Effect of Cerium on Inclusion Modification in a Secondary-Hardening Steel
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Inclusions in Ce-Free Steel
3.2. Inclusions in Steel Containing 0.0030% Ce
3.3. Inclusions in Steel Containing 0.0071% Ce
3.4. Thermodynamic Calculation of Magnesium Aluminum Spinels
3.5. The Effect of Ce on Oxide Inclusions
4. Conclusions
- For the steel considered herein, typical inclusions in Ce-free steel were Mg-Al-O + MgS. Thermodynamic calculations indicated that MgAl2O4 was firstly formed in liquid steel, successively transforming into MgO and MgS during cooling.
- When the Ce content was 0.0030%, the typical inclusions in steel were individual Ce2O2S and MgO + Ce2O2S complex inclusions. For the latter type of inclusion, MgO as a core was surrounded by an outer layer of Ce2O2S, for which the modification process could be explained through the unreacted core model. When the Ce content was 0.0071%, the steel mainly consisted of individual Ce2O2S- and Mg-containing inclusions. The latter included MgO, MgS, and Mg(O,S).
- Ce treatment modified the angular magnesium aluminum spinel inclusions into spherical and ellipsoidal Ce-containing inclusions, which was beneficial for reducing the harmful effect of inclusion on steel properties. Thermodynamic calculations indicated that the generation of rare-earth oxides was reduced and that of rare-earth sulfides was promoted by the addition of Mg.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, H.L.; Zhang, G.Q.; Zhou, H.C.; Liu, Z.H.; Xu, B.; Hao, L.H.; Sun, M.Y.; Li, D.Z. Influence of cooling rate during cryogenic treatment on the hierarchical microstructure and mechanical properties of M54 secondary hardening steel. Mater. Sci. Eng. A 2022, 851, 143659. [Google Scholar] [CrossRef]
- Wang, F.; Qian, D.S.; Xie, L.C.; Dong, Z.H.; Song, X.D. Microstructure evolution and tempering transformation kinetics in a secondary hardened M50 steel subjected to cold ring rolling. ISIJ Int. 2021, 61, 361–371. [Google Scholar] [CrossRef]
- Wang, P.; Wang, B.; Liu, Y.; Zhang, P.; Luan, Y.K.; Li, D.Z.; Zhang, Z.F. Effects of inclusion types on the high-cycle fatigue properties of high-strength steel. Scr. Mater. 2022, 206, 114262. [Google Scholar] [CrossRef]
- Zhu, M.L.; Jin, L.; Xuan, F.Z. Fatigue life and mechanistic modeling of interior micro-defect induced cracking in high cycle and very high cycle regimes. Acta Mater. 2018, 157, 259–275. [Google Scholar] [CrossRef]
- Sun, C.Q.; Lei, Z.Q.; Xie, J.J.; Hong, Y.S. Effects of inclusion size and stress ratio on fatigue strength for high-strength steels with fish-eye mode failure. Int. J. Fatigue 2013, 48, 19–27. [Google Scholar] [CrossRef]
- Zhang, L.F.; Thomas, B.G. State of the art in evaluation and control of steel cleanliness. ISIJ Int. 2003, 43, 271–291. [Google Scholar] [CrossRef]
- Zhan, D.P.; Zhang, Y.P.; Liu, R.J.; Jiang, Z.H.; Zhang, H.S. Effect of protected electroslag remelting on cleanliness of G20CrNi2Mo bearing steel. Ironmak. Steelmak. 2017, 44, 268–276. [Google Scholar] [CrossRef]
- Yang, Z.G.; Li, S.X.; Zhang, J.M.; Zhang, J.F.; Li, G.Y.; Li, Z.B.; Hui, W.J.; Wen, Y.Q. The fatigue behaviors of zero-inclusion and commercial 42CrMo steels in the super-long fatigue life regime. Acta Mater. 2004, 52, 5235–5241. [Google Scholar] [CrossRef]
- Feng, H.; Li, H.B.; Liu, Z.Z.; Jiang, Z.H.; Lu, P.C.; He, T. Cleanliness control of high nitrogen stainless bearing steel by vacuum carbon deoxidation in a PVIM furnace. Metall. Mater. Trans. B 2021, 52, 3777–3787. [Google Scholar] [CrossRef]
- Gao, S.; Wang, M.; Guo, J.L.; Wang, H.; Zhi, J.G.; Bao, Y.P. Characterization transformation of inclusions using rare earth Ce treatment on Al-killed titanium alloyed interstitial free steel. Steel Res. Int. 2019, 90, 1900194. [Google Scholar] [CrossRef]
- Wang, H.P.; Xiong, L.; Zhang, L.; Wang, Y.; Shu, Y.Y.; Zhou, Y.H. Investigation of RE-O-S-As inclusions in high carbon steels. Metall. Mater. Trans. B 2017, 48, 2849–2858. [Google Scholar] [CrossRef]
- Dong, Z.H.; Qian, D.S.; Yin, F.; Wang, F. Enhanced impact toughness of previously cold rolled high-carbon chromium bearing steel with rare earth addition. J. Mater. Eng. Perform. 2021, 30, 8178–8187. [Google Scholar] [CrossRef]
- Wang, H.; Bao, Y.P.; Zhi, J.G.; Duan, C.Y.; Gao, S.; Wang, M. Effect of rare earth Ce on the morphology and distribution of Al2O3 inclusions in high strength IF steel containing phosphorus during continuous casting and rolling process. ISIJ Int. 2021, 61, 657–666. [Google Scholar] [CrossRef]
- Zhang, J.; Ren, Y.; Ren, Q.; Zhang, L.F. Transient evolution of nonmetallic inclusions in a Si-Mn-killed stainless steel with cerium addition. Steel Res. Int. 2022, 93, 2100773. [Google Scholar] [CrossRef]
- Huang, Y.; Cheng, G.G.; Li, S.J.; Dai, W.X. Effect of cerium on the behavior of inclusions in H13 steel. Steel Res. Int. 2018, 89, 1800371. [Google Scholar] [CrossRef]
- Huang, F.; Li, J.; Geng, R.M.; Wang, C.C. Effect of rare earth on inclusion evolution and corrosion resistance of HRB400E steel. Mater. Corros. 2023, 74, 53–67. [Google Scholar] [CrossRef]
- Ji, Y.P.; Zhang, M.X.; Ren, H.P. Roles of lanthanum and cerium in grain refinement of steels during solidification. Metals 2018, 8, 884. [Google Scholar] [CrossRef]
- Yang, C.Y.; Luan, Y.K.; Li, D.Z.; Li, Y.Y.; Tariq, N.U. Very high cycle fatigue behavior of bearing steel with rare earth addition. Int. J. Fatigue 2020, 131, 105263. [Google Scholar] [CrossRef]
- Yang, C.Y.; Liu, P.; Luan, Y.K.; Li, D.Z.; Li, Y.Y. Study on transverse-longitudinal fatigue properties and their effective-inclusion-size mechanism of hot rolled bearing steel with rare earth addition. Int. J. Fatigue 2019, 128, 105193. [Google Scholar] [CrossRef]
- Ma, X.P.; Li, X.D.; Langelier, B.; Gault, B.; Subramanian, S.; Collins, L. Effects of carbon variation on microstructure evolution in weld heat-affected zone of Nb-Ti microalloyed steels. Metall. Mater. Trans. B 2018, 48, 4824–4837. [Google Scholar] [CrossRef]
- Song, M.M.; Song, B.; Zhang, S.H.; Xue, Z.L.; Yang, Z.B.; Xu, R.S. Role of lanthanum addition on acicular ferrite transformation in C-Mn steel. ISIJ Int. 2017, 7, 1261–1267. [Google Scholar] [CrossRef]
- Li, T.F.; Zhong, Y.F.; Qu, S.; Zhang, Z.F. Influences of the characteristics of carbide particles on the rolling contact fatigue life of rare earth modified, highly clean bearing steel. Eng. Fail. Anal. 2023, 143, 106888. [Google Scholar] [CrossRef]
- Zhou, X.F.; Yin, X.Y.; Fang, F.; Jiang, J.Q.; Zhu, W.L. Influence of rare earths on eutectic carbides in AISIM2 high speed steel. J. Rare Earths 2012, 30, 1075–1078. [Google Scholar] [CrossRef]
- Li, X.; Jiang, Z.H.; Geng, X.; Chen, M.J.; Peng, L.Z. Evolution mechanism of inclusions in H13 steel with rare earth magnesium alloy addition. ISIJ Int. 2019, 59, 1552–1561. [Google Scholar] [CrossRef]
- Wang, H.; Li, J.; Shi, C.B.; Li, J. Evolution of Al2O3 inclusions by magnesium treatment in H13 hot work die steel. Ironmak. Steelmak. 2017, 44, 128–133. [Google Scholar] [CrossRef]
- Geng, R.M.; Li, J.; Shi, C.B. Evolution of calcium aluminate inclusions by cerium treatment in Al-killed steel during Ruhrstahl-Heraeus refining process. Steel Res. Int. 2020, 91, 2000117. [Google Scholar] [CrossRef]
- Yu, Z.; Liu, C.J. Evolution mechanism of inclusions in medium-manganese steel by Mg treatment with different aluminum contents. Metall. Mater. Trans. B 2019, 50, 772–781. [Google Scholar] [CrossRef]
- Ren, Y.; Zhang, L.F. Effect of cerium content on inclusions in an ultra-low-carbon aluminum-killed steel. Metall. Mater. Trans. B 2020, 51, 589–600. [Google Scholar] [CrossRef]
- Geng, R.M.; Li, J.; Shi, C.B. Evolution of inclusions with Ce addition and Ca treatment in Al-killed steel during RH refining process. ISIJ Int. 2021, 61, 1506–1513. [Google Scholar] [CrossRef]
- Liang, W.; Geng, R.M.; Zhi, J.G.; Li, J.; Huang, F. Oxide metallurgy technology in high strength steel: A review. Materials 2022, 15, 1350. [Google Scholar] [CrossRef] [PubMed]
- Seo, W.G.; Han, W.H.; Kim, J.S.; Pak, J.J. Deoxidation equilibria among Mg, Al and O in liquid iron in the presence of MgO·Al2O3 spinel. ISIJ Int. 2003, 42, 201–208. [Google Scholar] [CrossRef]
- Ma, W.J.; Bao, Y.P.; Wang, M.; Zhao, L.H. Effect of Mg and Ca treatment on behavior and particle size of inclusions in bearing steels. ISIJ Int. 2014, 54, 536–542. [Google Scholar] [CrossRef]
- Li, X.; Jiang, Z.H.; Geng, X.; Chen, M.J.; Cui, S. Effect of rare earth-magnesium alloy on inclusion evolution in industrial production of die steel. Steel Res. Int. 2019, 90, 1900103. [Google Scholar] [CrossRef]
- Ren, Y.; Zhang, L.F.; Liu, Y.B.; Cui, L.X.; Yang, W. Transformation of cerium-containing inclusions in ultra-low-carbon aluminum-killed steels during solidification and cooling. J. Mater. Res. Technol. 2020, 9, 8197–8206. [Google Scholar] [CrossRef]
- Li, H.; Yu, Y.C.; Ren, X.; Zhang, S.H.; Wang, S.B. Evolution of Al2O3 inclusions by cerium treatment in low carbon high manganese steel. J. Iron Steel Res. Int. 2017, 24, 925–934. [Google Scholar] [CrossRef]
- Wang, L.J.; Liu, Y.Q.; Wang, Q.; Chou, K.C. Evolution mechanisms of MgO·Al2O3 inclusions by cerium in spring used in fasteners of high-speed railway. ISIJ Int. 2015, 55, 970–975. [Google Scholar] [CrossRef]
Sample numbers | C | Cr | Ni | Mo | Al | Co |
S1 | 0.23 | 2.3 | 14.00 | 1.5 | 1.00 | 10 |
S2 | 0.23 | 2.3 | 14.00 | 1.5 | 1.00 | 10 |
S3 | 0.23 | 2.3 | 14.00 | 1.5 | 1.00 | 10 |
Sample numbers | Ca | Mg | Ce | T.O | S | N |
S1 | <0.0005 | 0.0015 | 0 | 0.0013 | 0.0020 | 0.0010 |
S2 | <0.0005 | 0.0032 | 0.0030 | 0.0012 | 0.0022 | 0.0009 |
S3 | <0.0005 | 0.0037 | 0.0071 | 0.0010 | 0.0034 | 0.0009 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, S.; Geng, R.; Lei, S.; Li, Y.; Wang, C. Effect of Cerium on Inclusion Modification in a Secondary-Hardening Steel. Materials 2023, 16, 3972. https://doi.org/10.3390/ma16113972
Han S, Geng R, Lei S, Li Y, Wang C. Effect of Cerium on Inclusion Modification in a Secondary-Hardening Steel. Materials. 2023; 16(11):3972. https://doi.org/10.3390/ma16113972
Chicago/Turabian StyleHan, Shun, Ruming Geng, Simin Lei, Yong Li, and Chunxu Wang. 2023. "Effect of Cerium on Inclusion Modification in a Secondary-Hardening Steel" Materials 16, no. 11: 3972. https://doi.org/10.3390/ma16113972
APA StyleHan, S., Geng, R., Lei, S., Li, Y., & Wang, C. (2023). Effect of Cerium on Inclusion Modification in a Secondary-Hardening Steel. Materials, 16(11), 3972. https://doi.org/10.3390/ma16113972