual-Interface Modification with BMIMPF6 for High-Efficiency and Stable Carbon-Based CsPbI2Br Perovskite Solar Cells. ACS Appl. Energy Mater. 2021, 4, 9294–9303. [Google Scholar] [CrossRef]
- Zhang, H.; Xiao, Y.; Qi, F.; Liu, P.; Wang, Y.; Li, F.; Wang, C.; Fang, G.; Zhao, X. Near-Infrared Light-Sensitive Hole-Transport-Layer Free Perovskite Solar Cells and Photodetectors with Hexagonal NaYF4:Yb3+, Tm3+ @SiO2 Upconversion Nanoprism-Modified TiO2 Scaffold. ACS Sustain. Chem. Eng. 2019, 7, 8236–8244. [Google Scholar] [CrossRef]
- Fan, W.; Wei, Z.; Zhang, Z.; Qiu, F.; Hu, C.; Li, Z.; Xu, M.; Qi, J. High-Performance Carbon-Based Perovskite Solar Cells through the Dual Role of PC61BM. Inorg. Chem. Front. 2019, 6, 2767–2775. [Google Scholar] [CrossRef]
- Zhu, J.; Tang, M.; He, B.; Shen, K.; Zhang, W.; Sun, X.; Sun, M.; Chen, H.; Duan, Y.; Tang, Q. Ultraviolet Filtration and Defect Passivation for Efficient and Photostable CsPbBr3 Perovskite Solar Cells by Interface Engineering with Ultraviolet Absorber. Chem. Eng. J. 2021, 404, 126548. [Google Scholar] [CrossRef]
- Wang, C.; Long, Y.; Liu, X.; Fu, S.; Wang, J.; Zhang, J.; Hu, Z.; Zhu, Y. A Dual Promotion Strategy of Interface Modification and Ion Doping for Efficient and Stable Carbon-Based Planar CsPbBr3 Perovskite Solar Cells. J. Mater. Chem. C Mater. 2020, 8, 17211–17221. [Google Scholar] [CrossRef]
- Zhu, W.; Zhang, Z.; Chai, W.; Zhang, Q.; Chen, D.; Lin, Z.; Chang, J.; Zhang, J.; Zhang, C.; Hao, Y. Band Alignment Engineering Towards High Efficiency Carbon-Based Inorganic Planar CsPbIBr2 Perovskite Solar Cells. ChemSusChem 2019, 12, 2318–2325. [Google Scholar] [CrossRef]
- Zhu, W.; Zhang, Z.; Chen, D.; Chai, W.; Chen, D.; Zhang, J.; Zhang, C.; Hao, Y. Interfacial Voids Trigger Carbon-Based, All-Inorganic CsPbIBr2 Perovskite Solar Cells with Photovoltage Exceeding 1.33 V. Nanomicro Lett. 2020, 12, 87. [Google Scholar] [CrossRef]
- Zhu, W.; Chai, W.; Deng, M.; Chen, D.; Chen, D.; Zhang, J.; Zhang, C.; Hao, Y. Flux-Mediated Growth Strategy Enables Low-Temperature Fabrication of High-Efficiency All-Inorganic CsPbIBr2 Perovskite Solar Cells. Electrochim. Acta 2020, 330, 135325. [Google Scholar] [CrossRef]
- Chalkias, D.A.; Karavioti, A.; Papanicolaou, G.C.; Stathatos, E. Stability Assessment of Carbon-Based Hole-Transport-Layer-Free Perovskite Solar Cells under Accelerated Ageing: A Combined Experimental and Predictive Modelling Analysis. Electrochim. Acta 2022, 427, 140905. [Google Scholar] [CrossRef]
- Zhang, Z.; Qiu, F.; Shen, T.; Xu, L.; Ma, J.; Qi, J. Co/Eu Co-doped Electron Transport Layer Enhances Charge Extraction and Light Absorption for Efficient Carbon-based HTM-free Perovskite Solar Cells. Int. J. Energy Res. 2021, 45, 5224–5234. [Google Scholar] [CrossRef]
- Liu, D.; Li, S.; Zhang, P.; Wang, Y.; Zhang, R.; Sarvari, H.; Wang, F.; Wu, J.; Wang, Z.; Chen, Z.D. Efficient Planar Heterojunction Perovskite Solar Cells with Li-Doped Compact TiO2 Layer. Nano Energy 2017, 31, 462–468. [Google Scholar] [CrossRef]
- Liu, X.; Li, J.; Liu, Z.; Tan, X.; Sun, B.; Xi, S.; Shi, T.; Tang, Z.; Liao, G. Vapor-Assisted Deposition of CsPbIBr2 Films for Highly Efficient and Stable Carbon-Based Planar Perovskite Solar Cells with Superior Voc. Electrochim. Acta 2020, 330, 135266. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, Z.; Ng, W.K.; Zhang, L.; Zhang, H.; Meng, X.; Bai, Y.; Xiao, S.; Zhang, T.; Hu, C.; et al. An Ultrathin Ferroelectric Perovskite Oxide Layer for High-Performance Hole Transport Material Free Carbon Based Halide Perovskite Solar Cells. Adv. Funct. Mater. 2019, 29, 1806506. [Google Scholar] [CrossRef]
- Mashreghi, A.; Maleki, K.; Moradzadeh, M. Two-Phase Synthesized Cu2ZnSnS4 Nanoparticles as Inorganic Hole-Transporting Material of Paintable Carbon-Based Perovskite Solar Cells. Solar Energy 2020, 201, 547–554. [Google Scholar] [CrossRef]
- Fu, X.; Zhou, K.; Zhou, X.; Ji, H.; Min, Y.; Qian, Y. Surface Passivation for Enhancing Photovoltaic Performance of Carbon-Based CsPbI3 Perovskite Solar Cells. J. Solid State Chem. 2022, 308, 122891. [Google Scholar] [CrossRef]
- Wang, G.; Liu, J.; Lei, M.; Zhang, W.; Zhu, G. Optimizing the Substrate Pre-Heating and Post-Annealing Temperatures for Fabricating High-Performance Carbon-Based CsPbIBr2 Inorganic Perovskite Solar Cells. Electrochim. Acta 2020, 349, 136354. [Google Scholar] [CrossRef]
- Arora, N.; Dar, M.I.; Akin, S.; Uchida, R.; Baumeler, T.; Liu, Y.; Zakeeruddin, S.M.; Grätzel, M. Low-Cost and Highly Efficient Carbon-Based Perovskite Solar Cells Exhibiting Excellent Long-Term Operational and UV Stability. Small 2019, 15, 1904746. [Google Scholar] [CrossRef]
- Acchutharaman, K.R.; Santhosh, N.; Isaac Daniel, R.; Senthil Pandian, M.; Ramasamy, P. Enhanced Electron Harvesting in next Generation Solar Cells by Employing TiO2 Nanoparticles Prepared through Hydrolysis Catalytic Process. Ceram. Int. 2021, 47, 21263–21270. [Google Scholar] [CrossRef]
- Lin, L.; Jones, T.W.; Yang, T.C.; Duffy, N.W.; Li, J.; Zhao, L.; Chi, B.; Wang, X.; Wilson, G.J. Inorganic Electron Transport Materials in Perovskite Solar Cells. Adv. Funct. Mater. 2021, 31, 2008300. [Google Scholar] [CrossRef]
- Bai, Y.; Mora-Seró, I.; De Angelis, F.; Bisquert, J.; Wang, P. Titanium Dioxide Nanomaterials for Photovoltaic Applications. Chem. Rev. 2014, 114, 10095–10130. [Google Scholar] [CrossRef]
- Xiao, Y.; Wang, C.; Kondamareddy, K.K.; Liu, P.; Qi, F.; Zhang, H.; Guo, S.; Zhao, X.-Z. Enhancing the Performance of Hole-Conductor Free Carbon-Based Perovskite Solar Cells through Rutile-Phase Passivation of Anatase TiO2 Scaffold. J. Power Sources 2019, 422, 138–144. [Google Scholar] [CrossRef]
- Bhandari, S.; Roy, A.; Mallick, T.K.; Sundaram, S. Morphology Modulated Brookite TiO2 and BaSnO3 as Alternative Electron Transport Materials for Enhanced Performance of Carbon Perovskite Solar Cells. Chem. Eng. J. 2022, 446, 137378. [Google Scholar] [CrossRef]
- Balis, N.; Zaky, A.A.; Perganti, D.; Kaltzoglou, A.; Sygellou, L.; Katsaros, F.; Stergiopoulos, T.; Kontos, A.G.; Falaras, P. Dye Sensitization of Titania Compact Layer for Efficient and Stable Perovskite Solar Cells. ACS Appl. Energy Mater. 2018, 1, 6161–6171. [Google Scholar] [CrossRef]
- Deng, F.; Li, X.; Lv, X.; Zhou, J.; Chen, Y.; Sun, X.; Zheng, Y.-Z.; Tao, X.; Chen, J.-F. Low-Temperature Processing All-Inorganic Carbon-Based Perovskite Solar Cells up to 11.78% Efficiency via Alkali Hydroxides Interfacial Engineering. ACS Appl. Energy Mater. 2020, 3, 401–410. [Google Scholar] [CrossRef]
- Han, S.; Zhang, H.; Li, Y.; Wang, R.; He, Q. Solution-Processed Amino Acid Modified SnO2 Electron Transport Layer for Carbon-Based CsPbIBr2 Perovskite Solar Cells. Mater. Sci. Semicond. Process. 2021, 133, 105964. [Google Scholar] [CrossRef]
- He, Q.; Zhang, H.; Han, S.; Xing, Y.; Li, Y.; Zhang, X.; Wang, R. Improvement of Nanopore Structure SnO2 Electron-Transport Layer for Carbon-Based CsPbIBr2 Perovskite Solar Cells. Mater. Sci. Semicond. Process. 2022, 148, 106787. [Google Scholar] [CrossRef]
- Qi, X.; Wang, J.; Tan, F.; Dong, C.; Liu, K.; Li, X.; Zhang, L.; Wu, H.; Wang, H.-L.; Qu, S.; et al. Quantum Dot Interface-Mediated CsPbIBr2 Film Growth and Passivation for Efficient Carbon-Based Solar Cells. ACS Appl. Mater. Interfaces 2021, 13, 55349–55357. [Google Scholar] [CrossRef]
- He, Q.; Zhang, H.; Han, S.; Wang, R.; Li, Y.; Zhang, X.; Xing, Y. Improvement of Thiourea (Lewis Base)-Modified SnO2 Electron-Transport Layer for Carbon-Based CsPbIBr2 Perovskite Solar Cells. ACS Appl. Energy Mater. 2021, 4, 10958–10967. [Google Scholar] [CrossRef]
- Xing, Y.; Zhang, H.; Yan, Z.; Guo, Y.; Qin, W.; Feng, Y.; Liu, S.; He, Q.; Han, S.; Zhu, H. LiF-Modified SnO2 Electron Transport Layer Improves the Performance of Carbon-Based All-Inorganic CsPbIBr2 Perovskite Solar Cells. Energy Fuels 2022, 36, 13179–13186. [Google Scholar] [CrossRef]
- Guo, Z.; Teo, S.; Xu, Z.; Zhang, C.; Kamata, Y.; Hayase, S.; Ma, T. Achievable High Voc of Carbon Based All-Inorganic CsPbIBr2 Perovskite Solar Cells through Interface Engineering. J. Mater. Chem. A Mater. 2019, 7, 1227–1232. [Google Scholar] [CrossRef]
- Qiang, Y.; Xie, Y.; Qi, Y.; Wei, P.; Shi, H.; Geng, C.; Liu, H. Enhanced Performance of Carbon-Based Perovskite Solar Cells with a Li+-Doped SnO2 Electron Transport Layer and Al2O3 Scaffold Layer. Solar Energy 2020, 201, 523–529. [Google Scholar] [CrossRef]
- Xie, L.; Zhang, L.; Hua, Y.; Ding, L. Inorganic Electron-Transport Materials in Perovskite Solar Cells. J. Semicond. 2022, 43, 040201. [Google Scholar] [CrossRef]
- Zhao, F.; Guo, Y.; Wang, X.; Tao, J.; Li, Z.; Zheng, D.; Jiang, J.; Hu, Z.; Chu, J. Efficient Carbon-Based Planar CsPbBr3 Perovskite Solar Cells with Li-Doped Amorphous Nb2O5 Layer. J. Alloys Compd. 2020, 842, 155984. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, J.; Jiang, L.; Gong, L.; Xie, H.; Gao, Y.; He, H.; Fang, Z.; Fan, J.; Chao, Z. All-Inorganic, Hole-Transporting-Layer-Free, Carbon-Based CsPbIBr2 Planar Solar Cells with ZnO as Electron-Transporting Materials. J. Alloys Compd. 2020, 817, 152768. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, C.; Fu, H.; Gong, L.; He, H.; Fang, Z.; Zhou, C.; Chen, J.; Chao, Z.; Fan, J. Low-Temperature Preparation Achieving 10.95%-Efficiency of Hole-Free and Carbon-Based All-Inorganic CsPbI3 Perovskite Solar Cells. J. Alloys Compd. 2021, 862, 158454. [Google Scholar] [CrossRef]
- Fu, H.; Zhang, J.; Li, Y.; Gong, L.; He, H.; Fang, Z.; Zhou, C.; Chen, J.; Fan, J. A Facile Interface Engineering Method to Improve the Performance of FTO/ZnO/CsPbI3−xBrx (x<1)/C Solar Cells. J. Mater. Sci. Mater. Electron. 2022, 33, 3711–3725. [Google Scholar] [CrossRef]
- Zheng, X.; Chen, H.; Li, Q.; Yang, Y.; Wei, Z.; Bai, Y.; Qiu, Y.; Zhou, D.; Wong, K.S.; Yang, S. Boron Doping of Multiwalled Carbon Nanotubes Significantly Enhances Hole Extraction in Carbon-Based Perovskite Solar Cells. Nano Lett. 2017, 17, 2496–2505. [Google Scholar] [CrossRef]
- Gao, L.; Hu, J.; Meng, F.; Zhou, Y.; Li, Y.; Wei, G.; Ma, T. Comparison of Interfacial Bridging Carbon Materials for Effective Carbon-Based Perovskite Solar Cells. J. Colloid Interface Sci. 2020, 579, 425–430. [Google Scholar] [CrossRef]
- Li, S.; Li, Y.; Liu, K.; Chen, M.; Peng, W.; Yang, Y.; Li, X. Laser Fabricated Carbon Quantum Dots in Anti-Solvent for Highly Efficient Carbon-Based Perovskite Solar Cells. J. Colloid Interface Sci. 2021, 600, 691–700. [Google Scholar] [CrossRef]
- Xu, T.; Wan, Z.; Tang, H.; Zhao, C.; Lv, S.; Chen, Y.; Chen, L.; Qiao, Q.; Huang, W. Carbon Quantum Dot Additive Engineering for Efficient and Stable Carbon-Based Perovskite Solar Cells. J. Alloys Compd. 2021, 859, 157784. [Google Scholar] [CrossRef]
- Novaković, D.; Kašiković, N.; Vladić, G.; Pál, M. Screen Printing, Printing on Polymers: Fundamentals and Applications. In Printing on Polymers; Elsevier: Amsterdam, The Netherlands, 2016; pp. 247–261. [Google Scholar]
- Licari, J.J.; Enlow, L.R. Thick Film Processes. In Hybrid Microcircuit Technology Handbook; Elsevier: Amsterdam, The Netherlands, 1998; pp. 104–171. [Google Scholar]
- Singh, S.; Wang, J.; Cinti, S. Review—An Overview on Recent Progress in Screen-Printed Electroanalytical (Bio)Sensors. ECS Sens. Plus 2022, 1, 023401. [Google Scholar] [CrossRef]
- Kapur, N.; Abbott, S.J.; Dolden, E.D.; Gaskell, P.H. Predicting the Behavior of Screen Printing. IEEE Trans. Compon. Packag. Manuf. Technol. 2013, 3, 508–515. [Google Scholar] [CrossRef]
- Ku, Z.; Rong, Y.; Xu, M.; Liu, T.; Han, H. Full Printable Processed Mesoscopic CH3NH3PbI3/TiO2 Heterojunction Solar Cells with Carbon Counter Electrode. Sci. Rep. 2013, 3, 3132. [Google Scholar] [CrossRef]
- Hvojnik, M.; Popovičová, A.M.; Pavličková, M.; Hatala, M.; Gemeiner, P.; Müllerová, J.; Tomanová, K.; Mikula, M. Solution-Processed TiO2 Blocking Layers in Printed Carbon-Based Perovskite Solar Cells. Appl. Surf. Sci. 2021, 536, 147888. [Google Scholar] [CrossRef]
- Wang, D.; Kang, J.; Zhang, Z.; Zhu, G.; Zhang, X.; Xiong, J.; Zhang, J. Efficient Printable Carbon-Based Mesoscopic Perovskite Solar Cells Based on Aluminum and Indium Doped TiO2 Compact Layer. Mater. Lett. 2022, 322, 132427. [Google Scholar] [CrossRef]
- Liu, Z.; Bi, S.; Hou, G.; Ying, C.; Su, X. Dual-Sized TiO2 Nanoparticles as Scaffold Layers in Carbon-Based Mesoscopic Perovskite Solar Cells with Enhanced Performance. J. Power Sources 2019, 430, 12–19. [Google Scholar] [CrossRef]
- Zhao, X.; Zhao, J.; He, J.; Li, B.; Zhang, Y.; Hu, J.; Wang, H.; Zhang, D.; Liu, Q. Porous Anatase TiO2 Nanocrystal Derived from the Metal–Organic Framework as Electron Transport Material for Carbon-Based Perovskite Solar Cells. ACS Appl. Energy Mater. 2020, 3, 6180–6187. [Google Scholar] [CrossRef]
- Li, B.; Zhao, J.; Lu, Q.; Zhou, S.; Wei, H.; Lv, T.; Zhang, Y.; Zhang, J.; Liu, Q. Carbon-Based Printable Perovskite Solar Cells with a Mesoporous TiO2 Electron Transporting Layer Derived from Metal–Organic Framework NH2-MIL-125. Energy Technol. 2021, 9, 2000957. [Google Scholar] [CrossRef]
- Liu, J.; Guan, Y.; Liu, S.; Li, S.; Gao, C.; Du, J.; Qiu, C.; Li, D.; Zhang, D.; Wang, X.; et al. Modulating Oxygen Vacancies in BaSnO3 for Printable Carbon-Based Mesoscopic Perovskite Solar Cells. ACS Appl. Energy Mater. 2021, 4, 11032–11040. [Google Scholar] [CrossRef]
- Liu, T.; Liu, L.; Hu, M.; Yang, Y.; Zhang, L.; Mei, A.; Han, H. Critical Parameters in TiO2/ZrO2/Carbon-Based Mesoscopic Perovskite Solar Cell. J. Power Sources 2015, 293, 533–538. [Google Scholar] [CrossRef]
- Meng, Z.; Guo, D.; Yu, J.; Fan, K. Investigation of Al2O3 and ZrO2 Spacer Layers for Fully Printable and Hole-Conductor-Free Mesoscopic Perovskite Solar Cells. Appl. Surf. Sci. 2018, 430, 632–638. [Google Scholar] [CrossRef]
- Rong, Y.; Han, H. Monolithic Quasi-Solid-State Dye-Sensitized Solar Cells Based on Graphene-Modified Mesoscopic Carbon-Counter Electrodes. J. Nanophotonics 2013, 7, 073090. [Google Scholar] [CrossRef]
- Xiong, Y.; Zhu, X.; Mei, A.; Qin, F.; Liu, S.; Zhang, S.; Jiang, Y.; Zhou, Y.; Han, H. Bifunctional Al2O3 Interlayer Leads to Enhanced Open-Circuit Voltage for Hole-Conductor-Free Carbon-Based Perovskite Solar Cells. Solar RRL 2018, 2, 1800002. [Google Scholar] [CrossRef]
- Bashir, A.; Shukla, S.; Lew, J.H.; Shukla, S.; Bruno, A.; Gupta, D.; Baikie, T.; Patidar, R.; Akhter, Z.; Priyadarshi, A.; et al. Spinel Co3O4 Nanomaterials for Efficient and Stable Large Area Carbon-Based Printed Perovskite Solar Cells. Nanoscale 2018, 10, 2341–2350. [Google Scholar] [CrossRef]
- Behrouznejad, F.; Tsai, C.-M.; Narra, S.; Diau, E.W.-G.; Taghavinia, N. Interfacial Investigation on Printable Carbon-Based Mesoscopic Perovskite Solar Cells with NiOx/C Back Electrode. ACS Appl. Mater. Interfaces 2017, 9, 25204–25215. [Google Scholar] [CrossRef]
- Tao, L.; Zhang, Y.; Chen, H.; Wang, K.; Zhou, X. Printable Commercial Carbon Based Mesoscopic Perovskite Solar Cell Using NiO/Graphene as Hole-Transport Materials. ECS J. Solid State Sci. Technol. 2021, 10, 105003. [Google Scholar] [CrossRef]
- Icli, K.C.; Ozenbas, M. Modification of TiO2 and NiO Charge Selective Mesoporous Layers Using Excessive Y and Li Additions for Carbon Based Perovskite Solar Cells. J. Power Sources 2021, 506, 230229. [Google Scholar] [CrossRef]
- Bashir, A.; Lew, J.H.; Shukla, S.; Gupta, D.; Baikie, T.; Chakraborty, S.; Patidar, R.; Bruno, A.; Mhaisalkar, S.; Akhter, Z. Cu-Doped Nickel Oxide Interface Layer with Nanoscale Thickness for Efficient and Highly Stable Printable Carbon-Based Perovskite Solar Cell. Solar Energy 2019, 182, 225–236. [Google Scholar] [CrossRef]
- Duan, M.; Tian, C.; Hu, Y.; Mei, A.; Rong, Y.; Xiong, Y.; Xu, M.; Sheng, Y.; Jiang, P.; Hou, X.; et al. Boron-Doped Graphite for High Work Function Carbon Electrode in Printable Hole-Conductor-Free Mesoscopic Perovskite Solar Cells. ACS Appl. Mater. Interfaces 2017, 9, 31721–31727. [Google Scholar] [CrossRef]
- Chen, X.; Lu, L.; Gu, D.; Zhang, X.; Yu, H.; Chen, F.; Rui, Y.; Hou, J.; Yang, Y. Chlorine Management of a Carbon Counter Electrode for High Performance Printable Perovskite Solar Cells. J. Mater. Chem. C Mater. 2021, 9, 8615–8622. [Google Scholar] [CrossRef]
- Chu, Q.-Q.; Sun, Z.; Ding, B.; Moon, K.; Yang, G.-J.; Wong, C.-P. Greatly Enhanced Power Conversion Efficiency of Hole-Transport-Layer-Free Perovskite Solar Cell via Coherent Interfaces of Perovskite and Carbon Layers. Nano Energy 2020, 77, 105110. [Google Scholar] [CrossRef]
- Jiang, P.; Xiong, Y.; Xu, M.; Mei, A.; Sheng, Y.; Hong, L.; Jones, T.W.; Wilson, G.J.; Xiong, S.; Li, D.; et al. The Influence of the Work Function of Hybrid Carbon Electrodes on Printable Mesoscopic Perovskite Solar Cells. J. Phys. Chem. C 2018, 122, 16481–16487. [Google Scholar] [CrossRef]
- Gong, S.; Li, H.; Chen, Z.; Shou, C.; Huang, M.; Yang, S. CsPbI2Br Perovskite Solar Cells Based on Carbon Black-Containing Counter Electrodes. ACS Appl. Mater. Interfaces 2020, 12, 34882–34889. [Google Scholar] [CrossRef]
- Wang, J.; Gong, S.; Chen, Z.; Yang, S. Vacuum-Assisted Drying Process for Screen-Printable Carbon Electrodes of Perovskite Solar Cells with Enhanced Performance Based on Cuprous Thiocyanate as a Hole Transporting Layer. ACS Appl. Mater. Interfaces 2021, 13, 22684–22693. [Google Scholar] [CrossRef]
- Hatala, M.; Gemeiner, P.; Hvojnik, M.; Mikula, M. The Effect of the Ink Composition on the Performance of Carbon-Based Conductive Screen Printing Inks. J. Mater. Sci. Mater. Electron. 2019, 30, 1034–1044. [Google Scholar] [CrossRef]
- Raptis, D.; Stoichkov, V.; Meroni, S.M.P.; Pockett, A.; Worsley, C.A.; Carnie, M.; Worsley, D.A.; Watson, T. Enhancing Fully Printable Mesoscopic Perovskite Solar Cell Performance Using Integrated Metallic Grids to Improve Carbon Electrode Conductivity. Curr. Appl. Phys. 2020, 20, 619–627. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, J.; Zhang, J.; Jiang, X.; Zhu, Z.; Liu, Q. Interface Engineering Based on Liquid Metal for Compact-Layer-Free, Fully Printable Mesoscopic Perovskite Solar Cells. ACS Appl. Mater. Interfaces 2018, 10, 15616–15623. [Google Scholar] [CrossRef]
- Kajal, P.; Lew, J.H.; Kanwat, A.; Rana, P.J.S.; Nutan, G.V.; Koh, T.M.; Mhaisalkar, S.G.; Powar, S.; Mathews, N. Unveiling the Role of Carbon Black in Printable Mesoscopic Perovskite Solar Cells. J. Power Sources 2021, 501, 230019. [Google Scholar] [CrossRef]
- Bogachuk, D.; Tsuji, R.; Martineau, D.; Narbey, S.; Herterich, J.P.; Wagner, L.; Suginuma, K.; Ito, S.; Hinsch, A. Comparison of Highly Conductive Natural and Synthetic Graphites for Electrodes in Perovskite Solar Cells. Carbon 2021, 178, 10–18. [Google Scholar] [CrossRef]
- Tsuji, R.; Bogachuk, D.; Martineau, D.; Wagner, L.; Kobayashi, E.; Funayama, R.; Matsuo, Y.; Mastroianni, S.; Hinsch, A.; Ito, S. Function of Porous Carbon Electrode during the Fabrication of Multiporous-Layered-Electrode Perovskite Solar Cells. Photonics 2020, 7, 133. [Google Scholar] [CrossRef]
- Phillips, C.; Al-Ahmadi, A.; Potts, S.-J.; Claypole, T.; Deganello, D. The Effect of Graphite and Carbon Black Ratios on Conductive Ink Performance. J. Mater. Sci. 2017, 52, 9520–9530. [Google Scholar] [CrossRef]
- Potts, S.-J.; Lau, Y.C.; Dunlop, T.; Claypole, T.; Phillips, C. Effect of Photonic Flash Annealing with Subsequent Compression Rolling on the Topography, Microstructure and Electrical Performance of Carbon-Based Inks. J. Mater. Sci. 2019, 54, 8163–8176. [Google Scholar] [CrossRef]
- Mali, S.S.; Kim, H.; Patil, J.V.; Hong, C.K. Bio-Inspired Carbon Hole Transporting Layer Derived from Aloe Vera Plant for Cost-Effective Fully Printable Mesoscopic Carbon Perovskite Solar Cells. ACS Appl. Mater. Interfaces 2018, 10, 31280–31290. [Google Scholar] [CrossRef]
- Gizachew, Y.T.; Escoubas, L.; Simon, J.J.; Pasquinelli, M.; Loiret, J.; Leguen, P.Y.; Jimeno, J.C.; Martin, J.; Apraiz, A.; Aguerre, J.P. Towards Ink-Jet Printed Fine Line Front Side Metallization of Crystalline Silicon Solar Cells. Sol. Energy Mater. Sol. Cells 2011, 95, S70–S82. [Google Scholar] [CrossRef]
- Tekin, E.; Smith, P.J.; Schubert, U.S. Inkjet Printing as a Deposition and Patterning Tool for Polymers and Inorganic Particles. Soft Matter. 2008, 4, 703. [Google Scholar] [CrossRef]
- Medvedeva, J.E.; Buchholz, D.B.; Chang, R.P.H. Recent Advances in Understanding the Structure and Properties of Amorphous Oxide Semiconductors. Adv. Electron. Mater. 2017, 3, 1700082. [Google Scholar] [CrossRef]
- Calvert, P. Inkjet Printing for Materials and Devices. Chem. Mater. 2001, 13, 3299–3305. [Google Scholar] [CrossRef]
- Mathies, F.; Eggers, H.; Richards, B.S.; Hernandez-Sosa, G.; Lemmer, U.; Paetzold, U.W. Inkjet-Printed Triple Cation Perovskite Solar Cells. ACS Appl. Energy Mater. 2018, 1, 1834–1839. [Google Scholar] [CrossRef]
- Liang, C.; Li, P.; Gu, H.; Zhang, Y.; Li, F.; Song, Y.; Shao, G.; Mathews, N.; Xing, G. One-Step Inkjet Printed Perovskite in Air for Efficient Light Harvesting. Solar RRL 2018, 2, 1700217. [Google Scholar] [CrossRef]
- Kipphan, H. Print Media and Electronic Media. In Handbook of Print Media; Springer: Berlin/Heidelberg, Germany, 2001; pp. 1005–1026. [Google Scholar]
- Hoath, S.D. Fundamentals of Inkjet Printing; Hoath, S.D., Ed.; Wiley: Hoboken, NJ, USA, 2016; ISBN 9783527337859. [Google Scholar]
- Eggenhuisen, T.M.; Galagan, Y.; Biezemans, A.F.K.V.; Slaats, T.M.W.L.; Voorthuijzen, W.P.; Kommeren, S.; Shanmugam, S.; Teunissen, J.P.; Hadipour, A.; Verhees, W.J.H.; et al. High Efficiency, Fully Inkjet Printed Organic Solar Cells with Freedom of Design. J. Mater. Chem. A Mater. 2015, 3, 7255–7262. [Google Scholar] [CrossRef]
- Hoth, C.N.; Schilinsky, P.; Choulis, S.A.; Brabec, C.J. Printing Highly Efficient Organic Solar Cells. Nano Lett. 2008, 8, 2806–2813. [Google Scholar] [CrossRef]
- Jung, S.; Sou, A.; Banger, K.; Ko, D.-H.; Chow, P.C.Y.; McNeill, C.R.; Sirringhaus, H. All-Inkjet-Printed, All-Air-Processed Solar Cells. Adv. Energy Mater. 2014, 4, 1400432. [Google Scholar] [CrossRef]
- Li, Z.; Li, P.; Chen, G.; Cheng, Y.; Pi, X.; Yu, X.; Yang, D.; Han, L.; Zhang, Y.; Song, Y. Ink Engineering of Inkjet Printing Perovskite. ACS Appl. Mater. Interfaces 2020, 12, 39082–39091. [Google Scholar] [CrossRef]
- Rong, Y.; Hu, Y.; Mei, A.; Tan, H.; Saidaminov, M.I.; Seok, S.I.; McGehee, M.D.; Sargent, E.H.; Han, H. Challenges for Commercializing Perovskite Solar Cells. Science 2018, 361, eaat8235. [Google Scholar] [CrossRef]
- Min, H.; Lee, D.Y.; Kim, J.; Kim, G.; Lee, K.S.; Kim, J.; Paik, M.J.; Kim, Y.K.; Kim, K.S.; Kim, M.G.; et al. Perovskite Solar Cells with Atomically Coherent Interlayers on SnO2 Electrodes. Nature 2021, 598, 444–450. [Google Scholar] [CrossRef]
- Li, P.; Liang, C.; Bao, B.; Li, Y.; Hu, X.; Wang, Y.; Zhang, Y.; Li, F.; Shao, G.; Song, Y. Inkjet Manipulated Homogeneous Large Size Perovskite Grains for Efficient and Large-Area Perovskite Solar Cells. Nano Energy 2018, 46, 203–211. [Google Scholar] [CrossRef]
- Li, S.-G.; Jiang, K.-J.; Su, M.-J.; Cui, X.-P.; Huang, J.-H.; Zhang, Q.-Q.; Zhou, X.-Q.; Yang, L.-M.; Song, Y.-L. Inkjet Printing of CH3NH3PbI3 on a Mesoscopic TiO2 Film for Highly Efficient Perovskite Solar Cells. J. Mater. Chem. A Mater. 2015, 3, 9092–9097. [Google Scholar] [CrossRef]
- Eggers, H.; Schackmar, F.; Abzieher, T.; Sun, Q.; Lemmer, U.; Vaynzof, Y.; Richards, B.S.; Hernandez-Sosa, G.; Paetzold, U.W. Inkjet-Printed Micrometer-Thick Perovskite Solar Cells with Large Columnar Grains. Adv. Energy Mater. 2020, 10, 1903184. [Google Scholar] [CrossRef]
- Hashmi, S.G.; Martineau, D.; Li, X.; Ozkan, M.; Tiihonen, A.; Dar, M.I.; Sarikka, T.; Zakeeruddin, S.M.; Paltakari, J.; Lund, P.D.; et al. Air Processed Inkjet Infiltrated Carbon Based Printed Perovskite Solar Cells with High Stability and Reproducibility. Adv. Mater. Technol. 2017, 2, 1600183. [Google Scholar] [CrossRef]
- Verma, A.; Martineau, D.; Abdolhosseinzadeh, S.; Heier, J.; Nüesch, F. Inkjet Printed Mesoscopic Perovskite Solar Cells with Custom Design Capability. Mater. Adv. 2020, 1, 153–160. [Google Scholar] [CrossRef]
- Karavioti, A.; Chalkias, D.A.; Katsagounos, G.; Mourtzikou, A.; Kalarakis, A.N.; Stathatos, E. Toward a Scalable Fabrication of Perovskite Solar Cells under Fully Ambient Air Atmosphere: From Spin-Coating to Inkjet-Printing of Perovskite Absorbent Layer. Electronics 2021, 10, 1904. [Google Scholar] [CrossRef]
- Chalkias, D.A.; Mourtzikou, A.; Katsagounos, G.; Karavioti, A.; Kalarakis, A.N.; Stathatos, E. Suppression of Coffee-Ring Effect in Air-Processed Inkjet-Printed Perovskite Layer toward the Fabrication of Efficient Large-Sized All-Printed Photovoltaics: A Perovskite Precursor Ink Concentration Regulation Strategy. Solar RRL 2022, 6, 2200196. [Google Scholar] [CrossRef]
- Patidar, R.; Burkitt, D.; Hooper, K.; Richards, D.; Watson, T. Slot-Die Coating of Perovskite Solar Cells: An Overview. Mater Today Commun. 2020, 22, 100808. [Google Scholar] [CrossRef]
- Chang, H.-M.; Chang, Y.-R.; Lin, C.-F.; Liu, T.-J. Comparison of Vertical and Horizontal Slot Die Coatings. Polym. Eng. Sci. 2007, 47, 1927–1936. [Google Scholar] [CrossRef]
- Ding, X.; Liu, J.; Harris, T.A.L. A Review of the Operating Limits in Slot Die Coating Processes. AIChE J. 2016, 62, 2508–2524. [Google Scholar] [CrossRef]
- Khambunkoed, N.; Wongratanaphisan, D.; Gardchareon, A.; Chattrapiban, N.; Homnan, S.; Songsiritthigul, P.; Ruankham, P. Slot-Die-Coated Zinc Tin Oxide Film for Carbon-Based Methylammonium-Free Perovskite Solar Cells. Surf. Rev. Lett. 2021, 28, 2150109. [Google Scholar] [CrossRef]
- Francis, L.F.; Roberts, C.C. Dispersion and Solution Processes. In Materials Processing; Elsevier: Amsterdam, The Netherlands, 2016; pp. 415–512. [Google Scholar]
- Di Risio, S.; Yan, N. Piezoelectric Ink-Jet Printing of Horseradish Peroxidase: Effect of Ink Viscosity Modifiers on Activity. Macromol. Rapid Commun. 2007, 28, 1934–1940. [Google Scholar] [CrossRef]
- Dai, X.; Deng, Y.; Van Brackle, C.H.; Huang, J. Meniscus Fabrication of Halide Perovskite Thin Films at High Throughput for Large Area and Low-Cost Solar Panels. Int. J. Extrem. Manuf. 2019, 1, 022004. [Google Scholar] [CrossRef]
- Syrrokostas, G.; Leftheriotis, G.; Yannopoulos, S.N. Double-Layered Zirconia Films for Carbon-Based Mesoscopic Perovskite Solar Cells and Photodetectors. J. Nanomater. 2019, 2019, 8348237. [Google Scholar] [CrossRef]
- Tian, T.; Zhong, J.; Yang, M.; Feng, W.; Zhang, C.; Zhang, W.; Abdi, Y.; Wang, L.; Lei, B.; Wu, W. Interfacial Linkage and Carbon Encapsulation Enable Full Solution-Printed Perovskite Photovoltaics with Prolonged Lifespan. Angew. Chem. Int. Ed. 2021, 60, 23735–23742. [Google Scholar] [CrossRef]
- Bidikoudi, M.; Simal, C.; Dracopoulos, V.; Stathatos, E. Exploring the Effect of Ammonium Iodide Salts Employed in Multication Perovskite Solar Cells with a Carbon Electrode. Molecules 2021, 26, 5737. [Google Scholar] [CrossRef]
- Chou, L.-H.; Yu, Y.-T.; Osaka, I.; Wang, X.-F.; Liu, C.-L. Spray Deposition of NiOx Hole Transport Layer and Perovskite Photoabsorber in Fabrication of Photovoltaic Mini-Module. J. Power Sources 2021, 491, 229586. [Google Scholar] [CrossRef]
- Roy, P.; Kumar Sinha, N.; Tiwari, S.; Khare, A. A Review on Perovskite Solar Cells: Evolution of Architecture, Fabrication Techniques, Commercialization Issues and Status. Solar Energy 2020, 198, 665–688. [Google Scholar] [CrossRef]
- Amratisha, K.; Ponchai, J.; Kaewurai, P.; Pansa-ngat, P.; Pinsuwan, K.; Kumnorkaew, P.; Ruankham, P.; Kanjanaboos, P. Layer-by-Layer Spray Coating of a Stacked Perovskite Absorber for Perovskite Solar Cells with Better Performance and Stability under a Humid Environment. Opt. Mater. Express 2020, 10, 1497. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, H.; Zheng, X.; Meng, X.; Zhang, T.; Hu, C.; Bai, Y.; Xiao, S.; Yang, S. Ultrasound-Spray Deposition of Multi-Walled Carbon Nanotubes on NiO Nanoparticles-Embedded Perovskite Layers for High-Performance Carbon-Based Perovskite Solar Cells. Nano Energy 2017, 42, 322–333. [Google Scholar] [CrossRef]
- Wu, C.; Wang, K.; Jiang, Y.; Yang, D.; Hou, Y.; Ye, T.; Han, C.S.; Chi, B.; Zhao, L.; Wang, S.; et al. All Electrospray Printing of Carbon-Based Cost-Effective Perovskite Solar Cells. Adv. Funct. Mater. 2021, 31, 2006803. [Google Scholar] [CrossRef]
- Kavadiya, S.; Niedzwiedzki, D.M.; Huang, S.; Biswas, P. Electrospray-Assisted Fabrication of Moisture-Resistant and Highly Stable Perovskite Solar Cells at Ambient Conditions. Adv. Energy Mater. 2017, 7, 1700210. [Google Scholar] [CrossRef]
- Pourjafari, D.; Meroni, S.M.P.; Peralta Domínguez, D.; Escalante, R.; Baker, J.; Saadi Monroy, A.; Walters, A.; Watson, T.; Oskam, G. Strategies towards Cost Reduction in the Manufacture of Printable Perovskite Solar Modules. Energies 2022, 15, 641. [Google Scholar] [CrossRef]
- Meroni, S.M.P.; Worsley, C.; Raptis, D.; Watson, T.M. Triple-Mesoscopic Carbon Perovskite Solar Cells: Materials, Processing and Applications. Energies 2021, 14, 386. [Google Scholar] [CrossRef]
- Rong, Y.; Ming, Y.; Ji, W.; Li, D.; Mei, A.; Hu, Y.; Han, H. Toward Industrial-Scale Production of Perovskite Solar Cells: Screen Printing, Slot-Die Coating, and Emerging Techniques. J. Phys. Chem. Lett. 2018, 9, 2707–2713. [Google Scholar] [CrossRef]
- Priyadarshi, A.; Haur, L.J.; Murray, P.; Fu, D.; Kulkarni, S.; Xing, G.; Sum, T.C.; Mathews, N.; Mhaisalkar, S.G. A Large Area (70 cm2) Monolithic Perovskite Solar Module with a High Efficiency and Stability. Energy Environ. Sci. 2016, 9, 3687–3692. [Google Scholar] [CrossRef]
- Lee, H.K.H.; Barbé, J.; Meroni, S.M.P.; Du, T.; Lin, C.-T.; Pockett, A.; Troughton, J.; Jain, S.M.; De Rossi, F.; Baker, J.; et al. Outstanding Indoor Performance of Perovskite Photovoltaic Cells—Effect of Device Architectures and Interlayers. Solar RRL 2019, 3, 1800207. [Google Scholar] [CrossRef]
- Worsley, C.; Raptis, D.; Meroni, S.M.P.; Patidar, R.; Pockett, A.; Dunlop, T.; Potts, S.J.; Bolton, R.; Charbonneau, C.M.E.; Carnie, M.; et al. Green Solvent Engineering for Enhanced Performance and Reproducibility in Printed Carbon-Based Mesoscopic Perovskite Solar Cells and Modules. Mater. Adv. 2022, 3, 1125–1138. [Google Scholar] [CrossRef]
- Bogachuk, D.; Saddedine, K.; Martineau, D.; Narbey, S.; Verma, A.; Gebhardt, P.; Herterich, J.P.; Glissmann, N.; Zouhair, S.; Markert, J.; et al. Perovskite Photovoltaic Devices with Carbon-Based Electrodes Withstanding Reverse-Bias Voltages up to–9 V and Surpassing IEC 61215:2016 International Standard. Solar RRL 2022, 6, 2100527. [Google Scholar] [CrossRef]
- Duong, T.-T.; Hoang, P.H.; Nhan, L.T.; Van Duong, L.; Nam, M.H.; Tuan, L.Q. Multistep Spin–Spray Deposition of Large-Grain-Size CH3NH3PbI3 with Bilayer Structure for Conductive-Carbon-Based Perovskite Solar Cells. Curr. Appl. Phys. 2019, 19, 1266–1270. [Google Scholar] [CrossRef]
- Haruta, Y.; Ikenoue, T.; Miyake, M.; Hirato, T. One-Step Coating of Full-Coverage CsPbBr3 Thin Films via Mist Deposition for All-Inorganic Perovskite Solar Cells. ACS Appl. Energy Mater. 2020, 3, 11523–11528. [Google Scholar] [CrossRef]
- Verma, A.; Martineau, D.; Hack, E.; Makha, M.; Turner, E.; Nüesch, F.; Heier, J. Towards Industrialization of Perovskite Solar Cells Using Slot Die Coating. J. Mater. Chem. C Mater. 2020, 8, 6124–6135. [Google Scholar] [CrossRef]
- Xia, Z.; Cai, T.; Li, X.; Zhang, Q.; Shuai, J.; Liu, S. Recent Progress of Printing Technologies for High-Efficient Organic Solar Cells. Catalysts 2023, 13, 156. [Google Scholar] [CrossRef]
- Wiklund, J.; Karakoç, A.; Palko, T.; Yiğitler, H.; Ruttik, K.; Jäntti, R.; Paltakari, J. A Review on Printed Electronics: Fabrication Methods, Inks, Substrates, Applications and Environmental Impacts. J. Manuf. Mater. Process. 2021, 5, 89. [Google Scholar] [CrossRef]
- Khan, Y.; Thielens, A.; Muin, S.; Ting, J.; Baumbauer, C.; Arias, A.C. A New Frontier of Printed Electronics: Flexible Hybrid Electronics. Adv. Mater. 2020, 32, 1905279. [Google Scholar] [CrossRef]
- Rolston, N.; Scheideler, W.J.; Flick, A.C.; Chen, J.P.; Elmaraghi, H.; Sleugh, A.; Zhao, O.; Woodhouse, M.; Dauskardt, R.H. Rapid Open-Air Fabrication of Perovskite Solar Modules. Joule 2020, 4, 2675–2692. [Google Scholar] [CrossRef]
- Bishop, J.E.; Smith, J.A.; Lidzey, D.G. Development of Spray-Coated Perovskite Solar Cells. ACS Appl. Mater. Interfaces 2020, 12, 48237–48245. [Google Scholar] [CrossRef]
- Dou, B.; Moore, D.T.; Whitaker, J.B.; Shaheen, S.E.; Barnes, F.S.; Zhu, K.; van Hest, M.F.A.M. One-Step High-Throughput Blade Coating of Perovskite Solar Cells. In Proceedings of the 2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) (A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC), Waikoloa Village, HI, USA, 10–15 June 2018; pp. 2799–2802. [Google Scholar]
- Marques, A.S.; Faria, R.M.; Freitas, J.N.; Nogueira, A.F. Low-Temperature Blade-Coated Perovskite Solar Cells. Ind. Eng. Chem. Res. 2021, 60, 7145–7154. [Google Scholar] [CrossRef]
- Chang, X.; Fan, Y.; Zhao, K.; Fang, J.; Liu, D.; Tang, M.-C.; Barrit, D.; Smilgies, D.-M.; Li, R.; Lu, J.; et al. Perovskite Solar Cells toward Eco-Friendly Printing. Research 2021, 2021, 9671892. [Google Scholar] [CrossRef]
- Galagan, Y.; Di Giacomo, F.; Gorter, H.; Kirchner, G.; de Vries, I.; Andriessen, R.; Groen, P. Roll-to-Roll Slot Die Coated Perovskite for Efficient Flexible Solar Cells. Adv. Energy Mater. 2018, 8, 1801935. [Google Scholar] [CrossRef]
- Parida, B.; Singh, A.; Soopy, A.K.K.; Sangaraju, S.; Sundaray, M.; Mishra, S.; Liu, S.; Najar, A. Recent Developments in Upscalable Printing Techniques for Perovskite Solar Cells. Adv. Sci. 2022, 9, 2200308. [Google Scholar] [CrossRef]
- Hu, Y.; Chu, Y.; Wang, Q.; Zhang, Z.; Ming, Y.; Mei, A.; Rong, Y.; Han, H. Standardizing Perovskite Solar Modules beyond Cells. Joule 2019, 3, 2076–2085. [Google Scholar] [CrossRef]
- Mathies, F.; List-Kratochvil, E.J.W.; Unger, E.L. Advances in Inkjet-Printed Metal Halide Perovskite Photovoltaic and Optoelectronic Devices. Energy Technol. 2020, 8, 1900991. [Google Scholar] [CrossRef]
- Bishop, J.E.; Mohamad, D.K.; Wong-Stringer, M.; Smith, A.; Lidzey, D.G. Spray-Cast Multilayer Perovskite Solar Cells with an Active-Area of 1.5 cm2. Sci. Rep. 2017, 7, 7962. [Google Scholar] [CrossRef]
- Giuri, A.; Saleh, E.; Listorti, A.; Colella, S.; Rizzo, A.; Tuck, C.; Esposito Corcione, C. Rheological Tunability of Perovskite Precursor Solutions: From Spin Coating to Inkjet Printing Process. Nanomaterials 2019, 9, 582. [Google Scholar] [CrossRef]
- Cao, K.; Zuo, Z.; Cui, J.; Shen, Y.; Moehl, T.; Zakeeruddin, S.M.; Grätzel, M.; Wang, M. Efficient Screen Printed Perovskite Solar Cells Based on Mesoscopic TiO2/Al2O3/NiO/Carbon Architecture. Nano Energy 2015, 17, 171–179. [Google Scholar] [CrossRef]
(1) Method | (2) Printing Parameters | (3) Layers | Ink Properties | Rate of Ink Usage (U) & Waste (W) | (4) Film Thickness Range (µm) | Printing Speed (m/min) | Throughput (m2/min) | Scalability | Structure | The Highest Reported PCE (%)/Active Area (cm2) | Ref. | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Viscosity (Pa.s) | Surface Tension (mN/m) | Max Particle Size (nm) | |||||||||||
Spin coating | spinning mode (dynamic, static), spin speed and time, and acceleration/deceleration rate, drop volume | ETL, HTL, Perovskite | Low | Up to 25 | Up to 50 | U: low, W: very high | 0.1–0.5 | Very low-batch size | Very low -batch size | No | BL-TiO2 (spin coating)/m-TiO2 (spin coating)/MAPI (spin coating)/C (blade coating) | 17.42/0.1 | [34] |
BL-TiO2 (spin-coating)/m-TiO2 (spin-coating)/ZrO2 (spin-coating)/MAPbI3: EACQDs as antisolvent (spin-coating)/B-MWNTs (drop casting)/carbon (screen printed) | 15.14/0.06 | [80] | |||||||||||
BL-TiO2 (spray pyrolysis)/m-TiO2 (spin coating)/Al2O3 (spin-coating)/MAPbI3 (PbI2 embedded with B-MWNTs, spin-coating)/boron (drop casting) | 15.23/No data | [78] | |||||||||||
Screen printing | mesh and squeegee type, mesh tension, distance between the screen and substrate, angle between the squeegee and screen, pressure and speed of the squeegee, amount of loaded paste | ETL, HTL, Perovskite, Carbon | Moderate-High 2.5- 5 | Up to 50 | 20–20000 (1/10th of mesh opening) | U: high, W: low | 0.5–20 | Flatbed: up to 35 Rotary: up to 100 | Up to 70 | Yes | BL-TiO2 (spray pyrolysis)/BaSnO3 (homemade)/m-ZrO2/C (all screen- printed)/PbI2.MAI, MACl (drop casting) | 14.77/0.1 | [92] |
BL-TiO2 (spray pyrolysis)/m-TiO2/Al2O3 (homemade)/NiO (homemade)/C (all screen-printed)/MAPbI3 (drop casting) | 15.03/0.7 | [178] | |||||||||||
BL-TiO2/m-TiO2/ZrO2/Cu:NiOx (homemade)/C (all screen-printed)/(5-AVA)x(MA)1−xPbI3 (drop casting) | 12.79/0.8 | [101] | |||||||||||
BL-TiO2 (spray pyrolysis)/m-TiO2/ZrO2/C (homemade boron-doped graphite) (all screen-printed)/(5-AVA)x(MA)1−xPbI3 (drop casting) | 13.6/No data | [102] | |||||||||||
Inkjet printing | jetting voltage, jetting frequency, drop spacing, amount of loaded ink, substrate temperature | ETL, HTL, Perovskite | Low (0.001–0.05) | Up to 40 | Up to 50 (1/10th of nozzle diameter) | U: high, W: low | 0.1- 1 | Up to 10 | Up to 6 | Limited | BL-TiO2 (spray pyrolysis)/m-TiO2 (screen printing)/m-ZrO2 (screen printing)/MAPI (inkjet printing)/C (screen printing) | 9.53/0.16 | [134] |
BL-TiO2/m-TiO2/m-ZrO2/MAPI/C All layers were deposited by inkjet printing except carbon layer by screen printing) | 9.10/1.5 | [135] | |||||||||||
Slot-die coating | coating speed, flow rate, coating gap, substrate temperature, | ETL, HTL, Perovskite | Low-High (0.001–5) | Up to 25 | Up to 200 | U: high, W: low | 0.1- 2 | Up to 5 | No data | Yes | BL-TiO2/ZTO/CsFA perovskite/spiro- OMeTAD/C (All layers were deposited by slot die) | 9.92/No data | [141] |
Blade coating | coating speed, coating gap (distance between blade and substrate), amount of loaded ink, substrate temperature, | ETL, HTL, Perovskite, Carbon | Low (0.001–0.05) | Up to 25 | 20-few micrometres | U: high, W: moderate | 0.1- 10 | Up to 2 | Up to 1.5 (theoretical data) | Yes | ITO/APTES-linked C60 (ETL)/MAPI/C (All layers were deposited by blade coating) | 18.64/0.08 | [146] |
BL-TiO2 (spin coating)/m-TiO2 (spin coating)/m-ZrO2 (blade coating)/MAPI (drop casting)/NiO NPs (spin coating)/MWCNT as C (electrospray) | 15.80/0.08 | [151] | |||||||||||
Spray coating | nozzle diameter and type, spray speed, distance and angle between nozzle and substrate, air or gas pressure, flow rate, substrate temperature | BL, ETL, HTL, Perovskite, Carbon (rarely) | Low-Moderate (0.001–2.5) | Up to 20 | 20-few µm *(usually 1/10th of nozzle diameter) | U: low to high, W: low to high ** | 0.05- 1 | Up to 12 | No data | Yes | BL-TiO2/FA0.85MA0.15PbI2.85Br0.15/C (All layers were deposited by electrospray) | 14.41/0.096 | [152] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pourjafari, D.; García-Peña, N.G.; Padrón-Hernández, W.Y.; Peralta-Domínguez, D.; Castro-Chong, A.M.; Nabil, M.; Avilés-Betanzos, R.C.; Oskam, G. Functional Materials for Fabrication of Carbon-Based Perovskite Solar Cells: Ink Formulation and Its Effect on Solar Cell Performance. Materials 2023, 16, 3917. https://doi.org/10.3390/ma16113917
Pourjafari D, García-Peña NG, Padrón-Hernández WY, Peralta-Domínguez D, Castro-Chong AM, Nabil M, Avilés-Betanzos RC, Oskam G. Functional Materials for Fabrication of Carbon-Based Perovskite Solar Cells: Ink Formulation and Its Effect on Solar Cell Performance. Materials. 2023; 16(11):3917. https://doi.org/10.3390/ma16113917
Chicago/Turabian StylePourjafari, Dena, Nidia G. García-Peña, Wendy Y. Padrón-Hernández, Diecenia Peralta-Domínguez, Alejandra María Castro-Chong, Mahmoud Nabil, Roberto C. Avilés-Betanzos, and Gerko Oskam. 2023. "Functional Materials for Fabrication of Carbon-Based Perovskite Solar Cells: Ink Formulation and Its Effect on Solar Cell Performance" Materials 16, no. 11: 3917. https://doi.org/10.3390/ma16113917
APA StylePourjafari, D., García-Peña, N. G., Padrón-Hernández, W. Y., Peralta-Domínguez, D., Castro-Chong, A. M., Nabil, M., Avilés-Betanzos, R. C., & Oskam, G. (2023). Functional Materials for Fabrication of Carbon-Based Perovskite Solar Cells: Ink Formulation and Its Effect on Solar Cell Performance. Materials, 16(11), 3917. https://doi.org/10.3390/ma16113917