Edgewise Compression and Three-Point Bending Analyses of Repaired Composite Sandwich Panels
Abstract
:1. Introduction
2. Experimental Work
3. Numerical Analysis including CZM
4. Results
4.1. Edgewise Compression Tests
4.2. Three-Point Bending Tests
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Katnam, K.B.; Comer, A.J.; Roy, D.; da Silva, L.F.M.; Young, T.M. Composite Repair in Wind Turbine Blades: An Overview. J. Adhes. 2015, 91, 113–139. [Google Scholar] [CrossRef]
- Mishnaevsky, L. Repair of wind turbine blades: Review of methods and related computational mechanics problems. Renew. Energy 2019, 140, 828–839. [Google Scholar] [CrossRef]
- Meo, M.; Vignjevic, R.; Marengo, G. The response of honeycomb sandwich panels under low-velocity impact loading. Int. J. Mech. Sci. 2005, 47, 1301–1325. [Google Scholar] [CrossRef]
- Lacy, T.E.; Hwang, Y. Numerical modeling of impact-damaged sandwich composites subjected to compression-after-impact loading. Compos. Struct. 2003, 61, 115–128. [Google Scholar] [CrossRef]
- Katnam, K.B.; da Silva, L.F.M.; Young, T.M. Bonded repair of composite aircraft structures: A review of scientific challenges and opportunities. Prog. Aerosp. Sci. 2013, 61, 26–42. [Google Scholar] [CrossRef]
- Bleay, S.M.; Loader, C.B.; Hawyes, V.J.; Humberstone, L.; Curtis, P.T. A smart repair system for polymer matrix composites. Compos. Part A Appl. Sci. Manuf. 2001, 32, 1767–1776. [Google Scholar] [CrossRef]
- Caminero, M.A.; Lopez-Pedrosa, M.; Pinna, C.; Soutis, C. Damage Assessment of Composite Structures Using Digital Image Correlation. Appl. Compos. Mater. 2014, 21, 91–106. [Google Scholar] [CrossRef]
- Chen, J. Predicting progressive delamination of stiffened fibre-composite panel and repaired sandwich panel by decohesion models. J. Thermoplast. Compos. Mater. 2002, 15, 429–442. [Google Scholar] [CrossRef]
- Mahdi, S.; Kinloch, A.J.; Matthews, F.L.; Crisfield, M.A. The static mechanical performance of repaired composite sandwich beams: Part I—Experimental characterization. J. Sandw. Struct. Mater. 2003, 5, 179–202. [Google Scholar] [CrossRef] [Green Version]
- Ramantani, D.A.; Campilho, R.D.S.G.; de Moura, M.F.S.F.; Marques, A.T. Stress and failure analysis of repaired sandwich composite beams using a cohesive damage model. J. Sandw. Struct. Mater. 2010, 12, 369–390. [Google Scholar] [CrossRef]
- Ghazali, E.; Dano, M.-L.; Gakwaya, A.; Amyot, C.-O. Mechanical performance of repaired sandwich panels: Experimental characterization and finite-element modelling. J. Sandw. Struct. Mater. 2019, 21, 1357–1378. [Google Scholar] [CrossRef]
- Raju, M.; Reddy, C.R.; Swamy, M.R.N.; Giridhar, G. Repair Effectiveness Studies on Impact Damaged Sandwich Composite Constructions. J. Reinf. Plast. Compos. 2006, 25, 5–16. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Guan, Z.; Guo, X.; Sun, K.; Kong, J. Edgewise compressive performance of repaired composite sandwich panels—Experiment and finite element analysis. J. Reinf. Plast. Compos. 2013, 32, 1331–1347. [Google Scholar] [CrossRef]
- Ghazali, E.; Dano, M.-L.; Gakwaya, A.; Amyot, C.-O. Experimental and numerical studies of stepped-scarf circular repairs in composite sandwich panels. Int. J. Adhes. Adhes. 2018, 82, 41–49. [Google Scholar] [CrossRef]
- Zhang, T.; Yan, Y.; Jin, C. Experimental and Numerical Investigations of Honeycomb Sandwich Composite Panels with Open-hole Damage and Scarf Repair Subjected to Compressive Loads. J. Adhes. 2016, 92, 380–401. [Google Scholar] [CrossRef]
- de Moura, M.F.S.F.; Moreira, R.D.F.; Rocha, R.J.B.; Oliveira, C.F.M. Determination of the fracture energy under mode I loading of a honeycomb/carbon-epoxy sandwich panel using the asymmetric double cantilever beam test. J. Sandw. Struct. Mater. 2022, 24, 1977–1992. [Google Scholar] [CrossRef]
- Moreira, R.D.F.; de Moura, M.F.S.F.; Rocha, R.J.B.; Oliveira, C.F.M. Mode II fracture characterisation of a honeycomb/carbon-epoxy sandwich panel using the asymmetric end-notched flexure test. J. Sandw. Struct. Mater. 2022, 24, 2030–2046. [Google Scholar] [CrossRef]
- ASTM D7137/D7137M-17; Standard Test Method for Compressive Residual Strength Properties of Damaged Polymer Matrix Composite Plates. ASTM International: West Conshohocken, PA, USA, 2017. [CrossRef]
- ASTM D790-17; Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials. ASTM International: West Conshohocken, PA, USA, 2017. [CrossRef]
- Durão, L.M.P.; de Moura, M.F.S.F.; Marques, A.T. Numerical simulation of the drilling process on carbon/epoxy composite laminates. Compos. Part A Appl. Sci. Manuf. 2006, 37, 1325–1333. [Google Scholar] [CrossRef]
- Oliveira, C.F.M.; de Moura, M.F.S.F.; Moreira, R.D.F.; Rocha, R.J.B. Mixed-mode I+II fracture characterisation of a honeycomb/carbon-epoxy sandwich panel using the Asymmetric Single-Leg Bending test. Theor. Appl. Fract. Mech. 2023, 123, 103725. [Google Scholar] [CrossRef]
- Moreira, R.D.F.; de Moura, M.F.S.F.; Silva, F.G.A.; Reis, J.P. High-cycle fatigue analysis of adhesively bonded composite scarf repairs. Compos. Part B Eng. 2020, 190, 107900. [Google Scholar] [CrossRef]
E1 = 14,400 MPa | ν12 = 0.0017 | G12 = 3550 MPa |
E2 = 14,400 MPa | ν13 = 0.04 | G13 = 2070 MPa |
E3 = 2000 MPa | ν23 = 0.04 | G23 = 2070 MPa |
E1 = 0.45 MPa | ν12 = 0.9956 | G12 = 0.11 MPa |
E2 = 0.45 MPa | ν13 = 0.0005 | G13 = 38.62 MPa |
E3 = 258 MPa | ν23 = 0.0005 | G23 = 63.12 MPa |
(MPa) | (MPa) | GIc (N/mm) | GIIc (N/mm) |
---|---|---|---|
1.0 | 1.5 | 0.39 | 1.0 |
(MPa) | (MPa) | GIc (N/mm) | GIIc (N/mm) |
---|---|---|---|
18.0 | 25.0 | 0.49 | 4.59 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rocha, R.J.B.; de Moura, M.F.S.F.; Moreira, R.D.F. Edgewise Compression and Three-Point Bending Analyses of Repaired Composite Sandwich Panels. Materials 2023, 16, 4249. https://doi.org/10.3390/ma16124249
Rocha RJB, de Moura MFSF, Moreira RDF. Edgewise Compression and Three-Point Bending Analyses of Repaired Composite Sandwich Panels. Materials. 2023; 16(12):4249. https://doi.org/10.3390/ma16124249
Chicago/Turabian StyleRocha, Ricardo J. B., Marcelo F. S. F. de Moura, and Raul D. F. Moreira. 2023. "Edgewise Compression and Three-Point Bending Analyses of Repaired Composite Sandwich Panels" Materials 16, no. 12: 4249. https://doi.org/10.3390/ma16124249
APA StyleRocha, R. J. B., de Moura, M. F. S. F., & Moreira, R. D. F. (2023). Edgewise Compression and Three-Point Bending Analyses of Repaired Composite Sandwich Panels. Materials, 16(12), 4249. https://doi.org/10.3390/ma16124249