Molecular Dynamics Study on the Mechanism of Gallium Nitride Radiation Damage by Alpha Particles
Abstract
:1. Introduction
2. Simulation Method
3. Results and Analysis
3.1. Simulation of Radiation Damage in GaN by Single α-Particle Irradiation
3.2. Radiation Damage Simulation of Multiple α-Particle Cumulative Irradiation on GaN
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sternberg, D.; Essmiller, J.; Colley, C.; Klesh, A.; Krajewski, J. Attitude Control System for the Mars Cube One Spacecraft. In Proceedings of the 2019 IEEE Aerospace Conference, Big Sky, MT, USA, 2–9 March 2019. [Google Scholar]
- Kodheli, O.; Lagunas, E.; Maturo, N.; Sharma, S.K.; Shankar, B.; Montoya, J.; Duncan, J.; Spano, D.; Chatzinotas, S.; Kisseleff, S. Satellite Communications in the New Space Era: A Survey and Future Challenges. IEEE Commun. Surv. Tutor. 2020, 23, 70–109. [Google Scholar] [CrossRef]
- Wada, Y.; Mizobata, H.; Nozaki, M.; Kobayashi, T.; Hosoi, T.; Kachi, T.; Shimura, T.; Watanabe, H. Insight into interface electrical properties of metal–oxide–semiconductor structures fabricated on Mg-implanted GaN activated by ultra-high-pressure annealing. Appl. Phys. Lett. 2022, 120, 082103. [Google Scholar] [CrossRef]
- Herriman, J.E.; Hellman, O.; Fultz, B. Phonon thermodynamics and elastic behavior of GaN at high temperatures and pressures. Phys. Rev. B 2018, 98, 214105. [Google Scholar] [CrossRef] [Green Version]
- Kato, N.; Sugiyama, M. Electron irradiation resistance of NiO/ZnO visible-light-transparent solar cells. Jpn. J. Appl. Phys. 2020, 59, 101004. [Google Scholar] [CrossRef]
- Geremew, A.K.; Kargar, F.; Zhang, E.X.; Zhao, S.E.; Aytan, E.; Bloodgood, M.A.; Salguero, T.T.; Rumyantsev, S.; Fedoseyev, A.; Fleetwood, D.M. Proton-irradiation-immune electronics implemented with two-dimensional charge-density-wave devices. Nanoscale 2019, 11, 8380–8386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, B.W.; He, C.H.; Shen, S.S.; Chenyuan, M.L. Geant4 Simulation of Proton Displacement Damage in GaN. At. Energy Sci. Technol. 2017, 51, 543–548. [Google Scholar]
- He, H.; He, C.; Zhang, J.; Liao, W.; Zang, H.; Li, Y.; Liu, W. Primary damage of 10keVGaPKA in bulk GaN material under different temperatures. Nucl. Eng. Technol. 2020, 52, 1537–1544. [Google Scholar] [CrossRef]
- Li, R.; Zhu, R.; Chen, S.; He, C.; Xu, J. Study of damage generation induced by focused helium ion beam in silicon. J. Vac. Sci. Technol. B 2019, 37, 031804. [Google Scholar] [CrossRef]
- He, H.; Liao, W.L.; Wang, Y.Z.; Liu, W.B.; Zang, H.; He, C.H. Stability and interaction of cation Frenkel pair in wurtzite semiconductor materials. Comput. Mater. Sci. 2021, 196, 110554. [Google Scholar] [CrossRef]
- Xie, F.; Zhang, H.; Liu, F.; He, H.; Liao, W.L.; Huang, Y. Simulation of displacement damage of gallium nitride under different neutron irradiation environments. Acta Phys. Sin. 2020, 69, 9. [Google Scholar] [CrossRef]
- Ullah, M.W.; Kuronen, A.; Nordlund, K.; Djurabekova, F.; Karaseov, P.A.; Titov, A.I. Atomistic simulation of damage production by atomic and molecular ion irradiation in GaN. J. Appl. Phys. 2012, 112, 479. [Google Scholar] [CrossRef] [Green Version]
- Ullah, M.W.; Kuronen, A.; Nordlund, K.; Djurabekova, F. Effects of defect clustering on optical properties of GaN by single and molecular ion irradiation. J. Appl. Phys. 2013, 114, 1. [Google Scholar] [CrossRef]
- Byggmastar, J.; Granberg, F.; Nordlund, K. Effects of the short-range repulsive potential on cascade damage in iron. J. Nucl. Mater. Mater. Asp. Fission Fusion 2018, 508, 530–539. [Google Scholar] [CrossRef]
- Khanal, M.P.; Uprety, S.; Mirkhani, V.; Wang, S.; Yapabandara, K.; Hassani, E.; Isaacs-Smith, T.; Ahyi, A.C.; Bozack, M.J.; Oh, T.S. Impact of 100 keV proton irradiation on electronic and optical properties of AlGaN/GaN high electron mobility transistors (HEMTs). J. Appl. Phys. 2018, 124, 215702. [Google Scholar] [CrossRef]
- Kucheyev, S.O.; Williams, J.S.; Zou, J.; Li, G.; Jagadish, C.; Titov, A.I. Effect of ion species on implantation-produced disorder in GaN at liquid nitrogen temperature. Nucl. Instrum. Methods Phys. Res. 2002, 190, 782–786. [Google Scholar] [CrossRef]
- Kucheyev, S.O.; Williams, J.S.; Titov, A.I.; Li, G.; Jagadish, C. Effect of the density of collision cascades on implantation damage in GaN. Appl. Phys. Lett. 2001, 78, 2694–2696. [Google Scholar] [CrossRef]
- Karaseov, P.A.; Karabeshkin, K.V.; Mongo, E.E.; Titov, A.I.; Ullah, M.W.; Kuronen, A.; Djurabekova, F.; Nordlund, K. Experimental study and MD simulation of damage formation in GaN under atomic and molecular ion irradiation. Vacuum 2016, 129, 166–169. [Google Scholar] [CrossRef]
- Chen, N.; Rasch, E.; Huang, D.; Heller, E.R.; Gao, F. Atomic-Scale Simulation for Pseudo-Metallic Defect Generation Kinetics and Effective NIEL in GaN. IEEE Trans. Nucl. Sci. 2018, 65, 1108–1118. [Google Scholar] [CrossRef]
- Hosseini, A.; Nasrabadi, M.N. Investigation of vacancy defects and temperature effects on the GaN bombarding with argon atoms: Molecular dynamics simulation. Mater. Chem. Phys. 2021, 271, 124854. [Google Scholar] [CrossRef]
- Ji, L.; Liu, L.; Xu, Z.; Song, Y.; Fang, F. Molecular dynamics simulation on the effect of dislocation structures on the retention and distribution of helium ions implanted into silicon. Nanotechnol. Precis. Eng. 2020, 3, 7. [Google Scholar] [CrossRef]
- Fan, X.H.; Chen, B.; Pan, S.F. Monte Carlo simulation of proton and α-particle transport in aluminum materials. J. At. Mol. Phys. 2008, 25, 255–259. [Google Scholar]
- Pan, Z.Y.; Zhu, B.X. Computer simulation of α-particle irradiation damage. Comput. Phys. 1993, 10, 7. [Google Scholar]
- Li, R.; Wu, G.; Liang, K.; Xue, L.; Wang, S.; Liu, S. Influence of atomic incident kinetic energy on crystalline quality of epitaxial GaN thin films: A molecular dynamics study. Mater. Sci. Semicond. Process. 2022, 150, 106979. [Google Scholar] [CrossRef]
- Albooyeh, A.R.; Dadrasi, A.; Mashhadzadeh, A.H. Effect of point defects and low-density carbon-doped on mechanical properties of BNNTs: A molecular dynamics study. Mater. Chem. Phys. 2019, 239, 122107. [Google Scholar] [CrossRef]
- Hosseini, A.; Nasrabadi, M.N.; Esfandiarpour, A. Investigation of primary radiation damage near free surfaces in iron nanofoam with a model cylindrical nanovoids structure. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2018, 439, 43–50. [Google Scholar] [CrossRef]
- Jolfaei, N.A.; Jolfaei, N.A.; Hekmatifar, M.; Piranfar, A.; Toghraie, D.; Sabetvand, R.; Rostami, S. Investigation of thermal properties of DNA structure with precise atomic arrangement via equilibrium and non-equilibrium molecular dynamics approaches. Comput. Methods Programs Biomed. 2020, 185, 105169. [Google Scholar] [CrossRef]
- Jafari, S.N.; Hakimi, Y.; Rouhi, S. Molecular dynamics investigation of the mechanical properties of two different graphyne allotropes: α-graphyne and α 2 -graphyne. Phys. E Low Dimens. Syst. Nanostruct. 2020, 119, 114022. [Google Scholar] [CrossRef]
- Sabetvand, R.; Ghazi, M.E.; Izadifard, M. Studying temperature effects on electronic and optical properties of cubic CH3NH3SnI3 perovskite. J. Comput. Electron. 2020, 19, 70–79. [Google Scholar] [CrossRef]
- Kakanakova-Georgieva, A.; Ivanov, I.G.; Suwannaharn, N.; Hsu, C.-W.; Cora, I.; Pécz, B.; Giannazzo, F.; Sangiovanni, D.G.; Gueorguiev, G.K. MOCVD of AlN on epitaxial graphene at extreme temperatures. CrystEngComm 2021, 23, 385–390. [Google Scholar] [CrossRef]
- Lundgren, C.; Kakanakova-Georgieva, A.; Gueorguiev, G.K. A perspective on thermal stability and mechanical properties of 2D Indium Bismide from ab initio molecular dynamics. Nanotechnology 2022, 33, 335706. [Google Scholar] [CrossRef]
- Liu, C.; Szlufarska, I. Distribution of defect clusters in the primary damage of ion irradiated 3C-SiC. J. Nucl. Mater. 2018, 509, 392–400. [Google Scholar] [CrossRef] [Green Version]
- Sahi, Q.; Kim, Y.S. Primary radiation damage characterization of α-iron under irradiation temperature for various PKA energies. Mater. Res. Express 2018, 5, 046518. [Google Scholar] [CrossRef]
- Mjr, A.; Mwdc, B.; Bs, C.; Jas, A. Primary radiation damage on displacement cascades in UO2, ThO2 and (U0.5Th0.5)O2—ScienceDirect. Comput. Mater. Sci. 2018, 154, 508–516. [Google Scholar]
- Ping, Z.A.; Xian, C.A.; Xz, A.; Yw, B. Effects of cutting parameters on the subsurface damage of single crystal copper during nanocutting process—ScienceDirect. Vacuum 2020, 187, 109420. [Google Scholar]
- Li, J.; Dong, L.; Dong, X.; Zhao, W.; Liu, J.; Xiong, J.; Xu, C. Study on wear behavior of FeNiCrCoCu high entropy alloy coating on Cu substrate based on molecular dynamics. Appl. Surf. Sci. 2021, 570, 151236. [Google Scholar] [CrossRef]
- Fu, X.; Xu, Z.; He, Z.; Hartmaier, A.; Fang, F. Molecular dynamics simulation of silicon ion implantation into diamond and subsequent annealing. Nucl. Instrum. Methods Phys. Res. 2018, 450, 51–55. [Google Scholar] [CrossRef]
- Nord, J.; Albe, K.; Erhart, P.; Nordlund, K. Modelling of compound semiconductors: Analytical bond-order potential for gallium, nitrogen and gallium nitride. J. Phys. Condens. Matter 2003, 15, 5649–5662. [Google Scholar] [CrossRef]
- Ting, L.; Ping, Z.; Peng, Y.; Siping, Z. In-plane thermal transport in black phosphorene/graphene layered heterostructures: A molecular dynamics study. Phys. Chem. Chem. Phys. 2018, 20, 21151–21162. [Google Scholar] [CrossRef]
- Liang, T.; Zhou, M.; Zhang, P.; Yuan, P.; Yang, D. Multilayer in-plane graphene/hexagonal boron nitride heterostructures: Insights into the interfacial thermal transport properties. Int. J. Heat Mass Transf. 2020, 151, 119395. [Google Scholar] [CrossRef]
- Ziegler, J.F.; Ziegler, M.D.; Biersack, J.P. SRIM—The stopping and range of ions in matter (2010). Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2008, 268, 1818–1823. [Google Scholar] [CrossRef] [Green Version]
- Liang, K.; Sun, X.; Wu, G.; Zhang, L.; Gan, Z. The investigation of molecular beam epitaxy growth of GaN by molecular dynamics simulation. Comput. Mater. Sci. 2019, 173, 109426. [Google Scholar] [CrossRef]
- Libin, Z.; Han, Y.; Guo, Z.; Sheng, L.; Zhiyin, G. Molecular dynamics simulation of aluminum nitride deposition: Temperature and N:Al ratio effects. R. Soc. Open Ence 2018, 5, 180629. [Google Scholar]
- Jin, Y.; Huang, H.; Zhong, Y.; Yuan, X.; Peng, Q. Role of interface on irradiation damage of Cudiamond composites using classical molecular dynamics simulations. Ceram. Int. 2022, 48, 16813–16824. [Google Scholar] [CrossRef]
- Huang, H.; Tang, X.; Chen, F.; Yang, Y.; Liu, J.; Li, H.; Chen, D. Radiation damage resistance and interface stability of copper–graphene nanolayered composite. J. Nucl. Mater. 2015, 460, 16–22. [Google Scholar] [CrossRef]
- Tian, J.; Zhou, W.; Feng, Q.; Zheng, J. Molecular dynamics simulations with electronic stopping can reproduce experimental sputtering yields of metals impacted by large cluster ions. Appl. Surf. Sci. 2018, 435, 65–71. [Google Scholar] [CrossRef]
- Palko, J.W.; Srour, J.R. Amorphous Inclusions in Irradiated Silicon and Their Effects on Material and Device Properties. IEEE Trans. Nucl. Sci. 2009, 55, 2992–2999. [Google Scholar] [CrossRef]
- Tafrishi, H.; Sadeghzadeh, S.; Ahmadi, R.; Molaei, F.; Hassanloo, H. Investigation of tetracosane thermal transport in presence of graphene and carbon nanotube fillers—A molecular dynamics study. J. Energy Storage 2020, 29, 101321. [Google Scholar] [CrossRef]
Parameter | Value | Parameter | Value |
---|---|---|---|
Lattice constant | a = b = 3.216 Å c = 5.240 Å | Atomic number | 500,000 |
Defect rate | 10% | Doping rate | 5 × 1018 cm−3 |
Crystal size | 50a × 50a × 50a | Temperature | 300 K |
Incident energy | 0.1 MeV 0.5 MeV | Injected dose | 4 × 1011 ions/cm2 2 × 1012 ions/cm2 4 × 1012 ions/cm2 |
0.1 MeV | 0.5 MeV | |||||||
---|---|---|---|---|---|---|---|---|
Defect Classification | Quantity | Repair Capability (%) | Recombination Efficiency (%) | Quantity | Repair Capability (%) | Recombination Efficiency (%) | ||
Vacancy | Ga vacancy | 166 | 41.34 | 31.31 | 1276 | 22.95 | 26.5 | |
N vacancy | 217 | 21.38 | 1293 | 29.8 | ||||
Interstitial defect | Two atoms | Ga-N (Ga) | 194 | 35.25 | 33.52 | 1116 | 26.86 | 26.92 |
Ga-N (N) | 120 | 1075 | ||||||
Ga-Ga (Ga) | 22 | 92 | ||||||
Ga-Ga (N) | 2 | 8 | ||||||
N-N (Ga) | 0 | 13 | ||||||
N-N (N) | 20 | 90 | ||||||
Three atoms | N-N-N (N) | 0 | 18.19 | 1 | 28.57 | |||
Ga-Ga-N (Ga) | 2 | 24 | ||||||
Ga-Ga-N (N) | 1 | 9 | ||||||
Ga-N-N (Ga) | 3 | 22 | ||||||
Ga-N-N (N) | 3 | 14 | ||||||
Four atoms | Ga-Ga-N-N (N) | 0 | / | 1 | / | |||
Ga-Ga-Ga-N (Ga) | 0 | 1 |
Structure | Initial State (%) | Five α-Particles (%) | Ten α-Particles (%) |
---|---|---|---|
Other | 16.3 | 27.3 | 31.9 |
Hexagonal diamond | 18.1 | 14.0 | 12.8 |
Hexagonal diamond (1st neighbor) | 29.6 | 24.7 | 23.1 |
Hexagonal diamond (2nd neighbor) | 36.1 | 34.0 | 32.2 |
Mode | Number of Sputtered Atoms | Sputtering Yield (%) |
---|---|---|
Energy of 0.1 MeV | 26 | 0.0058 |
Energy of 0.5 MeV | 33 | 0.0073 |
Accumulation of five α-particles | 2302 | 0.512 |
Accumulation of ten α-particles | 2871 | 0.638 |
Five α-Particles | Ten α-Particles | |||
---|---|---|---|---|
Defect Type | Quantity | Quantity | ||
Vacancy | Ga vacancy | 5669 | 12,093 | |
N vacancy | 11,473 | 16,780 | ||
Interstitial | Two atoms | Ga-N (Ga) | 8974 | 12,803 |
Ga-N (N) | 3383 | 8144 | ||
Ga-Ga (Ga) | 323 | 712 | ||
Ga-Ga (N) | 254 | 470 | ||
N-N (Ga) | 234 | 426 | ||
N-N (N) | 153 | 399 | ||
Three atoms | N-N-N (N) | 9 | 16 | |
Ga-Ga-N (Ga) | 384 | 623 | ||
Ga-Ga-N (N) | 94 | 159 | ||
Ga-N-N (Ga) | 125 | 291 | ||
Ga-N-N (N) | 101 | 313 | ||
Four atoms | 116 | 256 | ||
Five atoms or more | 232 | 324 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Xiong, Z.; Ouyang, X. Molecular Dynamics Study on the Mechanism of Gallium Nitride Radiation Damage by Alpha Particles. Materials 2023, 16, 4224. https://doi.org/10.3390/ma16124224
Liu Y, Xiong Z, Ouyang X. Molecular Dynamics Study on the Mechanism of Gallium Nitride Radiation Damage by Alpha Particles. Materials. 2023; 16(12):4224. https://doi.org/10.3390/ma16124224
Chicago/Turabian StyleLiu, Yang, Zhenpeng Xiong, and Xiaoping Ouyang. 2023. "Molecular Dynamics Study on the Mechanism of Gallium Nitride Radiation Damage by Alpha Particles" Materials 16, no. 12: 4224. https://doi.org/10.3390/ma16124224
APA StyleLiu, Y., Xiong, Z., & Ouyang, X. (2023). Molecular Dynamics Study on the Mechanism of Gallium Nitride Radiation Damage by Alpha Particles. Materials, 16(12), 4224. https://doi.org/10.3390/ma16124224