Cytotoxicity of Metal Ions Released from NiTi and Stainless Steel Orthodontic Appliances, Part 1: Surface Morphology and Ion Release Variations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Orthodontic Appliances
2.2. Experimental Media
2.3. Methods
2.3.1. Preparation of the Artificial Saliva Test Samples/Eluates
2.3.2. Surface Morphology Determination
2.3.3. Multi-Element Analysis of Artificial Saliva Samples before and after Immersion (ICP-MS)
2.3.4. Statistical Analyses
3. Results and Discussion
3.1. Surface Morphology—Qualitative SEM Analysis
3.1.1. Pristine Samples
3.1.2. Immersion after 3 Days
3.1.3. Immersion after 7 Days
3.1.4. Immersion after 14 Days
3.2. Semi-Quantitative Chemical Analyses of the Surface and Surface Entities
3.2.1. NiTi Archwires
3.2.2. Stainless Steel Appliances—Brackets, Bands, and Ligatures
3.3. Ion Release
3.3.1. NiTi Archwires
3.3.2. Stainless Steel Appliances—Brackets, Bands, and Ligatures
3.3.3. Surface Roughness
3.4. Correlation of Surface Morphology Development and Ion Release
4. Conclusions
- In the as-received state, four part types of a fixed orthodontic appliance exhibited dissimilar surface morphologies, which reflected variations in manufacturing processes. The onset of pitting corrosion was observed for the SS brackets and SS bands. Elemental composition of the unaffected surface areas of all parts reflected the nominal alloy composition, indicating the absence of the protective oxide layers.
- SEM micrographs and EDX analysis indicated that the immersion in artificial saliva did not cause the onset of pitting corrosion on NiTi archwires and SS ligatures, nor notably enhanced the corrosion process of SS brackets and SS bands during 14-day immersion. In contrast, it did result in the development of adherent layer on the surface of SS bands and SS ligatures.
- The immersion in artificial saliva caused the formation of crystal precipitates, mainly KCl. The morphology of KCl crystals varied for different orthodontic parts. Crystals containing Al were also detected, as well as other elements not listed in the nominal alloy composition. On the other hand, the expected corrosion products for steel immersed in a solution containing phosphate and carbonate ions—such as potassium phosphate or iron(II) carbonate (siderite)—were not detected on SS parts. The amount and average size of precipitates increased with immersion time.
- Ion release (ICP-MS) measurements proved to be more sensitive than SEM and EDX analyses. While latter techniques demonstrated moderate changes during immersion time, the eluted concentrations varied substantially. The release profiles for NiTi wires implied that the thin titanium oxide layer did start to form, but in amounts undetectable by SEM and EDX.
- Ion release was an order-of-magnitude higher for SS bands compared to the other parts of the appliance. This can most likely be assigned to the manufacturing procedure, namely welding. The welding caused increased amounts of Ni, Cr, and Co relative to eluted Fe concentration.
- Ion release did not correlate with surface roughness. The highest surface roughness was measured for SS ligatures, for which the lowest average amounts of eluted ions were measured. The SS bands, which released excessively high amounts of ions, had similar roughness to that of the archwires and brackets.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schmalz, G.; Arenholt-Bindslev, D. Biocompatibility of Dental Materials; Springer: Berlin/Heidelberg, Germany, 2009; ISBN 978-3-540-77781-6. [Google Scholar]
- Okazaki, Y.; Gotoh, E. Comparison of Metal Release from Various Metallic Biomaterials in Vitro. Biomaterials 2005, 26, 11–21. [Google Scholar] [CrossRef] [PubMed]
- Wataha, J.C. Biocompatibility of Dental Casting Alloys: A Review. J. Prosthet. Dent. 2000, 83, 223–234. [Google Scholar] [CrossRef] [PubMed]
- Ardelean, L.; Reclaru, L.; Bortun, C.M.; Rusu, L.C. Assessment of Dental Alloys by Different Methods. In Superalloys; Aliofkhazraei, M., Ed.; InTech: London, UK, 2015; ISBN 978-953-51-2212-8. [Google Scholar]
- Carroll, W.M.; Kelly, M.J. Corrosion Behavior of Nitinol Wires in Body Fluid Environments. J. Biomed. Mater. Res. 2003, 67, 1123–1130. [Google Scholar] [CrossRef] [PubMed]
- Milošev, I.; Kapun, B. The Corrosion Resistance of Nitinol Alloy in Simulated Physiological Solutions. Mater. Sci. Eng. C 2012, 32, 1087–1096. [Google Scholar] [CrossRef]
- Huang, H.-H. Variation in Corrosion Resistance of Nickel-Titanium Wires from Different Manufacturers. Angle Orthod. 2005, 75, 661–665. [Google Scholar] [CrossRef]
- Wendl, B.; Wiltsche, H.; Lankmayr, E.; Winsauer, H.; Walter, A.; Muchitsch, A.; Jakse, N.; Wendl, M.; Wendl, T. Metal Release Profiles of Orthodontic Bands, Brackets, and Wires: An in Vitro Study. J. Orofac. Orthop. 2017, 78, 494–503. [Google Scholar] [CrossRef]
- House, K.; Sernetz, F.; Dymock, D.; Sandy, J.R.; Ireland, A.J. Corrosion of Orthodontic Appliances—Should We Care? Am. J. Orthod. Dentofac. Orthop. 2008, 133, 584–592. [Google Scholar] [CrossRef]
- Brantley, W.; Berzins, D.; Iijima, M.; Tufekçi, E.; Cai, Z. Structure/Property Relationships in Orthodontic Alloys. In Orthodontic Applications of Biomaterials; Elsevier: Amsterdam, The Netherlands, 2017; pp. 3–38. ISBN 978-0-08-100383-1. [Google Scholar]
- McGinley, E.L.; Fleming, G.J.P.; Moran, G.P. Development of a Discriminatory Biocompatibility Testing Model for Non-Precious Dental Casting Alloys. Dent. Mater. 2011, 27, 1295–1306. [Google Scholar] [CrossRef]
- Nimeri, G.; Curry, J.; Berzins, D.; Liu, D.; Ahuja, B.; Lobner, D. Cytotoxic Evaluation of Two Orthodontic Silver Solder Materials on Human Periodontal Ligament Fibroblast Cells and the Effects of Antioxidant and Antiapoptotic Reagents. Angle Orthod. 2021, 91, 349–355. [Google Scholar] [CrossRef]
- Martin, S.F. T Lymphocyte-Mediated Immune Responses to Chemical Haptens and Metal Ions: Implications for Allergic and Autoimmune Disease. Int. Arch. Allergy Immunol. 2004, 134, 186–198. [Google Scholar] [CrossRef]
- Zigante, M.; Rincic Mlinaric, M.; Kastelan, M.; Perkovic, V.; Trinajstic Zrinski, M.; Spalj, S. Symptoms of Titanium and Nickel Allergic Sensitization in Orthodontic Treatment. Prog. Orthod. 2020, 21, 17. [Google Scholar] [CrossRef] [PubMed]
- Ferrer, M.D.; Pérez, S.; Lopez, A.L.; Sanz, J.L.; Melo, M.; Llena, C.; Mira, A. Evaluation of Clinical, Biochemical and Microbiological Markers Related to Dental Caries. Int. J. Environ. Res. Public Health 2021, 18, 6049. [Google Scholar] [CrossRef] [PubMed]
- Saha, S.; Roy, S. Metallic Dental Implants Wear Mechanisms, Materials, and Manufacturing Processes: A Literature Review. Materials 2022, 16, 161. [Google Scholar] [CrossRef] [PubMed]
- Olsson, C.-O.A.; Landolt, D. Passive Films on Stainless Steels—Chemistry, Structure and Growth. Electrochim. Acta 2003, 48, 1093–1104. [Google Scholar] [CrossRef]
- The Stainless Steel Family. International Stainless Steel Forum: Brussels, Belgium. Available online: http://www.worldstainless.org/Files/ISSF/non-image-files/PDF/TheStainlessSteelFamily.pdf (accessed on 24 April 2023).
- Bhagyaraj, J.; Ramaiah, K.V.; Saikrishna, C.N.; Bhaumik, S.K. Gouthama Behavior and Effect of Ti2Ni Phase during Processing of NiTi Shape Memory Alloy Wire from Cast Ingot. J. Alloys Compd. 2013, 581, 344–351. [Google Scholar] [CrossRef]
- Papaioannou, P.; Sütel, M.; Hüsker, K.; Müller, W.-D.; Bartzela, T. A New Setup for Simulating the Corrosion Behavior of Orthodontic Wires. Materials 2021, 14, 3758. [Google Scholar] [CrossRef]
- Tani, G.; Zucchi, F. Electrochemical measurement of the resistance to corrosion of some commonly used metals for dental prosthesis. Minerva Stomatol. 1967, 16, 710–713. [Google Scholar]
- Fiket, Ž.; Roje, V.; Mikac, N.; Knievald, G. Determination of Arsenic and Other Trace Elements in Bottled Waters by High Resolution Inductively Coupled Plasma Mass Spectrometry. Croat. Chem. Acta. 2007, 80, 91–100. [Google Scholar]
- Huang, H.-H. Surface Characterizations and Corrosion Resistance of Nickel-Titanium Orthodontic Archwires in Artificial Saliva of Various Degrees of Acidity. J. Biomed. Mater. Res. 2005, 74, 629–639. [Google Scholar] [CrossRef]
- Firstov, G.S.; Vitchev, R.G.; Kumar, H.; Blanpain, B.; Van Humbeeck, J. Surface Oxidation of NiTi Shape Memory Alloy. Biomaterials 2002, 23, 4863–4871. [Google Scholar] [CrossRef]
- Mendes, B.d.A.B.; Ferreira, R.A.N.; Pithon, M.M.; Horta, M.C.R.; Oliveira, D.D. Physical and Chemical Properties of Orthodontic Brackets after 12 and 24 Months: In Situ Study. J. Appl. Oral Sci. 2014, 22, 194–203. [Google Scholar] [CrossRef] [PubMed]
- Hunt, N.P.; Cunningham, S.J.; Golden, C.G.; Sheriff, M. An Investigation into the Effects of Polishing on Surface Hardness and Corrosion of Orthodontic Archwires. Angle Orthod. 1999, 69, 433–440. [Google Scholar] [CrossRef]
- Zinelis, S.; Annousaki, O.; Makou, M.; Eliades, T. Metallurgical Characterization of Orthodontic Brackets Produced by Metal Injection Molding (MIM). Angle Orthod. 2005, 75, 1024–1031. [Google Scholar] [CrossRef]
- Penna, R.A.; Mante, F.; Huey, B.D.; Ghafari, J. Comparison of Surface-Treated and Untreated Orthodontic Bands: Evaluation of Shear Force and Surface Roughness. Am. J. Orthod. Dentofac. Orthop. 1998, 114, 162–165. [Google Scholar] [CrossRef] [PubMed]
- Shabalovskaya, S.A.; Rondelli, G.C.; Undisz, A.L.; Anderegg, J.W.; Burleigh, T.D.; Rettenmayr, M.E. The Electrochemical Characteristics of Native Nitinol Surfaces. Biomaterials 2009, 30, 3662–3671. [Google Scholar] [CrossRef] [PubMed]
- Mikulewicz, M.; Wołowiec, P.; Michalak, I.; Chojnacka, K.; Czopor, W.; Berniczei-Royko, A.; Vegh, A.; Gedrange, T. Mapping Chemical Elements on the Surface of Orthodontic Appliance by SEM-EDX. Med. Sci. Monit. 2014, 20, 860–865. [Google Scholar] [CrossRef] [Green Version]
- Fróis, A.; Evaristo, M.; Santos, A.C.; Louro, C.S. Salivary PH Effect on Orthodontic Appliances: In Vitro Study of the SS/DLC System. Coatings 2021, 11, 1302. [Google Scholar] [CrossRef]
- Hedberg, Y.S.; Odnevall Wallinder, I. Metal Release from Stainless Steel in Biological Environments: A Review. Biointerphases 2016, 11, 018901. [Google Scholar] [CrossRef] [Green Version]
- Pound, B.G. Passive Films on Metallic Biomaterials under Simulated Physiological Conditions: Passive Films on Metallic Biomaterials. J. Biomed. Mater. Res. 2014, 102, 1595–1604. [Google Scholar] [CrossRef]
- Doomen, R.A.; Nedeljkovic, I.; Kuitert, R.B.; Kleverlaan, C.J.; Aydin, B. Corrosion of Orthodontic Brackets: Qualitative and Quantitative Surface Analysis. Angle Orthod. 2022, 92, 661–668. [Google Scholar] [CrossRef]
- Farr, N.T.H.; Hughes, G.M.; Rodenburg, C. Monitoring Carbon in Electron and Ion Beam Deposition within FIB-SEM. Materials 2021, 14, 3034. [Google Scholar] [CrossRef] [PubMed]
- Hugenschmidt, M.; Adrion, K.; Marx, A.; Müller, E.; Gerthsen, D. Electron-Beam-Induced Carbon Contamination in STEM-in-SEM: Quantification and Mitigation. Microsc. Microanal. 2023, 29, 219–234. [Google Scholar] [CrossRef]
- Zegan, G.; Anistoroaei, D.; Dascalu, C.G.; Cernei, E.R.; Toma, V. Morphological Aspect And Surface Chemical Analysis Of Salivary Crystals In Young Patients With/Without Orthodontic Appliances. Int. J. Med. Dent. 2019, 23, 57–63. [Google Scholar]
- Ferčec, J.; Jenko, D.; Buchmeister, B.; Rojko, F.; Budič, B.; Kosec, B.; Rudolf, R. Microstructure of NiTi Orthodontic Wires Observations Using Transmission Electron Microscopy. Metalurgija 2014, 53, 469–472. [Google Scholar]
- Pohl, M.; Glogowski, T.; Kühn, S.; Hessing, C.; Unterumsberger, F. Formation of Titanium Oxide Coatings on NiTi Shape Memory Alloys by Selective Oxidation. Mater. Sci. Eng. A 2008, 481, 123–126. [Google Scholar] [CrossRef]
- Mirjalili, M.; Momeni, M.; Ebrahimi, N.; Moayed, M.H. Comparative Study on Corrosion Behaviour of Nitinol and Stainless Steel Orthodontic Wires in Simulated Saliva Solution in Presence of Fluoride Ions. Mater. Sci. Eng. C 2013, 33, 2084–2093. [Google Scholar] [CrossRef]
- Krishnan, M.; Seema, S.; Tiwari, B.; Sharma, H.S.; Londhe, S.; Arora, V. Surface Characterization of Nickel Titanium Orthodontic Arch Wires. Med. J. Armed Forces India 2015, 71, S340–S345.e5. [Google Scholar] [CrossRef] [Green Version]
- Izquierdo, J.; González-Marrero, M.B.; Bozorg, M.; Fernández-Pérez, B.M.; Vasconcelos, H.C.; Santana, J.J.; Souto, R.M. Multiscale Electrochemical Analysis of the Corrosion of Titanium and Nitinol for Implant Applications. Electrochim. Acta 2016, 203, 366–378. [Google Scholar] [CrossRef]
- Bellini, H.; Moyano, J.; Gil, J.; Puigdollers, A. Comparison of the Superelasticity of Different Nickel–Titanium Orthodontic Archwires and the Loss of Their Properties by Heat Treatment. J. Mater. Sci Mater. Med. 2016, 27, 158. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.X.; Sato, M.; Ishida, A. On the Ti2Ni Precipitates and Guinier–Preston Zones in Ti-Rich Ti–Ni Thin Films. Acta Mater. 2003, 51, 3121–3130. [Google Scholar] [CrossRef]
- Godec, M.; Kocijan, A.; Jenko, M. Characterization of the Carbides in a Ni-Ti Shape-Memory Alloy Wire. Mater. Technol. 2011, 45, 61–65. [Google Scholar]
- Toro, A.; Zhou, F.; Wu, M.H.; Van Geertruyden, W.; Misiolek, W.Z. Characterization of Non-Metallic Inclusions in Superelastic NiTi Tubes. J. Mater. Eng. Perform. 2009, 18, 448–458. [Google Scholar] [CrossRef]
- Eliades, T. Surface Characterization of Retrieved NiTi Orthodontic Archwires. Eur. J. Orthod. 2000, 22, 317–326. [Google Scholar] [CrossRef] [Green Version]
- Wever, D.J.; Veldhuizen, A.G.; de Vries, J.; Busscher, H.J.; Uges, D.R.A.; van Horn, J.R. Electrochemical and Surface Characterization of a Nickel–Titanium Alloy. Biomaterials 1998, 19, 761–769. [Google Scholar] [CrossRef]
- Mikulewicz, M.; Chojnacka, K.; Woźniak, B.; Downarowicz, P. Release of Metal Ions from Orthodontic Appliances: An In Vitro Study. Biol. Trace Elem. Res. 2012, 146, 272–280. [Google Scholar] [CrossRef] [Green Version]
- Gravina, M.A.; Canavarro, C.; Elias, C.N.; Chaves, M.d.G.A.M.; Brunharo, I.H.V.P.; Quintão, C.C.A. Mechanical Properties of NiTi and CuNiTi Wires Used in Orthodontic Treatment. Part 2: Microscopic Surface Appraisal and Metallurgical Characteristics. Dent. Press J. Orthod. 2014, 19, 69–76. [Google Scholar] [CrossRef] [PubMed]
- Bobić, Z.; Kojić, S.; Stojanović, G.M.; Terek, V.; Kovačević, L.; Terek, P. Nanotopography Evaluation of NiTi Alloy Exposed to Artificial Saliva and Different Mouthwashes. Materials 2022, 15, 8705. [Google Scholar] [CrossRef]
- Savoye, S.; Legrand, L.; Sagon, G.; Lecomte, S.; Chausse, A.; Messina, R.; Toulhoat, P. Experimental Investigations on Iron Corrosion Products Formed in Bicarbonate/Carbonate-Containing Solutions at 90 °C. Corros. Sci. 2001, 43, 2049–2064. [Google Scholar] [CrossRef]
- Wurzler, N.; Schutter, J.D.; Wagner, R.; Dimper, M.; Hodoroaba, V.; Lützenkirchen-Hecht, D.; Ozcan, O. Preconditioning of AISI 304 Stainless Steel Surfaces in the Presence of Flavins—Part II: Effect on Biofilm Formation and Microbially Influenced Corrosion Processes. Mater. Corros. 2021, 72, 983–994. [Google Scholar] [CrossRef]
- Zhang, Z.; Pan, G.; Jiang, Y.; Chen, S.; Zou, S.; Li, W.; Xu, C.; Zhang, J. Microstructure and Pitting Corrosion of Austenite Stainless Steel after Crack Arrest. Materials 2019, 12, 4025. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.Y.; Li, X.G.; Cheng, Y.F. Electrochemical State Conversion Model for Occurrence of Pitting Corrosion on a Cathodically Polarized Carbon Steel in a Near-Neutral PH Solution. Electrochim. Acta 2011, 56, 4167–4175. [Google Scholar] [CrossRef]
- ustandi, A.; Nuradityatama; Rendi, M.F.; Setiawan, S. The Use of Cyclic Polarization Method for Corrosion Resistance Evaluation of Austenitic Stainless Steel 304L and 316L in Aqueous Sodium Chloride Solut. Int. J. Mech. Eng. Robot. Res. 2017, 6, 512–518. [Google Scholar] [CrossRef]
- Oh, K.-T.; Choo, S.-U.; Kim, K.-M.; Kim, K.-N. A Stainless Steel Bracket for Orthodontic Application. Eur. J. Orthod. 2005, 27, 237–244. [Google Scholar] [CrossRef] [Green Version]
- Loto, R.T. Pitting Corrosion Evaluation of Austenitic Stainless Steel Type 304 in Acid Chloride Media. J. Mater. Environ. Sci. 2013, 4, 448–459. [Google Scholar]
- Ćurković, L.; Ćurković, H.O.; Salopek, S.; Renjo, M.M.; Šegota, S. Enhancement of Corrosion Protection of AISI 304 Stainless Steel by Nanostructured Sol–Gel TiO2 Films. Corros. Sci. 2013, 77, 176–184. [Google Scholar] [CrossRef] [Green Version]
- Malinović, B.; Đuričić, T.; Zorić, D. Corrosion Behaviour of Stainless Steel EN 1.4301 in Acid Media in Presence of PBTCA Inhibitor. Zaštita Mater. 2020, 61, 133–139. [Google Scholar] [CrossRef]
- Park, H.Y.; Shearer, T.R. In Vitro Release of Nickel and Chromium from Simulated Orthodontic Appliances. Am. J. Orthod. 1983, 84, 156–159. [Google Scholar] [CrossRef]
- Dhandapani, P.; MuraliKannan, M.; Anandkumar, B.; Maruthamuthu, S.; Manoharan, S.P. Electrochemistry of Calcium Precipitating Bacteria in Orthodontic Wire. Oral Sci. Int. 2014, 11, 22–29. [Google Scholar] [CrossRef] [Green Version]
- da Silveira, R.; Gonçalves, T.; de Souza Schacher, H.; de Menezes, L. Ion Release and Surface Roughness of Silver Soldered Bands with Two Different Polishing Methods: An in-Vitro Study. J. Orthodont. Sci. 2022, 11, 11. [Google Scholar] [CrossRef]
- Freitas, M.P.M.; Oshima, H.M.S.; Menezes, L.M. Release of Toxic Ions from Silver Solder Used in Orthodontics: An in-Situ Evaluation. Am. J. Orthod. Dentofac. Orthop. 2011, 140, 177–181. [Google Scholar] [CrossRef]
- Barrett, R.D.; Bishara, S.E.; Quinn, J.K. Biodegradation of Orthodontic Appliances. Part I. Biodegradation of Nickel and Chromium in Vitro. Am. J. Orthod. Dentofac. Orthop. 1993, 103, 8–14. [Google Scholar] [CrossRef] [PubMed]
- Hussain, H.D.; Ajith, S.D.; Goel, P. Nickel Release from Stainless Steel and Nickel Titanium Archwires—An in Vitro Study. J. Oral Biol. Craniofac. Res. 2016, 6, 213–218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daems, J.; Celis, J.-P.; Willems, G. Morphological Characterization of As-Received and in Vivo Orthodontic Stainless Steel Archwires. Eur. J. Orthod. 2009, 31, 260–265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, T.-H.; Huang, T.-K.; Lin, S.-Y.; Chen, L.-K.; Chou, M.-Y.; Huang, H.-H. Corrosion Resistance of Different Nickel-Titanium Archwires in Acidic Fluoride-Containing Artificial Saliva. Angle Orthod. 2010, 80, 547–553. [Google Scholar] [CrossRef] [Green Version]
- Lin, M.; Lin, S.; Lee, T.; Huang, H. Surface Analysis and Corrosion Resistance of Different Stainless Steel Orthodontic Brackets in Artificial Saliva. Angle Orthod. 2006, 76, 322–329. [Google Scholar]
- Gadelmawla, E.S.; Koura, M.M.; Maksoud, T.M.A.; Elewa, I.M.; Soliman, H.H. Roughness Parameters. J. Mater. Process. Technol. 2002, 123, 133–145. [Google Scholar] [CrossRef]
- Brown, C.A.; Johnsen, W.A.; Hult, K.M. Scale-Sensitivity, Fractal Analysis and Simulations. Int. J. Mach. Tools Manuf. 1998, 38, 633–637. [Google Scholar] [CrossRef]
- Michel, R. Trace Metal Analysis in Biocompatibility Testing. CRC Crit. Rev. Biocomp. 1987, 3, 235–317. [Google Scholar]
- Kuhta, M.; Pavlin, D.; Slaj, M.; Varga, S.; Lapter-Varga, M.; Slaj, M. Type of Archwire and Level of Acidity: Effects on the Release of Metal Ions from Orthodontic Appliances. Angle Orthod. 2009, 79, 102–110. [Google Scholar] [CrossRef] [Green Version]
- Hwang, C.-J.; Shin, J.-S.; Cha, J.-Y. Metal Release from Simulated Fixed Orthodontic Appliances. Am. J. Orthod. Dentofac. Orthop. 2001, 120, 383–391. [Google Scholar] [CrossRef]
Element (wt%) | Ni | Fe | Ti | Cr | Mn | Mo | Rest | |
---|---|---|---|---|---|---|---|---|
Type of appliance | Archwires | 50–60 | ≤0.5 | 40–50 | - | - | - | ≤0.1 O, ≤0.1 Al, ≤0.1 C, ≤0.01 H, ≤0.01 N |
Brackets Ligatures | 10–13 | 63–69 | - | 16.5–18.5 | ≤2.0 | 2.0–2.5 | ≤1 Si, ≤0.11 N, ≤0.045 P, ≤0.03 C, ≤ 0.03 S | |
Bands | 11–13 | 65–69 | - | 17–19 | ≤2.0 | - | ≤1 Si, ≤0.11 N, ≤0.06 C, ≤0.045 P, ≤0.03 S |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petković Didović, M.; Jelovica Badovinac, I.; Fiket, Ž.; Žigon, J.; Rinčić Mlinarić, M.; Čanadi Jurešić, G. Cytotoxicity of Metal Ions Released from NiTi and Stainless Steel Orthodontic Appliances, Part 1: Surface Morphology and Ion Release Variations. Materials 2023, 16, 4156. https://doi.org/10.3390/ma16114156
Petković Didović M, Jelovica Badovinac I, Fiket Ž, Žigon J, Rinčić Mlinarić M, Čanadi Jurešić G. Cytotoxicity of Metal Ions Released from NiTi and Stainless Steel Orthodontic Appliances, Part 1: Surface Morphology and Ion Release Variations. Materials. 2023; 16(11):4156. https://doi.org/10.3390/ma16114156
Chicago/Turabian StylePetković Didović, Mirna, Ivana Jelovica Badovinac, Željka Fiket, Jure Žigon, Marijana Rinčić Mlinarić, and Gordana Čanadi Jurešić. 2023. "Cytotoxicity of Metal Ions Released from NiTi and Stainless Steel Orthodontic Appliances, Part 1: Surface Morphology and Ion Release Variations" Materials 16, no. 11: 4156. https://doi.org/10.3390/ma16114156
APA StylePetković Didović, M., Jelovica Badovinac, I., Fiket, Ž., Žigon, J., Rinčić Mlinarić, M., & Čanadi Jurešić, G. (2023). Cytotoxicity of Metal Ions Released from NiTi and Stainless Steel Orthodontic Appliances, Part 1: Surface Morphology and Ion Release Variations. Materials, 16(11), 4156. https://doi.org/10.3390/ma16114156