Emerging Functional Polymer Composites for Tactile Sensing
Abstract
:1. Introduction
2. Mechanisms of Tactile Sensing
2.1. Piezoresistive Tactile Sensing
2.2. Capacitive Tactile Sensing
2.3. Piezoelectric Tactile Sensing
2.4. Triboelectric Tactile Sensing
3. Basic Characteristics for Tactile Sensing
4. Novel Composites with Functional Polymer
4.1. Conductive Polymer Composites
4.2. Shape Memory Polymer Composites
4.3. Hydrogels
4.4. Liquid Crystal Elastomers
5. Type of FPCs-Based Tactile Sensors
5.1. Piezoresistive Type
5.2. Capacitive Type
5.3. Piezoelectric Type
5.4. Triboelectric Type
6. Applications of Tactile Sensing
6.1. Multifunctional Electronic Skin
6.2. Human–Machine Interaction
6.3. Health and Sports Monitoring
7. Conclusions
- Miniaturization and integration: investigating methods to miniaturize tactile sensors and integrate them into compact and portable devices, enabling their widespread use in various applications, including wearable electronics, robotics, healthcare, and virtual reality.
- Multimodal sensing: integrating multiple sensing modalities, such as pressure, temperature, vibration, and texture, into a single tactile sensor to provide comprehensive and rich haptic feedback, mimicking the human sense of touch more accurately; in addition, establishing effective neural interfaces that can connect functional polymer composite tactile sensors with the human nervous system to achieve bidirectional information transfer and feedback.
- Energy harvesting: exploring the incorporation of energy harvesting capabilities into tactile sensors to enable self-powering or energy-efficient operation, thereby reducing reliance on external power sources and expanding their potential applications.
- Artificial intelligence (AI) and machine learning (ML): taking advantage of AI and ML algorithms to enhance the data processing and interpretation capabilities of tactile sensors, enabling more advanced and intelligent analysis of touch.
- The development of advanced materials: exploring new materials and composites with enhanced mechanical and electrical properties, such as self-healing materials, stretchable conductors, and multifunctional nanomaterials, to further improve the performance and durability of tactile sensors.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sun, Q.-J.; Lai, Q.-T.; Tang, Z.; Tang, X.-G.; Zhao, X.-H.; Roy, V.A.L. Advanced Functional Composite Materials toward E-Skin for Health Monitoring and Artificial Intelligence. Adv. Mater. Technol. 2023, 8, 2201088. [Google Scholar] [CrossRef]
- Lai, Q.-T.; Zhao, X.-H.; Sun, Q.-J.; Tang, Z.; Tang, X.-G.; Roy, V.A.L. Emerging MXene-Based Flexible Tactile Sensors for Health Monitoring and Haptic Perception. Small 2023, 2300283. [Google Scholar] [CrossRef]
- Zou, L.; Ge, C.; Wang, Z.J.; Cretu, E.; Li, X. Novel Tactile Sensor Technology and Smart Tactile Sensing Systems: A Review. Sensors 2017, 17, 2653. [Google Scholar] [CrossRef]
- Guo, W.-T.; Tang, X.-G.; Tang, Z.; Sun, Q.-J. Recent Advances in Polymer Composites for Flexible Pressure Sensors. Polymers 2023, 15, 2176. [Google Scholar] [CrossRef]
- Qu, X.; Xue, J.; Liu, Y.; Rao, W.; Liu, Z.; Li, Z. Fingerprint-Shaped Triboelectric Tactile Sensor. Nano Energy 2022, 98, 107324. [Google Scholar] [CrossRef]
- Li, J.; Liu, J.; Peng, C.; Liu, X.; Wu, Z.; Zheng, F. Design and Testing of a Non-Contact MEMS Voltage Sensor Based on Single-Crystal Silicon Piezoresistive Effect. Micromachines 2022, 13, 619. [Google Scholar] [CrossRef]
- Lai, Q.-T.; Sun, Q.-J.; Tang, Z.; Tang, X.-G.; Zhao, X.-H. Conjugated Polymer-Based Nanocomposites for Pressure Sensors. Molecules 2023, 28, 1627. [Google Scholar] [CrossRef] [PubMed]
- Chun, S.; Choi, Y.; Suh, D.I.; Bae, G.Y.; Hyun, S.; Park, W. A Tactile Sensor Using Single Layer Graphene for Surface Texture Recognition. Nanoscale 2017, 9, 10248–10255. [Google Scholar] [CrossRef] [PubMed]
- Park, M.; Park, Y.J.; Chen, X.; Park, Y.-K.; Kim, M.-S.; Ahn, J.-H. MoS2-Based Tactile Sensor for Electronic Skin Applications. Adv. Mater. 2016, 28, 2556–2562. [Google Scholar] [CrossRef] [Green Version]
- Xue, F.; Chen, L.; Wang, L.; Pang, Y.; Chen, J.; Zhang, C.; Wang, Z.L. MoS2 Tribotronic Transistor for Smart Tactile Switch. Adv. Funct. Mater. 2016, 26, 2104–2109. [Google Scholar] [CrossRef]
- You, J.; Wang, L.; Zhang, Y.; Lin, D.; Wang, B.; Han, Z.; Zhang, N.; Miao, T.; Liu, M.; Jiang, Z.; et al. Simulating Tactile and Visual Multisensory Behaviour in Humans Based on an MoS2 Field Effect Transistor. Nano Res. 2023, 16, 7405–7412. [Google Scholar] [CrossRef]
- Yang, T.; Xie, D.; Li, Z.; Zhu, H. Recent Advances in Wearable Tactile Sensors: Materials, Sensing Mechanisms, and Device Performance. Mater. Sci. Eng. R Rep. 2017, 115, 1–37. [Google Scholar] [CrossRef]
- Nguyen, T.; Dinh, T.; Phan, H.-P.; Pham, T.A.; Dau, V.T.; Nguyen, N.-T.; Dao, D.V. Advances in Ultrasensitive Piezoresistive Sensors: From Conventional to Flexible and Stretchable Applications. Mater. Horiz. 2021, 8, 2123–2150. [Google Scholar] [CrossRef] [PubMed]
- Wan, Y.; Wang, Y.; Guo, C.F. Recent Progresses on Flexible Tactile Sensors. Mater. Today Phys. 2017, 1, 61–73. [Google Scholar] [CrossRef]
- Lee, D.-H.; Chuang, C.-H.; Shaikh, M.O.; Dai, Y.-S.; Wang, S.-Y.; Wen, Z.-H.; Yen, C.-K.; Liao, C.-F.; Pan, C.-T. Flexible Piezoresistive Tactile Sensor Based on Polymeric Nanocomposites with Grid-Type Microstructure. Micromachines 2021, 12, 452. [Google Scholar] [CrossRef]
- Jiang, X.; Xu, C.; Gao, T.; Bando, Y.; Golberg, D.; Dai, P.; Hu, M.; Ma, R.; Hu, Z.; Wang, X.-B. Flexible Conductive Polymer Composite Materials Based on Strutted Graphene Foam. Compos. Commun. 2021, 25, 100757. [Google Scholar] [CrossRef]
- Cao, G.; Cai, S.; Zhang, H.; Chen, Y.; Tian, Y. High-Performance Conductive Polymer Composites by Incorporation of Polyaniline-Wrapped Halloysite Nanotubes and Silver Microflakes. ACS Appl. Polym. Mater. 2022, 4, 3352–3360. [Google Scholar] [CrossRef]
- Oh, J.; Kim, J.-O.; Kim, Y.; Choi, H.B.; Yang, J.C.; Lee, S.; Pyatykh, M.; Kim, J.; Sim, J.Y.; Park, S. Highly Uniform and Low Hysteresis Piezoresistive Pressure Sensors Based on Chemical Grafting of Polypyrrole on Elastomer Template with Uniform Pore Size. Small 2019, 15, 1901744. [Google Scholar] [CrossRef]
- Choi, D.; Jang, S.; Kim, J.S.; Kim, H.-J.; Kim, D.H.; Kwon, J.-Y. A Highly Sensitive Tactile Sensor Using a Pyramid-Plug Structure for Detecting Pressure, Shear Force, and Torsion. Adv. Mater. Technol. 2019, 4, 1800284. [Google Scholar] [CrossRef]
- Chandra, M.; Ke, S.-Y.; Chen, R.; Lo, C.-Y. Doubling the Spatial Resolution in Capacitive Tactile Sensors. J. MicroNanolithography MEMS MOEMS 2017, 16, 35001. [Google Scholar] [CrossRef]
- Takahashi, T.; Suzuki, M.; Iwamoto, S.; Aoyagi, S. Capacitive Tactile Sensor Based on Dielectric Oil Displacement out of a Parylene Dome into Surrounding Channels. Micromachines 2012, 3, 270–278. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.; Han, C.; Guan, L.; Ji, Z.; Jiang, M.; Cui, Y.; Jin, Y.; Weng, L.; Wang, X.; Liu, J. Rose Petals Bioinspired Microstructure for Flexible Tactile Electronic Skin. J. Mater. Sci. Mater. Electron. 2023, 34, 1029. [Google Scholar] [CrossRef]
- Niu, H.; Chen, Y.; Kim, E.-S.; Zhou, W.; Li, Y.; Kim, N.-Y. Ultrasensitive Capacitive Tactile Sensor with Heterostructured Active Layers for Tiny Signal Perception. Chem. Eng. J. 2022, 450, 138258. [Google Scholar] [CrossRef]
- Niu, H.; Gao, S.; Yue, W.; Li, Y.; Zhou, W.; Liu, H. Highly Morphology-Controllable and Highly Sensitive Capacitive Tactile Sensor Based on Epidermis-Dermis-Inspired Interlocked Asymmetric-Nanocone Arrays for Detection of Tiny Pressure. Small 2020, 16, 1904774. [Google Scholar] [CrossRef] [PubMed]
- Jian, M.; Xia, K.; Wang, Q.; Yin, Z.; Wang, H.; Wang, C.; Xie, H.; Zhang, M.; Zhang, Y. Flexible and Highly Sensitive Pressure Sensors Based on Bionic Hierarchical Structures. Adv. Funct. Mater. 2017, 27, 1606066. [Google Scholar] [CrossRef]
- Wan, Y.; Qiu, Z.; Hong, Y.; Wang, Y.; Zhang, J.; Liu, Q.; Wu, Z.; Guo, C.F. A Highly Sensitive Flexible Capacitive Tactile Sensor with Sparse and High-Aspect-Ratio Microstructures. Adv. Electron. Mater. 2018, 4, 1700586. [Google Scholar] [CrossRef]
- Singh, A.; Ojha, A.K. Orange Peel Derived Activated Carbon for Supercapacitor Electrode Material. J. Mater. Sci. Mater. Electron. 2023, 34, 1003. [Google Scholar] [CrossRef]
- Wang, Z.L. Piezotronic and Piezophototronic Effects. J. Phys. Chem. Lett. 2010, 1, 1388–1393. [Google Scholar] [CrossRef]
- Park, K.-I.; Son, J.H.; Hwang, G.-T.; Jeong, C.K.; Ryu, J.; Koo, M.; Choi, I.; Lee, S.H.; Byun, M.; Wang, Z.L.; et al. Highly-Efficient, Flexible Piezoelectric PZT Thin Film Nanogenerator on Plastic Substrates. Adv. Mater. 2014, 26, 2514–2520. [Google Scholar] [CrossRef] [PubMed]
- Khandelwal, G.; Dahiya, R. Self-Powered Active Sensing Based on Triboelectric Generators. Adv. Mater. 2022, 34, 2200724. [Google Scholar] [CrossRef]
- Zeng, J.; Zhao, J.; Li, C.; Qi, Y.; Liu, G.; Fu, X.; Zhou, H.; Zhang, C. Triboelectric Nanogenerators as Active Tactile Stimulators for Multifunctional Sensing and Artificial Synapses. Sensors 2022, 22, 975. [Google Scholar] [CrossRef]
- Cai, Y.-W.; Zhang, X.-N.; Wang, G.-G.; Li, G.-Z.; Zhao, D.-Q.; Sun, N.; Li, F.; Zhang, H.-Y.; Han, J.-C.; Yang, Y. A Flexible Ultra-Sensitive Triboelectric Tactile Sensor of Wrinkled PDMS/MXene Composite Films for E-Skin. Nano Energy 2021, 81, 105663. [Google Scholar] [CrossRef]
- Chen, Y.; Deng, Z.; Ouyang, R.; Zheng, R.; Jiang, Z.; Bai, H.; Xue, H. 3D Printed Stretchable Smart Fibers and Textiles for Self-Powered e-Skin. Nano Energy 2021, 84, 105866. [Google Scholar] [CrossRef]
- Cheng, Y.; Zhu, W.; Lu, X.; Wang, C. Mechanically Robust, Stretchable, Autonomously Adhesive, and Environmentally Tolerant Triboelectric Electronic Skin for Self-Powered Healthcare Monitoring and Tactile Sensing. Nano Energy 2022, 102, 107636. [Google Scholar] [CrossRef]
- Xu, H.; Tao, J.; Liu, Y.; Mo, Y.; Bao, R.; Pan, C. Fully Fibrous Large-Area Tailorable Triboelectric Nanogenerator Based on Solution Blow Spinning Technology for Energy Harvesting and Self-Powered Sensing. Small 2022, 18, 2202477. [Google Scholar] [CrossRef] [PubMed]
- Mitsuzuka, M.; Kinbara, Y.; Fukuhara, M.; Nakahara, M.; Nakano, T.; Takarada, J.; Wang, Z.; Mori, Y.; Kageoka, M.; Tawa, T.; et al. Relationship between Photoelasticity of Polyurethane and Dielectric Anisotropy of Diisocyanate, and Application of High-Photoelasticity Polyurethane to Tactile Sensor for Robot Hands. Polymers 2021, 13, 143. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Jung, H.; Kim, M.; Bae, H.; Lee, Y. Conductive Polymer Composites for Soft Tactile Sensors. Macromol. Res. 2021, 29, 761–775. [Google Scholar] [CrossRef]
- Peng, D.; Qu, S. 6—Mechanoluminescent Materials for Tactile Sensors. In Functional Tactile Sensors; Zhou, Y., Chou, H.-H., Eds.; Woodhead Publishing Series in Electronic and Optical Materials; Woodhead Publishing: Sawton, UK, 2021; pp. 91–112. ISBN 978-0-12-820633-1. [Google Scholar]
- Peng, Y.; Yang, N.; Xu, Q.; Dai, Y.; Wang, Z. Recent Advances in Flexible Tactile Sensors for Intelligent Systems. Sensors 2021, 21, 5392. [Google Scholar] [CrossRef]
- Zhong, W.; Ming, X.; Li, W.; Jia, K.; Jiang, H.; Ke, Y.; Li, M.; Wang, D. Wearable Human-Machine Interaction Device Integrated by All-Textile-Based Tactile Sensors Array via Facile Cross-Stitch. Sens. Actuators Phys. 2022, 333, 113240. [Google Scholar] [CrossRef]
- Lu, D.; Liu, T.; Meng, X.; Luo, B.; Yuan, J.; Liu, Y.; Zhang, S.; Cai, C.; Gao, C.; Wang, J.; et al. Wearable Triboelectric Visual Sensors for Tactile Perception. Adv. Mater. 2023, 35, 2209117. [Google Scholar] [CrossRef]
- Birkoben, T.; Winterfeld, H.; Fichtner, S.; Petraru, A.; Kohlstedt, H. A Spiking and Adapting Tactile Sensor for Neuromorphic Applications. Sci. Rep. 2020, 10, 17260. [Google Scholar] [CrossRef] [PubMed]
- Gao, S.; Dai, Y.; Nathan, A. Tactile and Vision Perception for Intelligent Humanoids. Adv. Intell. Syst. 2022, 4, 2100074. [Google Scholar] [CrossRef]
- Sun, Q.-J.; Zhao, X.-H.; Zhou, Y.; Yeung, C.-C.; Wu, W.; Venkatesh, S.; Xu, Z.-X.; Wylie, J.J.; Li, W.-J.; Roy, V.A.L. Fingertip-Skin-Inspired Highly Sensitive and Multifunctional Sensor with Hierarchically Structured Conductive Graphite/Polydimethylsiloxane Foams. Adv. Funct. Mater. 2019, 29, 1808829. [Google Scholar] [CrossRef] [Green Version]
- Pang, H.; Xu, L.; Yan, D.-X.; Li, Z.-M. Conductive Polymer Composites with Segregated Structures. Prog. Polym. Sci. 2014, 39, 1908–1933. [Google Scholar] [CrossRef]
- Starý, Z.; Krückel, J. Conductive Polymer Composites with Carbonic Fillers: Shear Induced Electrical Behaviour. Polymer 2018, 139, 52–59. [Google Scholar] [CrossRef]
- He, Y.; Lu, X.; Wu, D.; Zhou, M.; He, G.; Zhang, J.; Zhang, L.; Liu, H.; Liu, C. CNT/PDMS Conductive Foam-Based Piezoresistive Sensors with Low Detection Limits, Excellent Durability, and Multifunctional Sensing Capability. Sens. Actuators Phys. 2023, 114408. [Google Scholar] [CrossRef]
- Zhou, K.; Dai, K.; Liu, C.; Shen, C. Flexible Conductive Polymer Composites for Smart Wearable Strain Sensors. SmartMat 2020, 1, e1010. [Google Scholar] [CrossRef]
- Wang, S.; Urban, M.W. Self-Healing Polymers. Nat. Rev. Mater. 2020, 5, 562–583. [Google Scholar] [CrossRef]
- Hornat, C.C.; Urban, M.W. Shape Memory Effects in Self-Healing Polymers. Prog. Polym. Sci. 2020, 102, 101208. [Google Scholar] [CrossRef]
- Zhang, W.; Wu, B.; Sun, S.; Wu, P. Skin-like Mechanoresponsive Self-Healing Ionic Elastomer from Supramolecular Zwitterionic Network. Nat. Commun. 2021, 12, 4082. [Google Scholar] [CrossRef]
- Liu, H.; Li, Q.; Bu, Y.; Zhang, N.; Wang, C.; Pan, C.; Mi, L.; Guo, Z.; Liu, C.; Shen, C. Stretchable Conductive Nonwoven Fabrics with Self-Cleaning Capability for Tunable Wearable Strain Sensor. Nano Energy 2019, 66, 104143. [Google Scholar] [CrossRef]
- Yang, L.; Pan, L.; Xiang, H.; Fei, X.; Zhu, M. Organic–Inorganic Hybrid Conductive Network to Enhance the Electrical Conductivity of Graphene-Hybridized Polymeric Fibers. Chem. Mater. 2022, 34, 2049–2058. [Google Scholar] [CrossRef]
- Jin Yoo, H.; Chae Jung, Y.; Gopal Sahoo, N.; Whan Cho, J. Polyurethane-Carbon Nanotube Nanocomposites Prepared by In-Situ Polymerization with Electroactive Shape Memory. J. Macromol. Sci. Part B 2006, 45, 441–451. [Google Scholar] [CrossRef]
- Yu, K.; Liu, Y.; Leng, J. Shape Memory Polymer/CNT Composites and Their Microwave Induced Shape Memory Behaviors. RSC Adv. 2013, 4, 2961–2968. [Google Scholar] [CrossRef]
- Hu, B.; Xia, H.; Liu, F.; Ni, Q.-Q. Heat-Stimuli Controllability of Shape Memory Thermoplastic Epoxy Filaments by Adding Polyethylene Glycol. Polymer 2022, 250, 124818. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Y.; Wei, Q.; Zhang, J. Light-Responsive Shape Memory Polymer Composites. Eur. Polym. J. 2022, 173, 111314. [Google Scholar] [CrossRef]
- Yang, G.; Wan, X.; Liu, Y.; Li, R.; Su, Y.; Zeng, X.; Tang, J. Luminescent Poly(Vinyl Alcohol)/Carbon Quantum Dots Composites with Tunable Water-Induced Shape Memory Behavior in Different PH and Temperature Environments. ACS Appl. Mater. Interfaces 2016, 8, 34744–34754. [Google Scholar] [CrossRef] [PubMed]
- Sivaganga, K.C.; Varughese, T. Physical Properties of Carbon Nanotubes. In Handbook of Carbon Nanotubes; Abraham, J., Thomas, S., Kalarikkal, N., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 283–297. ISBN 978-3-030-91346-5. [Google Scholar]
- Cui, Y.; Liu, C.; Hu, S.; Yu, X. The Experimental Exploration of Carbon Nanofiber and Carbon Nanotube Additives on Thermal Behavior of Phase Change Materials. Sol. Energy Mater. Sol. Cells 2011, 95, 1208–1212. [Google Scholar] [CrossRef]
- Tekay, E. Preparation and Characterization of Electro-Active Shape Memory PCL/SEBS-g-MA/MWCNT Nanocomposites. Polymer 2020, 209, 122989. [Google Scholar] [CrossRef]
- Hsu, W.-H.; Lin, C.-W.; Chen, Y.-H.; Wu, S.-R.; Tsai, H.-Y. Study on Carbon Nanotube/Shape Memory Polymer Composites and Their Applications in Wireless Worm Actuator. J. Mech. 2021, 37, 636–650. [Google Scholar] [CrossRef]
- Ragin Ramdas, M.; Santhosh Kumar, K.S. Organic–Inorganic Hybrid Polytriazoles; Synthesis and Shape Memory Properties. Polym. Adv. Technol. 2021, 32, 2151–2158. [Google Scholar] [CrossRef]
- Pinelli, F.; Magagnin, L.; Rossi, F. Progress in Hydrogels for Sensing Applications: A Review. Mater. Today Chem. 2020, 17, 100317. [Google Scholar] [CrossRef]
- Lee, Y.; Song, W.J.; Sun, J.-Y. Hydrogel Soft Robotics. Mater. Today Phys. 2020, 15, 100258. [Google Scholar] [CrossRef]
- Zhao, Z.; Hu, Y.-P.; Liu, K.-Y.; Yu, W.; Li, G.-X.; Meng, C.-Z.; Guo, S.-J. Recent Development of Self-Powered Tactile Sensors Based on Ionic Hydrogels. Gels 2023, 9, 257. [Google Scholar] [CrossRef] [PubMed]
- Adelnia, H.; Ensandoost, R.; Shebbrin Moonshi, S.; Gavgani, J.N.; Vasafi, E.I.; Ta, H.T. Freeze/Thawed Polyvinyl Alcohol Hydrogels: Present, Past and Future. Eur. Polym. J. 2022, 164, 110974. [Google Scholar] [CrossRef]
- Yu, Y.; Feng, Y.; Liu, F.; Wang, H.; Yu, H.; Dai, K.; Zheng, G.; Feng, W. Carbon Dots-Based Ultrastretchable and Conductive Hydrogels for High-Performance Tactile Sensors and Self-Powered Electronic Skin. Small 2022, 2204365. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Liu, J.; Chen, Y.; Zheng, X.; Liu, H.; Li, H. Multiple-Stimuli-Responsive and Cellulose Conductive Ionic Hydrogel for Smart Wearable Devices and Thermal Actuators. ACS Appl. Mater. Interfaces 2021, 13, 1353–1366. [Google Scholar] [CrossRef]
- Zheng, H.; Lin, N.; He, Y.; Zuo, B. Self-Healing, Self-Adhesive Silk Fibroin Conductive Hydrogel as a Flexible Strain Sensor. ACS Appl. Mater. Interfaces 2021, 13, 40013–40031. [Google Scholar] [CrossRef]
- Jin, R.; Xu, J.; Duan, L.; Gao, G. Chitosan-Driven Skin-Attachable Hydrogel Sensors toward Human Motion and Physiological Signal Monitoring. Carbohydr. Polym. 2021, 268, 118240. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, S.; Chen, Y.; Ling, H.; Zhao, L.; Luo, G.; Wang, X.; Hartel, M.C.; Liu, H.; Xue, Y.; et al. Gelatin Methacryloyl-Based Tactile Sensors for Medical Wearables. Adv. Funct. Mater. 2020, 30, 2003601. [Google Scholar] [CrossRef]
- Tao, K.; Chen, Z.; Yu, J.; Zeng, H.; Wu, J.; Wu, Z.; Jia, Q.; Li, P.; Fu, Y.; Chang, H.; et al. Ultra-Sensitive, Deformable, and Transparent Triboelectric Tactile Sensor Based on Micro-Pyramid Patterned Ionic Hydrogel for Interactive Human–Machine Interfaces. Adv. Sci. 2022, 9, 2104168. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Zheng, Y.; Zhang, H.; Wang, Y.; Fan, X.; Liu, T. Fast-Recoverable, Self-Healable, and Adhesive Nanocomposite Hydrogel Consisting of Hybrid Nanoparticles for Ultrasensitive Strain and Pressure Sensing. Chem. Mater. 2021, 33, 6146–6157. [Google Scholar] [CrossRef]
- Liu, J.; Zheng, H.; Poh, P.; Machens, H.-G.; Schilling, A. Hydrogels for Engineering of Perfusable Vascular Networks. Int. J. Mol. Sci. 2015, 16, 15997–16016. [Google Scholar] [CrossRef] [Green Version]
- He, J.; Liang, S.; Li, F.; Yang, Q.; Huang, M.; He, Y.; Fan, X.; Wu, M. Recent Development in Liquid Metal Materials. ChemistryOpen 2021, 10, 360–372. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, J.; Yang, S. Multi-Functional Liquid Crystal Elastomer Composites. Appl. Phys. Rev. 2022, 9, 11301. [Google Scholar] [CrossRef]
- Ambulo, C.P.; Ford, M.J.; Searles, K.; Majidi, C.; Ware, T.H. 4D-Printable Liquid Metal–Liquid Crystal Elastomer Composites. ACS Appl. Mater. Interfaces 2021, 13, 12805–12813. [Google Scholar] [CrossRef]
- Sengupta, D.; Mastella, M.; Chicca, E.; Kottapalli, A.G.P. Skin-Inspired Flexible and Stretchable Electrospun Carbon Nanofiber Sensors for Neuromorphic Sensing. ACS Appl. Electron. Mater. 2022, 4, 308–315. [Google Scholar] [CrossRef]
- Sun, Q.-J.; Zhuang, J.; Venkatesh, S.; Zhou, Y.; Han, S.-T.; Wu, W.; Kong, K.-W.; Li, W.-J.; Chen, X.; Li, R.K.Y.; et al. Highly Sensitive and Ultrastable Skin Sensors for Biopressure and Bioforce Measurements Based on Hierarchical Microstructures. ACS Appl. Mater. Interfaces 2018, 10, 4086–4094. [Google Scholar] [CrossRef]
- Zhang, C.; Ye, W.B.; Zhou, K.; Chen, H.-Y.; Yang, J.-Q.; Ding, G.; Chen, X.; Zhou, Y.; Zhou, L.; Li, F.; et al. Bioinspired Artificial Sensory Nerve Based on Nafion Memristor. Adv. Funct. Mater. 2019, 29, 1808783. [Google Scholar] [CrossRef]
- Cheng, Y.; Ma, Y.; Li, L.; Zhu, M.; Yue, Y.; Liu, W.; Wang, L.; Jia, S.; Li, C.; Qi, T.; et al. Bioinspired Microspines for a High-Performance Spray Ti3C2Tx MXene-Based Piezoresistive Sensor. ACS Nano 2020, 14, 2145–2155. [Google Scholar] [CrossRef]
- Chen, D.; Zhi, X.; Xia, Y.; Li, S.; Xi, B.; Zhao, C.; Wang, X. A Digital−Analog Bimodal Memristor Based on CsPbBr3 for Tactile Sensory Neuromorphic Computing. Small 2023, 2301196. [Google Scholar] [CrossRef] [PubMed]
- Wei, Q.; Chen, G.; Pan, H.; Ye, Z.; Au, C.; Chen, C.; Zhao, X.; Zhou, Y.; Xiao, X.; Tai, H.; et al. MXene-Sponge Based High-Performance Piezoresistive Sensor for Wearable Biomonitoring and Real-Time Tactile Sensing. Small Methods 2022, 6, 2101051. [Google Scholar] [CrossRef]
- Fu, X.; Zhang, J.; Xiao, J.; Kang, Y.; Yu, L.; Jiang, C.; Pan, Y.; Dong, H.; Gao, S.; Wang, Y. A High-Resolution, Ultrabroad-Range and Sensitive Capacitive Tactile Sensor Based on a CNT/PDMS Composite for Robotic Hands. Nanoscale 2021, 13, 18780–18788. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.-R.; Jen, Y.-H.; Mo, C.-T.; Chen, Y.-W.; Al-Romaithy, M.; Martincic, E.; Lo, C.-Y. Realization of Multistage Detection Sensitivity and Dynamic Range in Capacitive Tactile Sensors. IEEE Sens. J. 2020, 20, 9724–9732. [Google Scholar] [CrossRef]
- Ji, B.; Zhou, Q.; Lei, M.; Ding, S.; Song, Q.; Gao, Y.; Li, S.; Xu, Y.; Zhou, Y.; Zhou, B. Gradient Architecture-Enabled Capacitive Tactile Sensor with High Sensitivity and Ultrabroad Linearity Range. Small 2021, 17, 2103312. [Google Scholar] [CrossRef] [PubMed]
- Sathya, S.; Muruganand, S.; Manikandan, N.; Karuppasamy, K. Design of Capacitance Based on Interdigitated Electrode for BioMEMS Sensor Application. Mater. Sci. Semicond. Process. 2019, 101, 206–213. [Google Scholar] [CrossRef]
- Qin, R.; Hu, M.; Li, X.; Liang, T.; Tan, H.; Liu, J.; Shan, G. A New Strategy for the Fabrication of a Flexible and Highly Sensitive Capacitive Pressure Sensor. Microsyst. Nanoeng. 2021, 7, 1–12. [Google Scholar] [CrossRef]
- Hsieh, M.-L.; Yeh, S.-K.; Lee, J.-H.; Cheng, M.-C.; Fang, W. CMOS-MEMS Capacitive Tactile Sensor with Vertically Integrated Sensing Electrode Array for Sensitivity Enhancement. Sens. Actuators Phys. 2021, 317, 112350. [Google Scholar] [CrossRef]
- Jo, E.-B.; Lee, Y.-A.; Cho, Y.-A.; Günther, P.A.; Gebhardt, S.E.; Neubert, H.; Kim, H.-S. The 0-3 Lead Zirconate-Titanate (PZT)/Polyvinyl-Butyral (PVB) Composite for Tactile Sensing. Sensors 2023, 23, 1649. [Google Scholar] [CrossRef]
- Zhu, L.; Xiang, Y.; Liu, Y.; Geng, K.; Yao, R.; Li, B. Comparison of Piezoelectric Responses of Flexible Tactile Sensors Based on Hydrothermally-Grown ZnO Nanorods on ZnO Seed Layers with Different Thicknesses. Sens. Actuators Phys. 2022, 341, 113552. [Google Scholar] [CrossRef]
- Jiang, J.; Tu, S.; Fu, R.; Li, J.; Hu, F.; Yan, B.; Gu, Y.; Chen, S. Flexible Piezoelectric Pressure Tactile Sensor Based on Electrospun BaTiO3/Poly(Vinylidene Fluoride) Nanocomposite Membrane. ACS Appl. Mater. Interfaces 2020, 12, 33989–33998. [Google Scholar] [CrossRef]
- Arshad, A.N.; Wahid, M.H.M.; Rusop, M.; Majid, W.H.A.; Subban, R.H.Y.; Rozana, M.D. Dielectric and Structural Properties of Poly(Vinylidene Fluoride) (PVDF) and Poly(Vinylidene Fluoride-Trifluoroethylene) (PVDF-TrFE) Filled with Magnesium Oxide Nanofillers. J. Nanomater. 2019, 2019, e5961563. [Google Scholar] [CrossRef]
- Li, H.; Wu, T.; Xie, M.; Shi, Y.; Shen, S.; Zhao, M.; Yang, X.; Figueroa-Cosme, L.M.; Ke, Q.; Xia, Y. Enhancing the Tactile and Near-Infrared Sensing Capabilities of Electrospun PVDF Nanofibers with the Use of Gold Nanocages. J. Mater. Chem. C 2018, 6, 10263–10269. [Google Scholar] [CrossRef] [PubMed]
- Cui, M.; Hou, T.; Tong, J.; Xin, Y.; Zhou, X.; Liang, W. Flexible Piezoelectric Tactile Sensor With Cilia-Inspired Structures Based on Electrospun PVDF/Fe3O4 Nanofibers. IEEE Sens. J. 2022, 22, 24430–24438. [Google Scholar] [CrossRef]
- Karumuthil, S.C.; Rajan, L. Optimization of PVDF Nanocomposite Based Flexible Piezoelectric Tactile Sensors: A Comparative Investigation. Sens. Actuators Phys. 2023, 353, 114215. [Google Scholar] [CrossRef]
- Wang, J.-C.; Jiang, Y.-P.; Lin, C.-H.; Chan, S.-H.; Wu, M.-C. Enhanced Piezoelectric Tactile Sensing Behaviors of High-Density and Low-Damage CF4-Plasma-Treated IGZO Thin-Film Transistors Coated by P(VDF-TrFE) Copolymers. Sens. Actuators Phys. 2020, 304, 111855. [Google Scholar] [CrossRef]
- Oh, H.J.; Kim, D.-K.; Choi, Y.C.; Lim, S.-J.; Jeong, J.B.; Ko, J.H.; Hahm, W.-G.; Kim, S.-W.; Lee, Y.; Kim, H.; et al. Fabrication of Piezoelectric Poly(L-Lactic Acid)/BaTiO3 Fibre by the Melt-Spinning Process. Sci. Rep. 2020, 10, 16339. [Google Scholar] [CrossRef]
- Su, Y.; Li, W.; Cheng, X.; Zhou, Y.; Yang, S.; Zhang, X.; Chen, C.; Yang, T.; Pan, H.; Xie, G.; et al. High-Performance Piezoelectric Composites via β Phase Programming. Nat. Commun. 2022, 13, 4867. [Google Scholar] [CrossRef] [PubMed]
- Mokhtari, F.; Azimi, B.; Salehi, M.; Hashemikia, S.; Danti, S. Recent Advances of Polymer-Based Piezoelectric Composites for Biomedical Applications. J. Mech. Behav. Biomed. Mater. 2021, 122, 104669. [Google Scholar] [CrossRef]
- Kim, D.W.; Lee, J.H.; Kim, J.K.; Jeong, U. Material Aspects of Triboelectric Energy Generation and Sensors. NPG Asia Mater. 2020, 12, 1–17. [Google Scholar] [CrossRef] [Green Version]
- An, X.; Wang, C.; Shao, R.; Sun, S. Advances and Prospects of Triboelectric Nanogenerator for Self-Powered System. Int. J. Smart Nano Mater. 2021, 12, 233–255. [Google Scholar] [CrossRef]
- Lin, Y.; Duan, S.; Zhu, D.; Li, Y.; Wang, B.; Wu, J. Self-Powered and Interface-Independent Tactile Sensors Based on Bilayer Single-Electrode Triboelectric Nanogenerators for Robotic Electronic Skin. Adv. Intell. Syst. 2023, 5, 2100120. [Google Scholar] [CrossRef]
- Sun, Q.-J.; Lei, Y.; Zhao, X.-H.; Han, J.; Cao, R.; Zhang, J.; Wu, W.; Heidari, H.; Li, W.-J.; Sun, Q.; et al. Scalable Fabrication of Hierarchically Structured Graphite/Polydimethylsiloxane Composite Films for Large-Area Triboelectric Nanogenerators and Self-Powered Tactile Sensing. Nano Energy 2021, 80, 105521. [Google Scholar] [CrossRef]
- Zhang, T.; Wen, Z.; Lei, H.; Gao, Z.; Chen, Y.; Zhang, Y.; Liu, J.; Xie, Y.; Sun, X. Surface-Microengineering for High-Performance Triboelectric Tactile Sensor via Dynamically Assembled Ferrofluid Template. Nano Energy 2021, 87, 106215. [Google Scholar] [CrossRef]
- Liu, J.; Wen, Z.; Lei, H.; Gao, Z.; Sun, X. A Liquid–Solid Interface-Based Triboelectric Tactile Sensor with Ultrahigh Sensitivity of 21.48 KPa−1. Nano-Micro Lett. 2022, 14, 88. [Google Scholar] [CrossRef] [PubMed]
- Rao, J.; Chen, Z.; Zhao, D.; Ma, R.; Yi, W.; Zhang, C.; Liu, D.; Chen, X.; Yang, Y.; Wang, X.; et al. Tactile Electronic Skin to Simultaneously Detect and Distinguish between Temperature and Pressure Based on a Triboelectric Nanogenerator. Nano Energy 2020, 75, 105073. [Google Scholar] [CrossRef]
- Duan, S.; Shi, Q.; Hong, J.; Zhu, D.; Lin, Y.; Li, Y.; Lei, W.; Lee, C.; Wu, J. Water-Modulated Biomimetic Hyper-Attribute-Gel Electronic Skin for Robotics and Skin-Attachable Wearables. ACS Nano 2023, 17, 1355–1371. [Google Scholar] [CrossRef]
- Yang, J.C.; Mun, J.; Kwon, S.Y.; Park, S.; Bao, Z.; Park, S. Electronic Skin: Recent Progress and Future Prospects for Skin-Attachable Devices for Health Monitoring, Robotics, and Prosthetics. Adv. Mater. 2019, 31, 1904765. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Zhu, Y.; Chang, X.; Pan, D.; Song, G.; Guo, Z.; Naik, N. Recent Progress in Essential Functions of Soft Electronic Skin. Adv. Funct. Mater. 2021, 31, 2104686. [Google Scholar] [CrossRef]
- Xu, J.; Pan, J.; Cui, T.; Zhang, S.; Yang, Y.; Ren, T.-L. Recent Progress of Tactile and Force Sensors for Human–Machine Interaction. Sensors 2023, 23, 1868. [Google Scholar] [CrossRef]
- Zhang, S.; Xiao, Y.; Chen, H.; Zhang, Y.; Liu, H.; Qu, C.; Shao, H.; Xu, Y. Flexible Triboelectric Tactile Sensor Based on a Robust MXene/Leather Film for Human–Machine Interaction. ACS Appl. Mater. Interfaces 2023, 15, 13802–13812. [Google Scholar] [CrossRef] [PubMed]
- Kerr, E.; McGinnity, T.M.; Coleman, S.; Shepherd, A. Human Vital Sign Determination Using Tactile Sensing and Fuzzy Triage System. Expert Syst. Appl. 2021, 175, 114781. [Google Scholar] [CrossRef]
- Chen, J.; Li, L.; Zhu, Z.; Luo, Z.; Tang, W.; Wang, L.; Li, H. Bioinspired Design of Highly Sensitive Flexible Tactile Sensors for Wearable Healthcare Monitoring. Mater. Today Chem. 2022, 23, 100718. [Google Scholar] [CrossRef]
- Guo, X.; Hong, W.; Liu, L.; Wang, D.; Xiang, L.; Mai, Z.; Tang, G.; Shao, S.; Jin, C.; Hong, Q.; et al. Highly Sensitive and Wide-Range Flexible Bionic Tactile Sensors Inspired by the Octopus Sucker Structure. ACS Appl. Nano Mater. 2022, 5, 11028–11036. [Google Scholar] [CrossRef]
- Liang, C.; Sun, J.; Liu, Z.; Tian, G.; Liu, Y.; Zhao, Q.; Yang, D.; Chen, J.; Zhong, B.; Zhu, M.; et al. Wide Range Strain Distributions on the Electrode for Highly Sensitive Flexible Tactile Sensor with Low Hysteresis. ACS Appl. Mater. Interfaces 2023, 15, 15096–15107. [Google Scholar] [CrossRef] [PubMed]
- Mu, Y.; Cheng, J.; Wu, X.; Yang, W.; Jin, N.; Xing, Y.; Liu, W.; Yue, C.; Wang, H.; Wu, J.; et al. All-Printed Flexible Capacitive Array Tactile Force Sensors with Tunable Sensitivity and Low Crosstalk for Micro Motion Detection. Sens. Actuators Phys. 2023, 356, 114337. [Google Scholar] [CrossRef]
- Wang, J.; Jiang, J.; Zhang, C.; Sun, M.; Han, S.; Zhang, R.; Liang, N.; Sun, D.; Liu, H. Energy-Efficient, Fully Flexible, High-Performance Tactile Sensor Based on Piezotronic Effect: Piezoelectric Signal Amplified with Organic Field-Effect Transistors. Nano Energy 2020, 76, 105050. [Google Scholar] [CrossRef]
Year | Sensing Principle | Materials | Sensitivity/Sensing Range | Low Detection Limit (Pa) | Response Time/Recovery Time (ms) | Stability (Cycle) | Ref. |
---|---|---|---|---|---|---|---|
2021 | Piezoresistive | MWCNTs/PDMS | 6.821 kPa−1/10–20 kPa 0.029 kPa−1/30–200 kPa | - | 1.6/- | 10,200 | [15] |
2022 | Piezoresistive | MXene@PU-sponge | 1.47 kPa−1 | - | 323/226 | 6000 | [84] |
2023 | Piezoresistive | SWCNTs/PDMS | 1.28 × 106 kPa−1 | 0.10 | 149/138 | 2000 | [117] |
2020 | capacitive | PVDF-TrFE | 6.583 kPa−1 /0–100 Pa | 3 | 48/36 | 10,000 | [24] |
2021 | capacitive | CNT/PDMS | 1.61% kPa−1/<1 MPa | - | 60/45 | 5000 | [85] |
2022 | Capacitive | PVDF-TrFE-TiO2 | 10.5 kPa−1 /<100 Pa | 0.1 | 5.6/5.6 | 12,000 | [23] |
2023 | Capacitive | PDMS/silver ink | 0.76 kPa−1/<1 kPa | 2 | 34/28 | - | [118] |
2020 | Piezoelectric | PVDF nano arrays | 5.17 kPa−1 | 175 | 150 | 30,000 | [119] |
2021 | Triboelectric | Wrinkled PDMS/MXene | 18 VPa−1/10–80 Pa 0.06 VPa−1/80–800 Pa | - | - | 10,000 | [32] |
2022 | Triboelectric | Pyramid ionic hydrogel/PDMS | 45.97 mVPa−1 | 20 | 17/23 | 36,000 | [73] |
2022 | Triboelectric | Ferrofluid/PTFE | 21.48 kPa−1 | 1.25 | 90/- | 10,000 | [107] |
2023 | Triboelectric | FEP/chitosan | 2.93 kPa−1 | - | 51/- | 100,000 | [41] |
2021 | Piezoelectric | PVDF/Fe3O4 | - | - | - | 30,000 | [96] |
2023 | Piezoelectric | PVDF/ZnO | 103 mV/N | - | - | 200 | [97] |
2023 | Piezoelectric | PVDF/SiO2 | 60.7 mV/N | - | - | 200 | [97] |
2023 | Piezoelectric | PVDF/TiO2 | 85.6 mV/N | - | 200 | [97] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lian, J.-J.; Guo, W.-T.; Sun, Q.-J. Emerging Functional Polymer Composites for Tactile Sensing. Materials 2023, 16, 4310. https://doi.org/10.3390/ma16124310
Lian J-J, Guo W-T, Sun Q-J. Emerging Functional Polymer Composites for Tactile Sensing. Materials. 2023; 16(12):4310. https://doi.org/10.3390/ma16124310
Chicago/Turabian StyleLian, Jia-Jin, Wen-Tao Guo, and Qi-Jun Sun. 2023. "Emerging Functional Polymer Composites for Tactile Sensing" Materials 16, no. 12: 4310. https://doi.org/10.3390/ma16124310
APA StyleLian, J. -J., Guo, W. -T., & Sun, Q. -J. (2023). Emerging Functional Polymer Composites for Tactile Sensing. Materials, 16(12), 4310. https://doi.org/10.3390/ma16124310