Elucidating the Effects of Interconnecting Layer Thickness and Bandgap Variations on the Performance of Monolithic Perovskite/Silicon Tandem Solar Cell by wxAMPS
Abstract
:1. Introduction
2. Modeling Procedure
3. Results and Discussion
3.1. Single Junction and Tandem Cell Baseline Cell
3.2. Tandem Cell Design with and without an Interconnecting Layer
3.3. Electrical Performance Effect of Bandgap and Thickness Variations on the PSC/Si Tandem Configuration
3.4. Optical Performance Effect of Bandgap and Thickness Variations on the PSC/Si Tandem Configuration
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ehrler, B.; Alarcón-Lladó, E.; Tabernig, S.W.; Veeken, T.; Garnett, E.C.; Polman, A. Photovoltaics Reaching for the Shockley–Queisser Limit. ACS Energy Lett. 2020, 5, 3029–3033. [Google Scholar] [CrossRef]
- Fraunhofer ISE and PSE Projects GmbH. Photovoltaics Report—2022—Fraunhofer ISE. 2022. Available online: https://www.ise.fraunhofer.de/conte%0Ant/dam/ise/d (accessed on 7 October 2022).
- Kothandaraman, R.K.; Jiang, Y.; Feurer, T.; Tiwari, A.N.; Fu, F. Near-Infrared-Transparent Perovskite Solar Cells and Perovskite-Based Tandem Photovoltaics. Small Methods 2020, 4, 2000395. [Google Scholar] [CrossRef]
- Akhil, S.; Akash, S.; Pasha, A.; Kulkarni, B.; Jalalah, M.; Alsaiari, M.; Harraz, F.A.; Balakrishna, R.G. Review on perovskite silicon tandem solar cells: Status and prospects 2T, 3T and 4T for real world conditions. Mater. Des. 2021, 211, 110138. [Google Scholar] [CrossRef]
- Alkharasani, W.M.; Amin, N.; Shahahmadi, S.A.; Alkahtani, A.A.; Mohamad, I.S.; Chelvanathan, P.; Kiong, T.S. A Comparative Study on p- and n-Type Silicon Heterojunction Solar Cells by AFORS-HET. Materials 2022, 15, 3508. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Wang, Y.; Choy, W.C.H. Efficient Interconnection in Perovskite Tandem Solar Cells. Small Methods 2020, 4, 2000093. [Google Scholar] [CrossRef]
- Elsmani, M.I.; Fatima, N.; Torres, I.; Fernández, S.; Jallorina, M.P.A.; Chelvanathan, P.; Rais, A.R.M.; Daud, M.N.M.; Nasir, S.N.S.; Sepeai, S.; et al. Raytracing Modelling of Infrared Light Management Using Molybdenum Disulfide (MoS2) as a Back-Reflector Layer in a Silicon Heterojunction Solar Cell (SHJ). Materials 2022, 15, 5024. [Google Scholar] [CrossRef]
- Werner, J.; Barraud, L.; Walter, A.; Bräuninger, M.; Sahli, F.; Sacchetto, D.; Tétreault, N.; Paviet-Salomon, B.; Moon, S.-J.; Allebé, C.; et al. Efficient Near-Infrared-Transparent Perovskite Solar Cells Enabling Direct Comparison of 4-Terminal and Monolithic Perovskite/Silicon Tandem Cells. ACS Energy Lett. 2016, 1, 474–480. [Google Scholar] [CrossRef]
- Chen, B.; Baek, S.-W.; Hou, Y.; Aydin, E.; De Bastiani, M.; Scheffel, B.; Proppe, A.; Huang, Z.; Wei, M.; Wang, Y.-K.; et al. Enhanced optical path and electron diffusion length enable high-efficiency perovskite tandems. Nat. Commun. 2020, 11, 1257. [Google Scholar] [CrossRef] [PubMed]
- Rühle, S. The detailed balance limit of perovskite/silicon and perovskite/CdTe tandem solar cells. Phys. Status Solidi 2017, 214, 1600955. [Google Scholar] [CrossRef]
- Shen, H.; Walter, D.; Wu, Y.; Fong, K.C.; Jacobs, D.A.; Duong, T.; Peng, J.; Weber, K.; White, T.P.; Catchpole, K.R. Monolithic Perovskite/Si Tandem Solar Cells: Pathways to Over 30% Efficiency. Adv. Energy Mater. 2020, 10, 1902840. [Google Scholar] [CrossRef]
- Mailoa, J.P.; Bailie, C.D.; Johlin, E.C.; Hoke, E.T.; Akey, A.J.; Nguyen, W.H.; McGehee, M.D.; Buonassisi, T. A 2-terminal perovskite/silicon multijunction solar cell enabled by a silicon tunnel junction. Appl. Phys. Lett. 2015, 106, 121105. [Google Scholar] [CrossRef]
- Werner, J.; Walter, A.; Rucavado, E.; Moon, S.-J.; Sacchetto, D.; Rienaecker, M.; Peibst, R.; Brendel, R.; Niquille, X.; De Wolf, S.; et al. Zinc tin oxide as high-temperature stable recombination layer for mesoscopic perovskite/silicon monolithic tandem solar cells. Appl. Phys. Lett. 2016, 109, 233902. [Google Scholar] [CrossRef]
- Lee, B.J.; Kim, H.J.; Jeong, W.-I.; Kim, J.-J. A transparent conducting oxide as an efficient middle electrode for flexible organic tandem solar cells. Sol. Energy Mater. Sol. Cells 2010, 94, 542–546. [Google Scholar] [CrossRef]
- Morales-Masis, M.; De Nicolas, S.M.; Holovsky, J.; De Wolf, S.; Ballif, C. Low-Temperature High-Mobility Amorphous IZO for Silicon Heterojunction Solar Cells. IEEE J. Photovolt. 2015, 5, 1340–1347. [Google Scholar] [CrossRef]
- Chowdhury, T.H.; Ferdaous, M.T.; Wadi, M.A.A.; Chelvanathan, P.; Amin, N.; Islam, A.; Kamaruddin, N.; Zin, M.I.M.; Ruslan, M.H.; Bin Sopian, K.; et al. Prospects of Ternary Cd1−xZnxS as an Electron Transport Layer and Associated Interface Defects in a Planar Lead Halide Perovskite Solar Cell via Numerical Simulation. J. Electron. Mater. 2018, 47, 3051–3058. [Google Scholar] [CrossRef]
- Liu, Y.; Ahmadpour, M.; Adam, J.; Kjelstrup-Hansen, J.; Rubahn, H.-G.; Madsen, M. Modeling Multijunction Solar Cells by Nonlocal Tunneling and Subcell Analysis. IEEE J. Photovolt. 2018, 8, 1363–1369. [Google Scholar] [CrossRef]
- Smucker, J.; Gong, J. A comparative study on the band diagrams and efficiencies of silicon and perovskite solar cells using wxAMPS and AMPS-1D. Sol. Energy 2021, 228, 187–199. [Google Scholar] [CrossRef]
- Fonash, S.J. Homojunction Solar Cells. In Solar Cell Device Physics; Elsevier: Amsterdam, The Netherlands, 2010; pp. 121–182. [Google Scholar] [CrossRef]
- An, Y.; Shang, A.; Cao, G.; Wu, S.; Ma, D.; Li, X. Perovskite Solar Cells: Optoelectronic Simulation and Optimization. Sol. RRL 2018, 2, 1800126. [Google Scholar] [CrossRef]
- Jamal, M.; Shahahmadi, S.; Wadi, M.A.A.; Chelvanathan, P.; Asim, N.; Misran, H.; Hossain, M.; Amin, N.; Sopian, K. Effect of defect density and energy level mismatch on the performance of perovskite solar cells by numerical simulation. Optik 2019, 182, 1204–1210. [Google Scholar] [CrossRef]
- Isah, M.; Rahman, K.; Doroody, C.; Harif, M.; Rosly, H.; Sopian, K.; Tiong, S.; Amin, N. Design optimization of CdTe/Si tandem solar cell using different transparent conducting oxides as interconnecting layers. J. Alloys Compd. 2021, 870, 159351. [Google Scholar] [CrossRef]
- Li, D.; Song, L.; Chen, Y.; Huang, W. Modeling Thin Film Solar Cells: From Organic to Perovskite. Adv. Sci. 2020, 7, 1901397. [Google Scholar] [CrossRef]
- Zhao, J.; Wang, A.; Green, M.A.; Ferrazza, F. 19.8% efficient ‘honeycomb’ textured multicrystalline and 24.4% monocrystalline silicon solar cells. Appl. Phys. Lett. 1998, 73, 1991–1993. [Google Scholar] [CrossRef]
- Green, M.A.; Dunlop, E.D.; Hohl-Ebinger, J.; Yoshita, M.; Kopidakis, N.; Ho-Baillie, A.W.Y. Solar cell efficiency tables (Version 55). Prog. Photovoltaics Res. Appl. 2020, 28, 3–15. [Google Scholar] [CrossRef]
- Zhou, H.; Chen, Q.; Li, G.; Luo, S.; Song, T.-B.; Duan, H.-S.; Hong, Z.; You, J.; Liu, Y.; Yang, Y. Interface engineering of highly efficient perovskite solar cells. Science 2014, 345, 542–546. [Google Scholar] [CrossRef]
- Unger, E.L.; Hoke, E.T.; Bailie, C.D.; Nguyen, W.H.; Bowring, A.R.; Heumüller, T.; Christoforo, M.G.; McGehee, M.D. Hysteresis and transient behavior in current–voltage measurements of hybrid-perovskite absorber solar cells. Energy Environ. Sci. 2014, 7, 3690–3698. [Google Scholar] [CrossRef]
- Green, M.A.; Dunlop, E.D.; Hohl-Ebinger, J.; Yoshita, M.; Kopidakis, N.; Bothe, K.; Hinken, D.; Rauer, M.; Hao, X. Solar cell efficiency tables (Version 60). Prog. Photovoltaics Res. Appl. 2022, 30, 687–701. [Google Scholar] [CrossRef]
- Xia, X.; Jiang, Y.; Wan, Q.; Wang, X.; Wang, L.; Li, F. Lithium and Silver Co-Doped Nickel Oxide Hole-Transporting Layer Boosting the Efficiency and Stability of Inverted Planar Perovskite Solar Cells. ACS Appl. Mater. Interfaces 2018, 10, 44501–44510. [Google Scholar] [CrossRef]
- Chowdhury, M.; Shahahmadi, S.; Chelvanathan, P.; Tiong, S.; Amin, N.; Techato, K.; Nuthammachot, N.; Chowdhury, T.; Suklueng, M. Effect of deep-level defect density of the absorber layer and n/i interface in perovskite solar cells by SCAPS-1D. Results Phys. 2019, 16, 102839. [Google Scholar] [CrossRef]
- Fu, F.; Li, J.; Yang, T.C.; Liang, H.; Faes, A.; Jeangros, Q.; Ballif, C.; Hou, Y. Monolithic Perovskite-Silicon Tandem Solar Cells: From the Lab to Fab? Adv. Mater. 2022, 34, 2106540. [Google Scholar] [CrossRef]
- Du, H.-J.; Wang, W.-C.; Gu, Y.-F. Simulation design of P–I–N-type all-perovskite solar cells with high efficiency. Chin. Phys. B 2017, 26, 028803. [Google Scholar] [CrossRef]
- Yadav, S.; Kareem, M.A.; Kodali, H.K.; Agarwal, D.; Garg, A.; Verma, A.; Nalwa, K.S. Optoelectronic modeling of all-perovskite tandem solar cells with design rules to achieve >30% efficiency. Sol. Energy Mater. Sol. Cells 2022, 242, 111780. [Google Scholar] [CrossRef]
- Koc, M.; Ameri, M.; Yerci, S. Optical design of TCO-free interconnecting layer for all-perovskite tandem solar cells. Appl. Phys. Lett. 2021, 119, 021102. [Google Scholar] [CrossRef]
- Mahmood, A.; Hu, J.-Y.; Xiao, B.; Tang, A.; Wang, X.; Zhou, E. Recent progress in porphyrin-based materials for organic solar cells. J. Mater. Chem. A 2018, 6, 16769–16797. [Google Scholar] [CrossRef]
Material Properties | n-TiO2 | i-MAI PSC | p-Spiro Ometad | ITO (ICL) | n-Si | p-Si | p+-Si |
---|---|---|---|---|---|---|---|
Thickness (µm) | 0.005 | 0.330 | 0.155 | 0–0.05 | 0.400 | 300 | 20.000 |
Dielectric permittivity ε/ε0 | 9.0 | 6.5 | 3.0 | 9.4 | 11.9 | 11.9 | 11.9 |
Bandgap Eg (eV) | 3.200 | 1.550 | 2.700 | 1.00–4.00 | 1.124 | 1.124 | 1.124 |
Electron affinity χ (eV) | 4.00 | 3.93 | 2.50 | 3.60 | 4.05 | 4.05 | 4.05 |
CB density of state (×1019) (cm−3) | 67.70 | 0.28 | 1.00 | 0.22 | 2.85 | 2.85 | 2.85 |
VB density of state (×1019) (cm−3) | 13.00 | 0.39 | 1.00 | 1.80 | 1.04 | 1.04 | 1.04 |
Electron mobility (cm2 V−1s−1) | 0.02 | 12.50 | 0.0002 | 100 | 1350 | 1350 | 1350 |
Hole mobility (cm2 V−1s−1) | 0.02 | 7.50 | 0.0002 | 25 | 450 | 450 | 450 |
ND density (cm−3) | 1 × 1020 | 5.21 × 109 | 0 | 1 × 1019 | 2.5 × 1019 | 0 | 0 |
NA density (cm−3) | 0 | 5.21 × 109 | 1 × 1020 | 0 | 0 | 1 × 1016 | 1 × 1018 |
Defect (band tails) E (conduction, valence) eV | na | 0.045, 0.045 | na | na | na | na | na |
Go (conduction, valence) 1/cm2/eV | na | 1 × 1019, 1 × 1019 | na | na | na | na | na |
σN (conduction, valence) cm2 | na | 1 × 10−13, 1 × 10−14 | na | na | na | na | na |
σP (conduction, valence) cm2 | na | 1 × 10−14, 1 × 10−13 | na | na | na | na | na |
Material Properties | n-TiO2 | i-MAI PSC | p-Spiro Ometad | ITO (ICL) | n-Si | p-Si | p+-Si |
---|---|---|---|---|---|---|---|
Grid Edge | 0.001 | 0.066 | 0.031 | varied | 0.1 | 50 | 4 |
Grid Center | 0.02 | 1.32 | 0.62 | varied | 2 | 1500 | 80 |
Band to Band Recombination | 2.31 × 109 | 0 | 2.31 × 109 | 0 | 0 | 0 | 0 |
Tunneling Effective Mass (m-c and m-v) | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Cell Type | Voc (V) | Jsc (mA/cm2) | FF (%) | ŋ (%) | Ref |
---|---|---|---|---|---|
C-Si single cell | 0.69 | 42.08 | 84.38 | 24.53 | this work |
UNSW, p-type PERC | 0.71 | 42.70 | 82.80 | 25.0 +/− 0.5 | [28] |
TiO2/MAPbI3/Spiro-Ometad | 1.03 | 23.56 | 79.48 | 19.27 | this work |
ITO/Li, Ag:NiOx/MAPbI3/PCBM/Ag | 1.13 | 21.29 | 80.00 | 19.24 | [29] |
Cell Type | Voc (V) | Jsc (mA/cm2) | FF (%) | ŋ (%) | Ref |
---|---|---|---|---|---|
Tandem PSC/c-Si no ICL | 1.58 | 13.01 | 77.89 | 16.02 | this work |
Tandem PSC/c-Si with ICL | 1.61 | 18.77 | 80.64 | 24.32 | this work |
UNIST/KIST PSC/Al-BSF with ICL | 1.65 | 16.10 | 79.90 | 21.20 | [31] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohamad, I.S.; Doroody, C.; Alkharasani, W.M.; Norizan, M.N.; Chelvanathan, P.; Shahahmadi, S.A.; Amin, N. Elucidating the Effects of Interconnecting Layer Thickness and Bandgap Variations on the Performance of Monolithic Perovskite/Silicon Tandem Solar Cell by wxAMPS. Materials 2023, 16, 4106. https://doi.org/10.3390/ma16114106
Mohamad IS, Doroody C, Alkharasani WM, Norizan MN, Chelvanathan P, Shahahmadi SA, Amin N. Elucidating the Effects of Interconnecting Layer Thickness and Bandgap Variations on the Performance of Monolithic Perovskite/Silicon Tandem Solar Cell by wxAMPS. Materials. 2023; 16(11):4106. https://doi.org/10.3390/ma16114106
Chicago/Turabian StyleMohamad, Ili Salwani, Camellia Doroody, Wabel Mohammed Alkharasani, Mohd Natashah Norizan, Puvaneswaran Chelvanathan, Seyed Ahmad Shahahmadi, and Nowshad Amin. 2023. "Elucidating the Effects of Interconnecting Layer Thickness and Bandgap Variations on the Performance of Monolithic Perovskite/Silicon Tandem Solar Cell by wxAMPS" Materials 16, no. 11: 4106. https://doi.org/10.3390/ma16114106
APA StyleMohamad, I. S., Doroody, C., Alkharasani, W. M., Norizan, M. N., Chelvanathan, P., Shahahmadi, S. A., & Amin, N. (2023). Elucidating the Effects of Interconnecting Layer Thickness and Bandgap Variations on the Performance of Monolithic Perovskite/Silicon Tandem Solar Cell by wxAMPS. Materials, 16(11), 4106. https://doi.org/10.3390/ma16114106