Calculation of Short-Term Creep of Concrete Using Fractional Viscoelastic Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Test Preparation
2.3. Creep and Creep-Recovery Test
3. Results
3.1. Creep Strain Evolution
3.2. Creep-Recovery Evolution
4. Comparisons between Experimental Results and Predictions
4.1. Existing Computational Models
4.2. Short-Term Creep Prediction Based on Viscoelastic Model
4.2.1. Classical Viscoelastic Model
4.2.2. Fractional-Order Viscoelastic Model
4.2.3. Modified Fractional-Order Viscoelastic Model
4.3. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Neville, A.M.; Dilger, W.H.; Brooks, J.J. Creep of Plain and Structural Concrete; Construction Press: London, UK, 1983. [Google Scholar]
- Vandamme, M.; Ulm, F.J. Nanogranular origin of concrete creep. Proc. Natl. Acad. Sci. USA 2009, 106, 10552–10557. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brookshire, D.S.; Chang, S.E.; Cochrane, H.; Olson, R.A.; Rose, A.; Steenson, J. Direct and indirect economic losses from earthquake damage. Earthq. Spectra 1997, 14, 683–701. [Google Scholar] [CrossRef]
- Forcellini, D. A new methodology to assess indirect losses in bridges subjected to multiple hazards. Innov. Infrastruct. Solut. 2019, 4, 1–9. [Google Scholar] [CrossRef]
- Boucherit, D.; Kenai, S.; Kadri, E.; Khatib, J. A simplified model for the prediction of long term concrete drying shrinkage. KSCE J. Civ. Eng. 2014, 18, 2196–2208. [Google Scholar] [CrossRef]
- Bažant, Z.P.; Jirásek, M. Creep and Hygrothermal Effects in Concrete Structures; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Woolson, I.H. Some remarkable tests indicating flow of concrete under pressure. Eng. News 1905, 54, 459–460. [Google Scholar]
- Glanville, W.H. Further investigations on the creep or flow of concrete under load. Build. Res. Tech. Pap. 1939, 21, 44. [Google Scholar]
- Thomas, F.G. Conception of creep of unreinforced concrete and an estimation of the limiting values. Struct. Eng. 1933, 11, 69–82. [Google Scholar]
- Acker, P.; Ulm, F.J. Creep and shrinkage of concrete: Physical origins and practical measurements. Nucl. Eng. Des. 2001, 203, 143–158. [Google Scholar] [CrossRef]
- Grasley, Z.C.; Lange, D.A. Constitutive modeling of the aging viscoelastic properties of portland cement paste. Mech. Time-Depend. Mater. 2007, 11, 175–198. [Google Scholar] [CrossRef]
- Rossi, P.; Tailhan, J.L.; Le Maou, F.; Gaillet, L.; Martin, E. Basic creep behavior of concretes investigation of the physical mechanisms by using acoustic emission. Cem. Concr. Res. 2012, 42, 61–73. [Google Scholar] [CrossRef]
- Bažant, Z.P. Prediction of concrete creep and shrinkage: Past, present and future. Nucl. Eng. Des. 2001, 203, 27–38. [Google Scholar] [CrossRef]
- Scheiner, S.; Hellmich, C. Continuum microviscoelasticity model for aging basic creep of early-age concrete. J. Eng. Mech. 2009, 135, 307–323. [Google Scholar] [CrossRef]
- Irfan-ul-Hassan, M.; Pichler, B.; Reihsner, R.; Hellmich, C. Elastic and creep properties of young cement paste, as determined from hourly repeated minute-long quasi-static tests. Cem. Concr. Res. 2016, 82, 36–49. [Google Scholar] [CrossRef]
- Vandamme, M.; Ulm, F.J.; Fonollosa, P. Nanogranular packing of C–S–H at substochiometric conditions. Cem. Concr. Res. 2010, 40, 14–26. [Google Scholar] [CrossRef]
- Alizadeh, R.; Beaudoin, J.J.; Raki, L. Viscoelastic nature of calcium silicate hydrate. Cem. Concr. Compos. 2010, 32, 369–376. [Google Scholar] [CrossRef] [Green Version]
- Gan, Y.; Vandamme, M.; Chen, Y.; Schlangen, E.; van Breugel, K.; Šavija, B. Experimental investigation of the short-term creep recovery of hardened cement paste at micrometre length scale. Cem. Concr. Res. 2021, 149, 106562. [Google Scholar] [CrossRef]
- Dummer, A.; Smaniotto, S.; Hofstetter, G. Experimental and Numerical Study on Nonlinear Basic and Drying Creep of Normal Strength Concrete under Uniaxial Compression. Constr. Build. Mater. 2023, 362, 129726. [Google Scholar] [CrossRef]
- Ferretti, E.; Di Leo, A. Cracking and creep role in displacements at constant load: Concrete solids in compression. Comput. Mater. Contin. 2008, 7, 59–79. [Google Scholar]
- Ma, G.; Xie, Y.; Long, G.; Tang, Z.; Zhou, X.; Zeng, X.; Li, J. Mesoscale Investigation on Concrete Creep Behaviors Based on Discrete Element Method. Constr. Build. Mater. 2022, 342, 127957. [Google Scholar] [CrossRef]
- Xu, Z.; Zhao, Q.; Guo, W.; Zhang, J.; Tong, J.; Wang, D. Mesomechanical model for concrete creep with viscoelastic interface transition zone. Arch. Civ. Mech. Eng. 2022, 22, 65. [Google Scholar] [CrossRef]
- Hubler, M.H.; Wendner, R.; Bazant, Z.P. Comprehensive database for concrete creep and shrinkage: Analysis and recommendations for testing and recording. ACI Mater. J. 2015, 112, 547. [Google Scholar] [CrossRef] [Green Version]
- American Concrete Institute; ACI Committee 209—Creep and Shrinkage (Eds.) Guide for Modeling and Calculating Shrinkage and Creep in Hardened Concrete; American Concrete Institute: Farmington Hills, MI, USA, 2008. [Google Scholar]
- Su, L.; Wang, Y.; Mei, S.; Li, P. Experimental investigation on the fundamental behavior of concrete creep. Constr. Build. Mater. 2017, 152, 250–258. [Google Scholar] [CrossRef]
- Aili, A.; Torrenti, J.M.; Sellin, J.P.; Barthelemy, J.F.; Vandamme, M. On the Long-Term Delayed Strain of Concrete Structures. Cem. Concr. Res. 2023, 165, 107086. [Google Scholar] [CrossRef]
- Baronet, J.; Sorelli, L.; Charron, J.-P.; Vandamme, M.; Sanahuja, J. A Two-Scale Method to Rapidly Characterize the Logarithmic Basic Creep of Concrete by Coupling Microindentation and Uniaxial Compression Creep Test. Cem. Concr. Compos. 2022, 125, 104274. [Google Scholar] [CrossRef]
- Barpi, F.; Valente, S. A fractional order rate approach for modeling concrete structures subjected to creep and fracture. Int. J. Solids Struct. 2004, 41, 2607–2621. [Google Scholar] [CrossRef]
- Katicha, S.W.; Apeagyei, A.K.; Flintsch, G.W.; Loulizi, A. Universal linear viscoelastic approximation property of fractional viscoelastic models with application to asphalt concrete. Mech. Time-Depend. Mater. 2014, 18, 555–571. [Google Scholar] [CrossRef]
- Xu, F.; Li, K.; Deng, X.; Zhang, P.; Long, Z. Research on viscoelastic behavior and rheological constitutive parameters of metallic glasses based on fractional-differential rheological model. Acta Phys. Sin. 2016, 4, 227–239. [Google Scholar] [CrossRef]
- Sapora, A.; Cornetti, P.; Carpinteri, A.; Baglieri, O.; Santagata, E. The use of fractional calculus to model the experimental creep-recovery behavior of modified bituminous binders. Mater. Struct. 2016, 49, 45–55. [Google Scholar] [CrossRef]
- GB/T 50082-2009; Standard Test Method for Long-Term Performance and Durability of Ordinary Concrete. Ministry of Housing and Urban-Rural Development, PRC: Beijing, China; Architecture and Architecture Press: Beijing, China, 2009.
- Christensen, R. Theory of Viscoelasticity: An Introduction; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Pasetto, M.; Baldo, N. Computational analysis of the creep behaviour of bituminous mixtures. Constr. Build. Mater. 2015, 94, 784–790. [Google Scholar] [CrossRef]
- Wang, D.; de Boer, G.; Neville, A.; Ghanbarzadeh, A. A Review on Modelling of Viscoelastic Contact Problems. Lubricants 2022, 10, 358. [Google Scholar] [CrossRef]
- Matlob, M.A.; Jamali, Y. The Concepts and Applications of Fractional Order Differential Calculus in Modeling of Viscoelastic Systems: A Primer. Crit. Rev. Biomed. Eng. 2019, 47, 249–276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reiner, M. The Rheology of Concrete; Elsevier: Amsterdam, The Netherlands, 1960; pp. 341–364. [Google Scholar]
- Schiessel, H.; Blumen, A. Hierarchical analogues to fractional relaxation equations. J. Phys. Math. Gen. 1993, 26, 5057. [Google Scholar] [CrossRef]
- Levenberg, K. A method for the solution of certain non-linear problems in least squares. Q. Appl. Math. 1944, 2, 164–168. [Google Scholar] [CrossRef] [Green Version]
SiO2 | Al2O3 | Fe2O3 | CaO | MgO | SO3 | Na2O | f-CaO | Loss | CL |
---|---|---|---|---|---|---|---|---|---|
21.28 | 4.73 | 3.41 | 62.49 | 2.53 | 2.83 | 0.56 | 0.72 | 1.76 | 0.011 |
Strength Grade | Specimen Number | Cube Compressive Strength/MPa | Prismatic Compressive Strength/MPa | Modulus of Elasticity/GPa |
---|---|---|---|---|
C40 | 1 | 45 | 41.9 | 32.58 |
2 | 46.3 | 42.0 | 33.12 | |
3 | 45.3 | 42.2 | 31.46 | |
Average value | 45.5 | 42 | 32.39 | |
C50 | 1 | 52.3 | 47.7 | 34.25 |
2 | 51.5 | 48.6 | 34.86 | |
3 | 51.2 | 49.2 | 34.63 | |
Average value | 51.67 | 48.5 | 34.58 |
Test Series | Concrete Strength Grade | Holding Load (kN) | Stress (MPa) | Stress Ratio | Load Duration (s) |
---|---|---|---|---|---|
T40-10-60 | C40 | 100 | 10 | 0.24 | 60 |
T40-10-600 | C40 | 100 | 10 | 0.24 | 600 |
T40-10-1800 | C40 | 100 | 10 | 0.24 | 1800 |
T50-15-60 | C50 | 150 | 15 | 0.31 | 60 |
T50-15-600 | C50 | 150 | 15 | 0.31 | 600 |
T50-15-1800 | C50 | 150 | 15 | 0.31 | 1800 |
Load-Holding Time (s) | C40 Concrete | C50 Concrete |
---|---|---|
60 | 4.02 | 6.91 |
600 | 12.66 | 14.40 |
1800 | 17.98 | 23.56 |
Load-Holding Time | C40 Concrete | C50 Concrete |
---|---|---|
60 s | 3.86 | 4.24 |
600 s | 6.19 | 7.82 |
1800 s | 8.43 | 9.96 |
Load-Holding Time | C40 Concrete | C50 Concrete |
---|---|---|
60 s | 6.47 | 9.89 |
600 s | 15.93 | 18.89 |
1800 s | 19.88 | 23.80 |
Test Result | B4 | B4s | MC2010 | ACI209-92 | |
---|---|---|---|---|---|
Strain value | 321 | 279 | 336 | 337 | 309 |
error | - | 0.131 | 0.046 | 0.049 | 0.035 |
Load Conditions | R2 | |||
---|---|---|---|---|
T40-10-60 | 0.0247 | 0.66 | 6.50 × 10−14 | 0.990 |
T40-10-600 | 0.0410 | 0.54 | 8.53 × 10−19 | 0.998 |
T40-10-1800 | 0.0546 | 0.46 | 2.03 × 10−19 | 0.988 |
T50-15-60 | 0.108 | 0.35 | 1.85 × 10−4 | 0.998 |
T50-15-600 | 0.110 | 0.31 | 2.83 × 10−4 | 0.999 |
T50-15-1800 | 0.130 | 0.25 | 4.01 × 10−4 | 0.999 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mei, S.; Li, X.; Wang, X.; Liu, X. Calculation of Short-Term Creep of Concrete Using Fractional Viscoelastic Model. Materials 2023, 16, 4274. https://doi.org/10.3390/ma16124274
Mei S, Li X, Wang X, Liu X. Calculation of Short-Term Creep of Concrete Using Fractional Viscoelastic Model. Materials. 2023; 16(12):4274. https://doi.org/10.3390/ma16124274
Chicago/Turabian StyleMei, Shengqi, Xufeng Li, Xingju Wang, and Xiaodong Liu. 2023. "Calculation of Short-Term Creep of Concrete Using Fractional Viscoelastic Model" Materials 16, no. 12: 4274. https://doi.org/10.3390/ma16124274
APA StyleMei, S., Li, X., Wang, X., & Liu, X. (2023). Calculation of Short-Term Creep of Concrete Using Fractional Viscoelastic Model. Materials, 16(12), 4274. https://doi.org/10.3390/ma16124274