Research on Electrostatic Field-Induced Discharge Energy in Conventional Micro EDM
Abstract
:1. Introduction
2. Construction of Test Platform
3. Experimental Results and Discussion
3.1. Equivalent Circuit Analysis of the Discharge Process
3.2. Factors Affecting Discharge Energy
3.2.1. Discharge Waveforms Analysis
3.2.2. Discharge Sequence Analysis
3.3. Influence of Distance on Discharge Energy
3.3.1. Influence of the Gap on Solid Electrode Side on Discharge energy
3.3.2. Influence of E-Jet EDM Gap on Discharge Energy
3.4. Machining Experiments
4. Conclusions
- 1)
- The electrostatic induction discharge energy can be decoupled from the E-Jet EDM process to realize its application into the traditional EDM by connecting the electrical field-induced electrolyte jet EDM and the traditional EDM in series in structure.
- 2)
- It was discovered that the discharge on the E-Jet EDM side is 1–2 sampling units ahead of the discharge on the solid electrode EDM side, proving that the discharge process is induced by the E-Jet process.
- 3)
- The discharge signals analyzed demonstrated that the solid electrode EDM can be controlled by adjusting the gap between the solid electrode and the workpiece with the pulse discharge energy controlled by E-Jet EDM method. If fixing the distance between the E-Jet and the workpiece, the discharge energy per pulse will decrease with the increasing distance of the solid electrode from the workpiece.
- 4)
- The discharge energy of the solid electrode EDM can also be controlled by adjusting the gap between the E-Jet electrode and the workpiece surface, allowing the energy to be indirectly used in the solid EDM process. The discharge energy decreases with the increasing the distance between the E-Jet and the workpiece.
- 5)
- Experimental results show that this method can process a pit with a diameter of 20 μm and a depth of 9 μm and groove with a depth of 4 μm and a width of 30 μm on silicon wafers, and the results demonstrate the method’s effectiveness.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lauwers, B.; Vleugels, J.; Malek, O.; Brans, K.; Liu, K. Electrical discharge machining of composites. Mach. Technol. Compos. Mater. 2012, 2012, 202–241. [Google Scholar]
- Xu, B.; Guo, K.; Zhu, L.K.; Wu, X.Y.; Lei, J.G.; Zhao, H.; Liang, X. The wear of foil queue microelectrode in 3D micro-EDM. Int. J. Adv. Manuf. Technol. 2019, 104, 3107–3117. [Google Scholar] [CrossRef]
- Antar, M.; Chantzis, D.; Marimuthu, S.; Hayward, P. High speed EDM and laser drilling of aerospace alloys. Procedia CIRP 2016, 42, 526–531. [Google Scholar] [CrossRef]
- Harane, P.P.; Wojciechowski, S.; Unune, D.R. Investigating the effect of different tool electrodes in electric discharge drilling of Waspaloy on process responses. J. Mater. Res. Technol. 2022, 20, 2542–2557. [Google Scholar] [CrossRef]
- Casanueva, R.; Azcondo, F.J.; Alcedo, L.; Jimenez, J. Advanced Cutting Experiences for a Nuclear Power Plant Application. IEEE Trans. Ind. Appl. 2009, 46, 89–93. [Google Scholar] [CrossRef]
- Schimmelpfennig, T.M.; Rübeling, G.; Lorenz, M. Development of novel gap control method for the Electrical Discharge Machining (EDM) of implant-supported dentures. Procedia CIRP 2020, 95, 610–614. [Google Scholar] [CrossRef]
- He, Z.R.; Luo, S.T.; Liu, C.S.; Jie, X.H.; Lian, W.Q. Hierarchical micro/nano structure surface fabricated by electrical discharge machining for anti-fouling application. J. Mater. Res. Technol. 2019, 8, 3878–3890. [Google Scholar] [CrossRef]
- Singh, P.; Singh, L. Examination and Optimization of Machining Parameters in Electrical Discharge Machining of UNS T30407 Steel. J. Adv. Manuf. Syst. 2022, 21, 573–589. [Google Scholar] [CrossRef]
- Ashwin, K.J.; Muthuramalingam, T. Influence of duty factor of pulse generator in electrical discharge machining process. Int. J. Appl. Eng. Res. 2017, 12, 11397–11399. [Google Scholar]
- Ichikawa, T.; Natsu, W. Realization of micro-EDM under ultra-small discharge energy by applying ultrasonic vibration to machining fluid. Procedia CIRP 2013, 6, 326–331. [Google Scholar] [CrossRef]
- Chu, X.; Feng, W.; Wang, C.; Hong, Y. Analysis of mechanism based on two types of pulse generators in micro-EDM using single pulse discharge. Int. J. Adv. Manuf. Technol. 2017, 89, 3217–3230. [Google Scholar] [CrossRef]
- Feng, G.; Yang, X.; Chi, G. Experimental and simulation study on micro hole machining in EDM with high-speed tool electrode rotation. Int. J. Adv. Manuf. Technol. 2019, 101, 367–375. [Google Scholar] [CrossRef]
- Abbas, N.M.; Kunieda, M. Increasing discharge energy of micro-EDM with electrostatic induction feeding method through resonance in circuit. Precis. Eng. 2016, 45, 118–125. [Google Scholar] [CrossRef]
- Koyano, T.; Kunieda, M. Achieving high accuracy and high removal rate in micro-EDM by electrostatic induction feeding method. CIRP Ann. 2010, 59, 219–222. [Google Scholar] [CrossRef]
- Yahagi, Y.; Koyano, T.; Kunieda, M.; Yang, X. Micro drilling EDM with high rotation speed of tool electrode using the electrostatic induction feeding method. Procedia CIRP 2012, 1, 162–165. [Google Scholar] [CrossRef]
- Zou, R.; Yu, Z.; Yan, C.; Li, J.; Liu, X.; Xu, W. Micro electrical discharge machining in nitrogen plasma jet. Precis. Eng. 2018, 51, 198–207. [Google Scholar] [CrossRef]
- Zhang, Y.; Kang, X.; Zhao, W. The investigation of discharge restriction mechanism of the floating workpiece based electrostatic field-induced electrolyte jet (E-Jet) EDM. J. Mater. Process. Technol. 2017, 247, 134–142. [Google Scholar] [CrossRef]
- Zhang, Y.; Han, N.; Kang, X.; Lan, S.; Zhao, W. Experimental investigation of the governing parameters of the electrostatic field–induced electrolyte jet micro electrical discharge machining on the silicon wafer. Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf. 2018, 232, 2201–2209. [Google Scholar] [CrossRef]
- Liu, W.; Luo, Z.; Kunieda, M. Electrolyte jet machining of Ti1023 titanium alloy using NaCl ethylene glycol-based electrolyte. J. Mater. Process. Technol. 2020, 283, 116731. [Google Scholar] [CrossRef]
- Goud, M.; Sharma, A.K.; Jawalkar, C. A review on material removal mechanism in electrochemical discharge machining (ECDM) and possibilities to enhance the material removal rate. Precis. Eng. 2016, 45, 1–17. [Google Scholar] [CrossRef]
- Singh, T.; Dvivedi, A. On performance evaluation of textured tools during micro-channeling with ECDM. J. Manuf. Process. 2018, 32, 699–713. [Google Scholar] [CrossRef]
- Rosell-Llompart, J.; Grifoll, J.; Loscertales, I.G. Electrosprays in the cone-jet mode: From Taylor cone formation to spray development. J. Aerosol Sci. 2018, 125, 2–31. [Google Scholar] [CrossRef]
- Kunieda, M.; Lauwers, B.; Rajurkar, K.P.; Schumacher, B.M. Advancing EDM through fundamental insight into the process. CIRP Ann. 2005, 54, 64–87. [Google Scholar] [CrossRef]
- Yang, F.; Qian, J.; Wang, J.; Reynaerts, D. Simulation and experimental analysis of alternating-current phenomenon in micro-EDM with a RC-type generator. J. Mater. Process. Technol. 2018, 255, 865–875. [Google Scholar] [CrossRef]
- Çakıroğlu, R.; Günay, M. Comprehensive analysis of material removal rate, tool wear and surface roughness in electrical discharge turning of L2 tool steel. J. Mater. Res. Technol. 2020, 9, 7305–7317. [Google Scholar] [CrossRef]
- Heikkilä, P.; Söderlund, L.; Uusimäki, J.; Kettunen, L.; Harlin, A. Exploitation of electric field in controlling of nanofiber spinning process. Polym. Eng. Sci. 2007, 47, 2065–2074. [Google Scholar] [CrossRef]
- Liu, Q.; Zhang, Q.; Zhang, M.; Yang, F. Study on the time-varying characteristics of discharge plasma in micro-electrical discharge machining. Coatings 2019, 9, 718. [Google Scholar] [CrossRef]
- Kang, X.; Tang, W. Micro-drilling in ceramic-coated Ni-superalloy by electrochemical discharge machining. J. Mater. Process. Technol. 2018, 255, 656–664. [Google Scholar] [CrossRef]
- Wang, X.; Shen, Y. High-speed EDM milling with in-gas and outside-liquid electrode flushing techniques. Int. J. Adv. Manuf. Technol. 2019, 104, 3191–3198. [Google Scholar] [CrossRef]
- Dhakar, K.; Chaudhary, K.; Dvivedi, A.; Bembalge, O. An environment-friendly and sustainable machining method: Near-dry EDM. Mater. Manuf. Process. 2019, 34, 1307–1315. [Google Scholar] [CrossRef]
Parameters | Value |
---|---|
Solid electrode | Tungsten |
Electrolyte jet electrode | 5 wt.% NaCl |
Workpiece | Polished silicon |
Voltage | 2.8 kV |
E-Jet gap distance | 0.62 mm |
EDM gap distance | 0.18 mm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Gao, Q.; Yang, X.; Zheng, Q.; Zhao, W. Research on Electrostatic Field-Induced Discharge Energy in Conventional Micro EDM. Materials 2023, 16, 3963. https://doi.org/10.3390/ma16113963
Zhang Y, Gao Q, Yang X, Zheng Q, Zhao W. Research on Electrostatic Field-Induced Discharge Energy in Conventional Micro EDM. Materials. 2023; 16(11):3963. https://doi.org/10.3390/ma16113963
Chicago/Turabian StyleZhang, Yaou, Qiang Gao, Xiangjun Yang, Qian Zheng, and Wansheng Zhao. 2023. "Research on Electrostatic Field-Induced Discharge Energy in Conventional Micro EDM" Materials 16, no. 11: 3963. https://doi.org/10.3390/ma16113963
APA StyleZhang, Y., Gao, Q., Yang, X., Zheng, Q., & Zhao, W. (2023). Research on Electrostatic Field-Induced Discharge Energy in Conventional Micro EDM. Materials, 16(11), 3963. https://doi.org/10.3390/ma16113963