RAFT Synthesis and Characterization of Poly(Butyl-co-2-(N,N-Dimethylamino)Ethyl Acrylates)-block-Poly(Polyethylene Glycol Monomethyl Ether Acrylate) as a Photosensitizer Carrier for Photodynamic Therapy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Analytical Techniques
2.2. Synthesis and Characterization of P(BA-co-DMAEA) macroCTA
2.3. Synthesis and Characterization of P(BA-co-DMAEA)-b-PPEGA
2.4. Preparation of Polymer Micelles in Buffered Saline
2.5. Preparation of Photosensitizer-Loaded Polymer Micelles in PBS
2.6. Critical Micelle Concentration
2.7. In Vitro Photocytotoxicity Test
2.7.1. Cell Culture
2.7.2. Sample Preparation
- Photosensitizer-loaded polymer micelles: A PBS solution of polymer micelles was diluted with PBS to double the predetermined concentration, and then completely mixed with the same volume of the culture medium.
- Bare TFPC: To avoid precipitation, a DMSO solution of TFPC was added to the culture medium to obtain a culture medium containing twice the target concentration of ZnPc and 2 vol% DMSO. The culture medium was completely mixed with the same volume of PBS.
2.7.3. Photocytotoxicity
3. Results and Discussion
3.1. Synthesis of P(BA-co-DMAEA)-b-PPEGA
3.2. Preparation and Characterization of Polymer Micelles
3.3. In Vitro Photocytotoxicity of Photosensitizer-Loaded Polymer Micelles
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Correia, J.H.; Rodrigues, J.A.; Pimenta, S.; Dong, T.; Yang, Z. Photodynamic therapy review: Principles, photosensitizers, applications, and future directions. Pharmaceutics 2021, 13, 1332. [Google Scholar] [CrossRef] [PubMed]
- Gunaydin, G.; Gedik, M.E.; Ayan, S. Photodynamic therapy–current limitations and novel approaches. Front. Chem. 2021, 9, 691697. [Google Scholar] [CrossRef] [PubMed]
- Yano, S.; Hirohara, S.; Obata, M.; Hagiya, Y.; Ogura, S.; Ikeda, A.; Kataoka, H.; Tanaka, M.; Joh, T. Current states and future views in photodynamic therapy. J. Photochem. Photobiol. C 2011, 12, 46–67. [Google Scholar] [CrossRef]
- Kessel, D. Photodynamic therapy: From the beginnig. Photodiagn. Photodyn. Ther. 2004, 1, 3–7. [Google Scholar] [CrossRef]
- Pham, T.C.; Nguyen, V.-N.; Choi, Y.; Lee, S.; Yoon, J. Recent strategies to develop innovative photosensitizers for enhanced photodynamic therapy. Chem. Rev. 2021, 121, 13454–13619. [Google Scholar] [CrossRef]
- Wang, S.; Wang, X.; Yu, L.; Sun, M. Progress and trends of photodynamic therapy: From traditional photosensitizers to AIE-based photosensitizers. Photodiagn. Photodyn. Ther. 2021, 34, 102254. [Google Scholar] [CrossRef]
- Mfouo-Tynga, I.S.; Dias, L.D.; Inada, N.M.; Kurachi, C. Features of third generation photosensitizers used in anticancer photodynamic therapy: Review. Photodiagn. Photodyn. Ther. 2021, 34, 102091. [Google Scholar] [CrossRef]
- Zhao, X.; Liu, J.; Fan, J. Recent progress in photosensitizers for overcoming the challenges of photodynamic therapy: From molecular design to application. Chem. Soc. Rev. 2021, 50, 4185–4219. [Google Scholar] [CrossRef]
- Lan, M.; Zhao, S.; Liu, W.; Lee, C.-S.; Zhang, W.; Wang, P. Photosensitizers for photodynamic therapy. Adv. Healthc. Mater. 2019, 8, 1900132. [Google Scholar] [CrossRef]
- Ormond, A.B.; Freeman, H.S. Dye sensitizers for photodynamic therapy. Materials 2013, 6, 817–840. [Google Scholar] [CrossRef] [Green Version]
- Yang, D.-C.; Wang, S.; Weng, X.-L.; Zhang, H.-X.; Liu, J.-Y.; Lin, Z. Singlet oxygen-responsive polymeric nanomedicine for light-controlled drug release and image-guided photodynamic–chemo combination therapy. ACS Appl. Mater. Interfaces 2021, 13, 33905–33914. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Laan, A.C.; Plomp, J.; Parnell, S.R.; Men, Y.; Dalgliesh, R.M.; Eelkema, R.; Denkova, A.G. Ionizing radiation-induced release from poly(ε-caprolactone-b-ethylene glycol) micelles. ACS Appl. Polym. Mater. 2021, 3, 968–975. [Google Scholar] [CrossRef]
- Liu, Y.; Fens, M.H.A.M.; Lou, B.; van Kronenburg, N.C.H.; Maas-Bakker, R.F.M.; Kok, R.J.; Oliveira, S.; Hennink, W.E.; van Nostrum, C.F. π-π-Stacked poly(ε-caprolactone)-b-poly(ethylene glycol) micelles loaded with a photosensitizer for photodynamic therapy. Pharmaceutics 2020, 12, 338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gibot, L.; Demazeau, M.; Pimienta, V.; Mingotaud, A.-F.; Vicendo, P.; Collin, F.; Martins-Froment, N.; Dejean, S.; Nottelet, B.; Roux, C.; et al. Role of polymer micelles in the delivery of photodynamic therapy agent to liposomes and cells. Cancers 2020, 12, 384. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, L.; Miller, J.; Yuan, M.; Liu, J.F.; Busch, T.M.; Tsourkas, A.; Cheng, Z. Improved photodynamic therapy efficacy of protoporphyrin IX-loaded polymeric micelles using erlotinib pretreatment. Biomacromolecules 2017, 18, 1836–1844. [Google Scholar] [CrossRef]
- Kerdous, R.; Sureau, F.; Bour, A.; Bonneau, S. Release kinetics of an amphiphilic photosensitizer by block-polymer nanoparticles. Int. J. Pharm. 2015, 495, 750–760. [Google Scholar] [CrossRef]
- Li, L.; Cho, H.; Yoon, K.H.; Kang, H.C.; Huh, K.M. Antioxidant-photosensitizer dual-loaded polymeric micelles with controllable production of reactive oxygen species. Int. J. Pharm. 2014, 471, 339–348. [Google Scholar] [CrossRef]
- Conte, C.; Ungaro, F.; Maglio, G.; Tirino, P.; Siracusano, G.; Sciortino, M.T.; Leone, N.; Palma, G.; Barbieri, A.; Arra, C.; et al. Biodegradable core-shell nanoassemblies for the delivery of docetaxel and Zn(II)-phthalocyanine inspired by combination therapy for cancer. J. Control. Release 2013, 167, 40–52. [Google Scholar] [CrossRef]
- Master, A.M.; Rodriguez, M.E.; Kenney, M.E.; Oleinick, N.L.; Gupta, A.S. Delivery of the photosensitizer Pc 4 in PEG–PCL micelles for in vitro PDT studies. J. Pharm. Sci. 2010, 99, 2386–2396. [Google Scholar] [CrossRef]
- Lamch, Ł.; Kulbacka, J.; Dubińska-Magiera, M.; Saczko, J.; Wilk, K.A. Folate-directed zinc (II) phthalocyanine loaded polymeric micelles engineered to generate reactive oxygen species for efficacious photodynamic therapy of cancer. Photodiagn. Photodyn. Ther. 2019, 25, 480–491. [Google Scholar] [CrossRef]
- Lamch, Ł.; Tylus, W.; Jewgiński, M.; Latajka, R.; Wilk, K.A. Location of varying hydrophobicity zinc(II) phthalocyanine-type photosensitizers in methoxy poly(ethylene oxide) and poly(l-lactide) block copolymer micelles using 1H NMR and XPS techniques. J. Phys. Chem. B 2016, 120, 12768–12780. [Google Scholar] [CrossRef]
- Lamch, Ł.; Kulbacka, J.; Pietkiewicz, J.; Rossowska, J.; Dubińska-Magiera, M.; Choromańska, A.; Wilk, K.A. Preparation and characterization of new zinc(II) phthalocyanine–Containing poly(l-lactide)-b-poly(ethylene glycol) copolymer micelles for photodynamic therapy. J. Photochem. Photobiol. B Biol. 2016, 160, 185–197. [Google Scholar] [CrossRef] [PubMed]
- Zong, J.; Peng, H.; Qing, X.; Fan, Z.; Xu, W.; Du, X.; Shi, R.; Zhang, Y. pH-Responsive Pluronic F127–lenvatinib–encapsulated halogenated boron-dipyrromethene nanoparticles for combined photodynamic therapy and chemotherapy of liver cancer. ACS Omega 2021, 6, 12331–12342. [Google Scholar] [CrossRef] [PubMed]
- Damke, G.M.Z.F.; Damke, E.; de Souza Bonfim-Mendonça, P.; Ratti, B.A.; de Freitas Meirelles, L.E.; da Silva, V.R.S.; Gonçalves, R.S.; César, G.B.; de Oliveira Silva, S.; Caetano, W.; et al. Selective photodynamic effects on cervical cancer cells provided by P123 Pluronic®-based nanoparticles modulating hypericin delivery. Life Sci. 2020, 255, 117858. [Google Scholar] [CrossRef] [PubMed]
- Pucelik, B.; Arnaut, L.G.; Stochel, G.; Dąbrowski, J.M. Design of Pluronic-based formulation for enhanced Redaporfin—Photodynamic therapy against pigmented melanoma. ACS Appl. Mater. Interfaces 2016, 8, 22039–22055. [Google Scholar] [CrossRef]
- Py-Daniel, K.R.; Namban, J.S.; de Andrade, L.R.; de Souza, P.E.N.; Paterno, L.G.; Azevedo, R.B.; Soler, M.A.G. Highly efficient photodynamic therapy colloidal system based on chloroaluminum phthalocyanine/pluronic micelles. Eur. J. Pharm. Biopharm. 2016, 103, 23–31. [Google Scholar] [CrossRef]
- Zhiyentayev, T.M.; Boltaev, U.T.; Solov’eva, A.B.; Aksenova, N.A.; Glagolev, N.N.; Chernjak, A.V.; Melik-Nubarov, N.S. Complexes of chlorin e6 with Pluronics and polyvinylpyrrolidone: Structure and photodynamic activity in cell culture. Photochem. Photobiol. 2014, 90, 171–182. [Google Scholar] [CrossRef]
- Obata, M.; Hirohara, S. Development of pH-Responsive Polymer Micelles as Photosensitizer Carrier for Photodynamic Therapy. In Proceedings of the Abstract Book of the 1st Kosen Research International Symposium 2023, Hitotsubashi Hall, Tokyo, Japan, 1–2 March 2023; p. 39. [Google Scholar]
- Obata, M.; Ishihara, E.; Hirohara, S. Effect of tertiary amino groups in the hydrophobic segment of an amphiphilic block copolymer on zinc phthalocyanine encapsulation and photodynamic activity. RSC Adv. 2022, 12, 18144–18153. [Google Scholar] [CrossRef]
- Obata, M.; Masuda, S.; Takahashi, M.; Yazaki, K.; Hirohara, S. Effect of the hydrophobic segment of an amphiphilic block copolymer on micelle formation, zinc phthalocyanine loading, and photodynamic activity. Eur. Polym. J. 2021, 147, 110325. [Google Scholar] [CrossRef]
- Obata, M.; Tanaka, S.; Mizukoshi, H.; Ishihara, E.; Takahashi, M.; Hirohara, S. RAFT synthesis of polystyrene-block-poly(polyethylene glycol monomethyl ether acrylate) for zinc phthalocyanine-loaded polymeric micelles as photodynamic therapy photosensitizers. J. Polym. Sci. Part A Polym. Chem. 2018, 56, 560–570. [Google Scholar] [CrossRef]
- Date, K.; Ohno, K.; Azuma, Y.; Hirano, S.; Kobayashi, K.; Sakurai, T.; Nobuhara, Y.; Yamada, T. Endocrine-disrupting effects of styrene oligomers that migrated from polystyrene containers into food. Food Chem. Toxicol. 2002, 40, 65–75. [Google Scholar] [CrossRef] [PubMed]
- Kashiwagi, Y.; Imahori, H.; Araki, Y.; Ito, O.; Yamada, K.; Sakata, Y.; Fukuzumi, S. Strong inhibition of singlet oxygen sensitization in pyridylferrocenefluorinated zinc porphyrin supramolecular complexes. J. Phys. Chem. A 2003, 107, 5515–5522. [Google Scholar] [CrossRef]
- Silva, A.M.G.; Tomé, A.C.; Neves, M.G.P.M.S.; Silva, A.M.S.; Cavaleiro, J.A.S. meso-Tetraarylporphyrins as dipolarophiles in 1,3-dipolar cycloaddition reactions. Chem. Commun. 1999, 1767–1768. [Google Scholar] [CrossRef]
- Bovone, G.; Cousin, L.; Steiner, F.; Tibbitt, M.W. Solvent controls nanoparticle size during nanoprecipitation by limiting block copolymer assembly. Macromolecules 2022, 55, 8040–8048. [Google Scholar] [CrossRef] [PubMed]
- Pinal, R. Effect of molecular symmetry on melting temperature and solubility. Org. Biomol. Chem. 2004, 2, 2692–2699. [Google Scholar] [CrossRef] [PubMed]
Photosensitizer | cPS (μM) a | E.E. (%) b | L.C. (%) c | cPS/cpolymerd |
---|---|---|---|---|
TFPC | 46 | 87 | 2.4 | 1.3 |
TFPP | 10 | 57 | 0.49 | 0.28 |
PPIX | 46 | 100 | 1.3 | 1.3 |
ZnPc | 20 | 68 | 0.58 | 0.55 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Obata, M.; Hirohara, S. RAFT Synthesis and Characterization of Poly(Butyl-co-2-(N,N-Dimethylamino)Ethyl Acrylates)-block-Poly(Polyethylene Glycol Monomethyl Ether Acrylate) as a Photosensitizer Carrier for Photodynamic Therapy. Materials 2023, 16, 4192. https://doi.org/10.3390/ma16114192
Obata M, Hirohara S. RAFT Synthesis and Characterization of Poly(Butyl-co-2-(N,N-Dimethylamino)Ethyl Acrylates)-block-Poly(Polyethylene Glycol Monomethyl Ether Acrylate) as a Photosensitizer Carrier for Photodynamic Therapy. Materials. 2023; 16(11):4192. https://doi.org/10.3390/ma16114192
Chicago/Turabian StyleObata, Makoto, and Shiho Hirohara. 2023. "RAFT Synthesis and Characterization of Poly(Butyl-co-2-(N,N-Dimethylamino)Ethyl Acrylates)-block-Poly(Polyethylene Glycol Monomethyl Ether Acrylate) as a Photosensitizer Carrier for Photodynamic Therapy" Materials 16, no. 11: 4192. https://doi.org/10.3390/ma16114192
APA StyleObata, M., & Hirohara, S. (2023). RAFT Synthesis and Characterization of Poly(Butyl-co-2-(N,N-Dimethylamino)Ethyl Acrylates)-block-Poly(Polyethylene Glycol Monomethyl Ether Acrylate) as a Photosensitizer Carrier for Photodynamic Therapy. Materials, 16(11), 4192. https://doi.org/10.3390/ma16114192