Heat Treatment Optimization for a High Strength Al–Mn–Sc Alloy Fabricated by Selective Laser Melting
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material, SLM Fabrication, and Post-Process Heat Treatment
2.2. Microstructural Observation
2.3. Mechanical Test
3. Results
3.1. Relative Density
3.2. The Microstructure Characteristics and Aging Response
3.3. Tensile Test
4. Discussion
5. Conclusions
- (1)
- An optimized SLM parameter set was obtained at a laser power of 350 W, a scan speed of 1200 mm/s, a hatch distance of 140 μm, and a layer thickness of 30 μm for the Al–Mn–Sc alloy with 99.9% relative density. The as-fabricated specimen had the lowest hardness, yield strength, and ultimate tensile strength, but it had the highest elongation at fracture.
- (2)
- The aging response showed that 300 °C for 5 h is the peak aged condition for the SLM fabricated Al–Mn–Sc alloy. A high yield strength of ~502 MPa was obtained in the peak aged condition (HT300) due to the uniformly distributed nano-sized secondary Al3Sc precipitates, and peak aged condition still had a good elongation at fracture of 13.1%.
- (3)
- The strength decreased in the overaged conditions of HT400, which was attributed to the reduced volume fraction of secondary Al3Sc precipitates at a high aging temperature.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rankouhi, B.; Islam, Z.; Pfefferkorn, F.E.; Thoma, D.J. Characterization of Multi-Material 316L-Hastelloy X Fabricated via Laser Powder-Bed Fusion. Mater. Sci. Eng. A 2022, 837, 142749. [Google Scholar] [CrossRef]
- Jia, Q.; Lu, C.; Yan, Y.; Zhuo, Y.; Wang, L.; Xia, Z.; Wang, C.; Wu, X. Tensile Deformation Behaviors of Laser Powder Bed Fusion Fabricated Al–Mn-Sc Alloy with Heterogeneous Grain Structure. Mater. Sci. Eng. A 2022, 849, 143447. [Google Scholar] [CrossRef]
- Bian, Q.; Bauer, C.; Stadler, A.; Buchfellner, F.; Jakobi, M.; Volk, W.; Koch, A.W.; Roths, J. Monitoring Strain Evolution and Distribution during the Casting Process of AlSi9Cu3 Alloy with Optical Fiber Sensors. J. Alloys Compd. 2023, 935, 168146. [Google Scholar] [CrossRef]
- Medjahed, A.; Moula, H.; Zegaoui, A.; Derradji, M.; Henniche, A.; Wu, R.; Hou, L.; Zhang, J.; Zhang, M. Influence of the Rolling Direction on the Microstructure, Mechanical, Anisotropy and Gamma Rays Shielding Properties of an Al-Cu-Li-Mg-X Alloy. Mater. Sci. Eng. A 2018, 732, 129–137. [Google Scholar] [CrossRef]
- Zhang, D.; Pan, H.; Zeng, Z.; Xie, D.; Li, C.; Li, J.; Tang, W.; Yang, C.; Qin, G. Variable Mechanical Properties Due to Gradient Microstructure in a Dilute Mg-Mn-Ca-Ce Alloy Subjected to Bidirectional Forging. Mater. Today Commun. 2023, 35, 105543. [Google Scholar] [CrossRef]
- He, P.; Webster, R.F.; Yakubov, V.; Kong, H.; Yang, Q.; Huang, S.; Ferry, M.; Kruzic, J.J.; Li, X. Fatigue and Dynamic Aging Behavior of a High Strength Al-5024 Alloy Fabricated by Laser Powder Bed Fusion Additive Manufacturing. Acta Mater. 2021, 220, 117312. [Google Scholar] [CrossRef]
- Cao, S.; Zou, Y.; Lim, C.V.S.; Wu, X. Review of Laser Powder Bed Fusion (LPBF) Fabricated Ti-6Al-4V: Process, Post-Process Treatment, Microstructure, and Property. Light. Adv. Manuf. 2021, 2, 313–332. [Google Scholar] [CrossRef]
- Cao, S.; Zhang, B.; Yang, Y.; Jia, Q.; Li, L.; Xin, S.; Wu, X.; Hu, Q.; Lim, C.V.S. On the Role of Cooling Rate and Temperature in Forming Twinned Alpha’ Martensite in Ti-6Al-4V. J. Alloys Compd. 2019, 813, 152247. [Google Scholar] [CrossRef]
- Jia, Q.; Rometsch, P.; Cao, S.; Zhang, K.; Wu, X. Towards a High Strength Aluminium Alloy Development Methodology for Selective Laser Melting. Mater. Des. 2019, 174, 107775. [Google Scholar] [CrossRef]
- Mehta, B. High Performance Aluminium Alloys for Laser Powder Bed Fusion: Alloy Design and Development. Master’s Thesis, Chalmers University of Technology, Gothenburg, Sweden, 2021. [Google Scholar]
- Jia, Q.; Rometsch, P.; Cao, S.; Zhang, K.; Huang, A.; Wu, X. Characterisation of AlScZr and AlErZr Alloys Processed by Rapid Laser Melting. Scr. Mater. 2018, 151, 42–46. [Google Scholar] [CrossRef]
- Li, R.; Wang, M.; Li, Z.; Cao, P.; Yuan, T.; Zhu, H. Developing a High-Strength Al-Mg-Si-Sc-Zr Alloy for Selective Laser Melting: Crack-Inhibiting and Multiple Strengthening Mechanisms. Acta Mater. 2020, 193, 83–98. [Google Scholar] [CrossRef]
- Luo, S.; Zhao, C.; Su, Y.; Liu, Q.; Wang, Z. Selective Laser Melting of Dual Phase AlCrCuFeNix High Entropy Alloys: Formability, Heterogeneous Microstructures and Deformation Mechanisms. Addit. Manuf. 2020, 31, 100925. [Google Scholar] [CrossRef]
- Chen, Y.; Xiao, C.; Zhu, S.; Li, Z.; Yang, W.; Zhao, F.; Yu, S.; Shi, Y. Microstructure Characterization and Mechanical Properties of Crack-Free Al-Cu-Mg-Y Alloy Fabricated by Laser Powder Bed Fusion. Addit. Manuf. 2022, 58, 103006. [Google Scholar] [CrossRef]
- Wang, A.; Yan, Y.; Chen, Z.; Qi, H.; Yin, Y.; Wu, X.; Jia, Q. Characterisation of the Multiple Effects of Sc/Zr Elements in Selective Laser Melted Al Alloy. Mater. Charact. 2022, 183, 111653. [Google Scholar] [CrossRef]
- Jia, Q.; Rometsch, P.; Kürnsteiner, P.; Chao, Q.; Huang, A.; Weyland, M.; Bourgeois, L.; Wu, X. Selective Laser Melting of a High Strength AlMnSc Alloy: Alloy Design and Strengthening Mechanisms. Acta Mater. 2019, 171, 108–118. [Google Scholar] [CrossRef]
- Rometsch, P.; Jia, Q.; Yang, K.V.; Wu, X. Aluminum Alloys for Selective Laser Melting—Towards Improved Performance; Elsevier Inc.: Amsterdam, The Netherlands, 2019; ISBN 9780128140635. [Google Scholar]
- Fuller, C.B.; Seidman, D.N.; Dunand, D.C. Mechanical Properties of Al(Sc,Zr) Alloys at Ambient and Elevated Temperatures. Acta Mater. 2003, 51, 4803–4814. [Google Scholar] [CrossRef]
- Seidman, D.N.; Marquis, E.A.; Dunand, D.C. Precipitation Strengthening at Ambient and Elevated Temperatures of Heat-Treatable Al(Sc) Alloys. Acta Mater. 2002, 50, 4021–4035. [Google Scholar] [CrossRef]
- Song, H. Microstructural Optimization and Elevated Temperature Creep Enhancement of Nickel-Based Superalloy IN738LC by Selective Laser Melting. Ph.D. Thesis, Monash University, Melbourne, Australia, 2022. [Google Scholar]
- Bayoumy, D.; Schliephake, D.; Dietrich, S.; Wu, X.H.; Zhu, Y.M.; Huang, A.J. Intensive Processing Optimization for Achieving Strong and Ductile Al-Mn-Mg-Sc-Zr Alloy Produced by Selective Laser Melting. Mater. Des. 2021, 198, 15–17. [Google Scholar] [CrossRef]
- Zhou, Z.; Chen, J.; Wen, F.; Han, S.; Zhong, S.; Qi, L.; Guan, R. Optimization of Heat Treatment for an Al–Mg–Sc–Mn–Zr Alloy with Ultrafine Grains Manufactured by Laser Powder Bed Fusion. Mater. Charact. 2022, 189, 111977. [Google Scholar] [CrossRef]
- Kumar, S.P.; Chakkravarthy, V.; Mahalingam, A.; Rajeshshyam, R.; Sriraman, N.; Marimuthu, P.; Narayan, R.L.; Babu, P.D. Investigation of Crystallographic Orientation and Mechanical Behaviour in Laser-Welded Stainless Steel 316L Additive Components. Trans. Indian Inst. Met. 2023, 76, 527–535. [Google Scholar] [CrossRef]
- Agrawal, P.; Gupta, S.; Thapliyal, S.; Shukla, S.; Haridas, R.S.; Mishra, R.S. Additively Manufactured Novel Al-Cu-Sc-Zr Alloy: Microstructure and Mechanical Properties. Addit. Manuf. 2021, 37, 101623. [Google Scholar] [CrossRef]
- Bi, J.; Liu, L.; Wang, C.; Chen, G.; Jia, X.; Chen, X.; Xia, H.; Li, X.; Starostenkov, M.D.; Han, B.; et al. Microstructure, Tensile Properties and Heat-Resistant Properties of Selective Laser Melted AlMgScZr Alloy under Long-Term Aging Treatment. Mater. Sci. Eng. A 2022, 833, 142527. [Google Scholar] [CrossRef]
- Calcagnotto, M.; Ponge, D.; Demir, E.; Raabe, D. Orientation Gradients and Geometrically Necessary Dislocations in Ultrafine Grained Dual-Phase Steels Studied by 2D and 3D EBSD. Mater. Sci. Eng. A 2010, 527, 2738–2746. [Google Scholar] [CrossRef]
- Zhao, T.; Cai, W.; Dahmen, M.; Schaible, J.; Hong, C.; Gasser, A.; Weisheit, A.; Biermann, T.; Kelbassa, I.; Zhang, H.; et al. Ageing Response of an Al-Mg-Mn-Sc-Zr Alloy Processed by Laser Metal Deposition in Thin-Wall Structures. Vacuum 2018, 158, 121–125. [Google Scholar] [CrossRef]
- Wang, Z.; Lin, X.; Kang, N.; Chen, J.; Tan, H.; Feng, Z.; Qin, Z.; Yang, H.; Huang, W. Laser Powder Bed Fusion of High-Strength Sc/Zr-Modified Al–Mg Alloy: Phase Selection, Microstructural/Mechanical Heterogeneity, and Tensile Deformation Behavior. J. Mater. Sci. Technol. 2021, 95, 40–56. [Google Scholar] [CrossRef]
- Zeng, X.H.; Xue, P.; Wu, L.H.; Ni, D.R.; Xiao, B.L.; Ma, Z.Y. Achieving an Ultra-High Strength in a Low Alloyed Al Alloy via a Special Structural Design. Mater. Sci. Eng. A 2019, 755, 28–36. [Google Scholar] [CrossRef]
- Qi, Y.; Zhang, H.; Nie, X.; Hu, Z.; Zhu, H.; Zeng, X. A High Strength Al–Li Alloy Produced by Laser Powder Bed Fusion: Densification, Microstructure, and Mechanical Properties. Addit. Manuf. 2020, 35, 101346. [Google Scholar] [CrossRef]
- Laplanche, G.; Kostka, A.; Horst, O.M.; Eggeler, G.; George, E.P. Microstructure Evolution and Critical Stress for Twinning in the CrMnFeCoNi High-Entropy Alloy. Acta Mater. 2016, 118, 152–163. [Google Scholar] [CrossRef]
- Buranova, Y.; Kulitskiy, V.; Peterlechner, M.; Mogucheva, A.; Kaibyshev, R.; Divinski, S.V.; Wilde, G. Al3(Sc,Zr)-Based Precipitates in Al–Mg Alloy: Effect of Severe Deformation. Acta Mater. 2017, 124, 210–224. [Google Scholar] [CrossRef]
- Li, R.; Wang, M.; Yuan, T.; Song, B.; Chen, C.; Zhou, K.; Cao, P. Selective Laser Melting of a Novel Sc and Zr Modified Al-6.2 Mg Alloy: Processing, Microstructure, and Properties. Powder Technol. 2017, 319, 117–128. [Google Scholar] [CrossRef]
- Jawed, S.F.; Rabadia, C.D.; Liu, Y.J.; Wang, L.Q.; Qin, P.; Li, Y.H.; Zhang, X.H.; Zhang, L.C. Strengthening Mechanism and Corrosion Resistance of Beta-Type Ti-Nb-Zr-Mn Alloys. Mater. Sci. Eng. C 2020, 110, 110728. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.; Liu, L.H.; Yang, C.; Lu, H.Z.; Ma, H.W.; Wang, Z.; Li, D.D.; Zhang, L.C.; Li, Y.Y. Overcoming the Strength–Ductility Trade-off by Tailoring Grain-Boundary Metastable Si-Containing Phase in β-Type Titanium Alloy. J. Mater. Sci. Technol. 2021, 68, 112–123. [Google Scholar] [CrossRef]
- Li, G.; Brodu, E.; Soete, J.; Wei, H.; Liu, T.; Yang, T.; Liao, W.; Vanmeensel, K. Exploiting the Rapid Solidification Potential of Laser Powder Bed Fusion in High Strength and Crack-Free Al-Cu-Mg-Mn-Zr Alloys. Addit. Manuf. 2021, 47, 102210. [Google Scholar] [CrossRef]
- Nembach, E. Precipitation Hardening Caused by a Difference in Shear Modulus between Particle and Matrix. Phys. Status Solidi 1983, 78, 571–581. [Google Scholar] [CrossRef]
- Shaji Karapuzha, A.; Fraser, D.; Schliephake, D.; Dietrich, S.; Zhu, Y.; Wu, X.; Huang, A. Microstructure, Mechanical Behaviour and Strengthening Mechanisms in Hastelloy X Manufactured by Electron Beam and Laser Beam Powder Bed Fusion. J. Alloys Compd. 2021, 862, 158034. [Google Scholar] [CrossRef]
- Bayoumy, D.; Boll, T.; Schliephake, D.; Wu, X.; Zhu, Y.; Huang, A. On the Complex Intermetallics in an Al-Mn-Sc Based Alloy Produced by Laser Powder Bed Fusion. J. Alloys Compd. 2022, 901, 163571. [Google Scholar] [CrossRef]
Specimen Condition | YS (MPa) | UTS (MPa) | El. (%) |
---|---|---|---|
As-fabricated | 296 ± 2 | 337 ± 3 | 18.8 ± 3.1 |
HT300 | 502 ± 4 | 527 ± 4 | 13.1 ± 2.7 |
HT400 | 464 ± 4 | 483 ± 4 | 6.2 ± 1.0 |
Specimen Condition | Mn | Mg | Sc | Zr |
---|---|---|---|---|
As-fabricated | 1.7 ± 0.4 | 1.4 ± 0.2 | 0.1 ± 0.1 | 0.1 ± 0.1 |
HT300 | 1.8 ± 0.3 | 1.4 ± 0.4 | 0.2 ± 0.1 | 0.2 ± 0.1 |
HT400 | 1.8 ± 0.2 | 1.3 ± 0.3 | 0.2 ± 0.1 | 0.2 ± 0.2 |
Strengthening Contribution | As-Fabricated | 300HT | 400HT |
---|---|---|---|
σGS (MPa) | 158 | 164 | 158 |
σss (MPa) | 110 | 116 | 115 |
σDS (MPa) | 26 | 21 | 21 |
σPS (MPa) | 0 | 227 | 185 |
σ0.2-estimated (MPa) | 294 | 528 | 479 |
σ0.2-experimental (MPa) | 296 | 502 | 464 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, H.; Zhang, H.; Meng, L.; Li, Y.; Cao, S. Heat Treatment Optimization for a High Strength Al–Mn–Sc Alloy Fabricated by Selective Laser Melting. Materials 2023, 16, 4054. https://doi.org/10.3390/ma16114054
Liu H, Zhang H, Meng L, Li Y, Cao S. Heat Treatment Optimization for a High Strength Al–Mn–Sc Alloy Fabricated by Selective Laser Melting. Materials. 2023; 16(11):4054. https://doi.org/10.3390/ma16114054
Chicago/Turabian StyleLiu, Hongyu, Hao Zhang, Liju Meng, Yulong Li, and Sheng Cao. 2023. "Heat Treatment Optimization for a High Strength Al–Mn–Sc Alloy Fabricated by Selective Laser Melting" Materials 16, no. 11: 4054. https://doi.org/10.3390/ma16114054
APA StyleLiu, H., Zhang, H., Meng, L., Li, Y., & Cao, S. (2023). Heat Treatment Optimization for a High Strength Al–Mn–Sc Alloy Fabricated by Selective Laser Melting. Materials, 16(11), 4054. https://doi.org/10.3390/ma16114054