Thermoelectric Properties of n-Type Bi4O4SeX2 (X = Cl, Br)
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Qin, B.; Zhao, L. Moving fast makes for better cooling. Science 2022, 378, 832–833. [Google Scholar] [CrossRef] [PubMed]
- Bell, L.E. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science 2008, 321, 1457–1461. [Google Scholar] [CrossRef] [Green Version]
- Heremans, J.P.; Wiendlocha, B.; Chamoire, A.M. Resonant levels in bulk thermoelectric semiconductors. Energy Environ. Sci. 2012, 5, 5510–5530. [Google Scholar] [CrossRef]
- Dresselhaus, M.S.; Chen, G.; Tang, M.Y.; Yang, R.; Lee, H.; Wang, D.; Ren, Z.; Fleurial, J.; Gogna, P. New directions for low-dimensional thermoelectric materials. Adv. Mater. 2007, 19, 1043–1053. [Google Scholar] [CrossRef]
- Zhao, L.; Tan, G.; Hao, S.; He, J.; Pei, Y.; Chi, H.; Wang, H.; Gong, S.; Xu, H.; Dravid, V.P.; et al. Ultrahigh power factor and thermoelectric performance in hole-doped single-crystal SnSe. Science 2016, 351, 141–144. [Google Scholar] [CrossRef] [Green Version]
- Su, L.; Wang, D.; Wang, S.; Qin, B.; Wang, Y.; Qin, Y.; Jin, Y.; Chang, C.; Zhao, L. High thermoelectric performance realized through manipulating layered phonon-electron decoupling. Science 2022, 375, 1385–1389. [Google Scholar] [CrossRef]
- Snyder, G.J.; Toberer, E.S. Complex thermoelectric materials. Nat. Mater. 2008, 7, 105–114. [Google Scholar] [CrossRef] [Green Version]
- Bai, S.Q.; Pei, Y.Z.; Chen, L.D.; Zhang, W.Q.; Zhao, X.Y.; Yang, J. Enhanced thermoelectric performance of dual-element-filled skutterudites BaxCeyCo4Sb12. Acta Mater. 2009, 57, 3135–3139. [Google Scholar] [CrossRef]
- Qiu, Y.; Xi, L.; Shi, X.; Qiu, P.; Zhang, W.; Chen, L.; Salvador, J.R.; Cho, J.Y.; Yang, J.; Chien, Y.; et al. Charge-Compensated Compound Defects in Ga-containing Thermoelectric Skutterudites. Adv. Funct. Mater. 2013, 23, 3194–3203. [Google Scholar] [CrossRef] [Green Version]
- Pan, Y.; Yao, M.; Hong, X.; Zhu, Y.; Fan, F.; Imasato, K.; He, Y.; Hess, C.; Fink, J.; Yang, J.; et al. Mg3(Bi,Sb)2 single crystals towards high thermoelectric performance. Energy Environ. Sci. 2020, 13, 1717–1724. [Google Scholar] [CrossRef]
- Wang, X.W.; Lee, H.; Lan, Y.C.; Zhu, G.H.; Joshi, G.; Wang, D.Z.; Yang, J.; Muto, A.J.; Tang, M.Y.; Klatsky, J.; et al. Enhanced thermoelectric figure of merit in nanostructured n-type silicon germanium bulk alloy. Appl. Phys. Lett. 2008, 93, 193121. [Google Scholar] [CrossRef]
- Xie, W.; He, J.; Kang, H.J.; Tang, X.; Zhu, S.; Laver, M.; Wang, S.; Copley, J.R.; Brown, C.M.; Zhang, Q.; et al. Identifying the specific nanostructures responsible for the high thermoelectric performance of (Bi,Sb)2Te3 nanocomposites. Nano Lett. 2010, 10, 3283–3289. [Google Scholar] [CrossRef] [PubMed]
- Toberer, E.S.; Zevalkink, A.; Snyder, G.J. Phonon engineering through crystal chemistry. J. Mater. Chem. 2011, 21, 15843–15852. [Google Scholar] [CrossRef] [Green Version]
- Biswas, K.; He, J.; Blum, I.D.; Wu, C.I.; Hogan, T.P.; Seidman, D.N.; Dravid, V.P.; Kanatzidis, M.G. High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature 2012, 489, 414–418. [Google Scholar] [CrossRef]
- Jiang, B.; Yu, Y.; Cui, J.; Liu, X.; Xie, L.; Liao, J.; Zhang, Q.; Huang, Y.; Ning, S.; Jia, B.; et al. High-entropy-stabilized chalcogenides with high thermoelectric performance. Science 2021, 371, 830–834. [Google Scholar] [CrossRef] [PubMed]
- Roychowdhury, S.; Ghosh, T.; Arora, R.; Samanta, M.; Xie, L.; Singh, N.K.; Soni, A.; He, J.; Waghmare, U.V.; Biswas, K. Enhanced atomic ordering leads to high thermoelectric performance in AgSbTe2. Science 2021, 371, 722–727. [Google Scholar] [CrossRef]
- Wang, J.; Hu, W.; Lou, Z.; Xu, Z.; Yang, X.; Wang, T.; Lin, X. Thermoelectric properties of Bi2O2Se single crystals. Appl. Phys. Lett. 2021, 119, 081901. [Google Scholar] [CrossRef]
- Tan, X.; Liu, Y.; Liu, R.; Zhou, Z.; Liu, C.; Lan, J.; Zhang, Q.; Lin, Y.; Nan, C. Synergistical Enhancement of Thermoelectric Properties in n-Type Bi2O2Se by Carrier Engineering and Hierarchical Microstructure. Adv. Energy Mater. 2019, 9, 1900354. [Google Scholar] [CrossRef]
- Newnham, J.A.; Zhao, T.; Gibson, Q.D.; Manning, T.D.; Zanella, M.; Mariani, E.; Daniels, L.M.; Alaria, J.; Claridge, J.B.; Cora, F.; et al. Band Structure Engineering of Bi4O4SeCl2 for Thermoelectric Applications. ACS Org. Inorg. Au 2022, 2, 405–414. [Google Scholar] [CrossRef] [PubMed]
- Heremans, J.P.; Jovovic, V.; Toberer, E.S.; Saramat, A.; Kurosaki, K.; Charoenphakdee, A.; Yamanaka, S.; Snyder, G.J. Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states. Science 2008, 321, 554–557. [Google Scholar] [CrossRef] [Green Version]
- Pei, Y.; Shi, X.; LaLonde, A.; Wang, H.; Chen, L.; Snyder, G.J. Convergence of electronic bands for high performance bulk thermoelectrics. Nature 2011, 473, 66–69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Witting, I.T.; Chasapis, T.C.; Ricci, F.; Peters, M.; Heinz, N.A.; Hautier, G.; Snyder, G.J. The Thermoelectric Properties of Bismuth Telluride. Adv. Electron. Mater. 2019, 5, 1800904. [Google Scholar] [CrossRef]
- Zhao, X.B.; Ji, X.H.; Zhang, Y.H.; Zhu, T.J.; Tu, J.P.; Zhang, X.B. Bismuth telluride nanotubes and the effects on the thermoelectric properties of nanotube-containing nanocomposites. Appl. Phys. Lett. 2005, 86. [Google Scholar] [CrossRef]
- Wu, J.K.; Hofmann, M.; Hsieh, W.P.; Chen, S.H.; Yen, Z.L.; Chiu, S.K.; Luo, Y.R.; Chiang, C.C.; Huang, S.Y.; Chang, Y.H.; et al. Enhancing Thermoelectric Properties of 2D Bi2Se3 by 1D Texturing with Graphene. ACS Appl. Energy Mater. 2019, 2, 8411–8415. [Google Scholar] [CrossRef]
- N-type flexible Bi2Se3 nanosheets/SWCNTs composite films with improved thermoelectric performance for low-grade waste-heat harvesting. Nano Energy 2022, 104, 107907. [CrossRef]
- Pan, L.; Liu, W.; Zhang, J.; Shi, X.; Gao, H.; Liu, Q.; Shen, X.; Lu, C.; Wang, Y.; Chen, Z. Synergistic effect approaching record-high figure of merit in the shear exfoliated n-type Bi2O2−2xTe2xSe. Nano Energy 2020, 69, 104394. [Google Scholar] [CrossRef]
- Liu, Y.; Zhao, L.; Zhu, Y.; Liu, Y.; Li, F.; Yu, M.; Liu, D.; Xu, W.; Lin, Y.; Nan, C. Synergistically Optimizing Electrical and Thermal Transport Properties of BiCuSeO via a Dual-Doping Approach. Adv. Energy Mater. 2016, 6, 1502423. [Google Scholar] [CrossRef]
- Pan, L.; Lang, Y.; Zhao, L.; Berardan, D.; Amzallag, E.; Xu, C.; Gu, Y.; Chen, C.; Zhao, L.; Shen, X.; et al. Realization of n-type and enhanced thermoelectric performance of p-type BiCuSeO by controlled iron incorporation. J. Mater. Chem. A 2018, 6, 13340–13349. [Google Scholar] [CrossRef]
- Li, J.; Sui, J.; Pei, Y.; Barreteau, C.; Berardan, D.; Dragoe, N.; Cai, W.; He, J.; Zhao, L. A high thermoelectric figure of merit ZT > 1 in Ba heavily doped BiCuSeO oxyselenides. Energy Environ. Sci. 2012, 5, 8543. [Google Scholar] [CrossRef]
- Ren, G.; Wang, S.; Zhu, Y.; Ventura, K.J.; Tan, X.; Xu, W.; Lin, Y.; Yang, J.; Nan, C. Enhancing thermoelectric performance in hierarchically structured BiCuSeO by increasing bond covalency and weakening carrier–phonon coupling. Energy Environ. Sci. 2017, 10, 1590–1599. [Google Scholar] [CrossRef]
- Gibson, Q.D.; Manning, T.D.; Zanella, M.; Zhao, T.; Murgatroyd, P.A.E.; Robertson, C.M.; Jones, L.A.H.; McBride, F.; Raval, R.; Cora, F.; et al. Modular Design via Multiple Anion Chemistry of the High Mobility van der Waals Semiconductor Bi4O4SeCl2. J. Am. Chem. Soc. 2020, 142, 847–856. [Google Scholar] [CrossRef] [PubMed]
- Gibson, Q.D.; Zhao, T.; Daniels, L.M.; Walker, H.C.; Daou, R.; Hebert, S.; Zanella, M.; Dyer, M.S.; Claridge, J.B.; Slater, B.; et al. Low thermal conductivity in a modular inorganic material with bonding anisotropy and mismatch. Science 2021, 373, 1017–1022. [Google Scholar] [CrossRef]
- Ji, R.; Lei, M.; Genevois, C.; Zhang, W.; Ming, X.; He, L.; Allix, M.; Yin, C.; Kuang, X.; Xing, X. Multiple Anion Chemistry for Ionic Layer Thickness Tailoring in (X= Cl, Br) van der Waals Semiconductors with Low Thermal Conductivities. Chem. Mater. 2022, 34, 4751–4764. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, V.; Xu, N.; Liu, J.C.; Tang, G.; Geng, W.T. VASPKIT: A user-friendly interface facilitating high-throughput computing and analysis using VASP code. Comput. Phys. Commun. 2021, 267, 108033. [Google Scholar] [CrossRef]
- Peng, W.; Petretto, G.; Rignanese, G.; Hautier, G.; Zevalkink, A. An Unlikely Route to Low Lattice Thermal Conductivity: Small Atoms in a Simple Layered Structure. Joule 2018, 2, 1879–1893. [Google Scholar] [CrossRef] [Green Version]
- Gibson, Q.; Newnham, J.; Dyer, M.; Robertson, C.; Zanella, M.; Surta, T.; Daniels, L.; Alaria, J.; Claridge, J.; Rosseinsky, M. Expanding multiple anion superlattice chemistry: Synthesis, structure and properties of Bi4O4SeBr2 and Bi6O6Se2Cl2. J. Solid State Chem. 2022, 312, 123246. [Google Scholar] [CrossRef]
- Huang, C.; Yu, H. Two-dimensional Bi2O2Se with high mobility for high-performance polymer solar cells. ACS Appl. Mater. Interfaces 2020, 12, 19643–19654. [Google Scholar] [CrossRef]
- Pan, L.; Shi, X.L.; Song, C.C.; Liu, W.D.; Sun, Q.; Lu, C.H.; Liu, Q.F.; Wang, Y.F.; Chen, Z.G. Graphite Nanosheets as Multifunctional Nanoinclusions to Boost the Thermoelectric Performance of the Shear-Exfoliated Bi2O2Se. Adv. Funct. Mater. 2022, 32, 2202927. [Google Scholar] [CrossRef]
- Zhao, W.; Liu, Z.; Sun, Z.; Zhang, Q.; Wei, P.; Mu, X.; Zhou, H.; Li, C.; Ma, S.; He, D.; et al. Superparamagnetic enhancement of thermoelectric performance. Nature 2017, 549, 247–251. [Google Scholar] [CrossRef] [PubMed]
- Mouhat, F.; Coudert, F.-X. Necessary and sufficient elastic stability conditions in various crystal systems. Phys. Rev. B 2014, 90, 224104. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Wang, D.; Zhong, Y.; Hu, C. Electronic, Optical, Mechanical and Lattice Dynamical Properties of MgBi2O6: A First-Principles Study. Appl. Sci. 2019, 9, 1267. [Google Scholar] [CrossRef] [Green Version]
- Duan, Y.; Sun, Y.; Peng, M.; Zhou, S. Anisotropic elastic properties of the Ca-Pb compounds. J. Alloys Compd. 2014, 595, 14. [Google Scholar] [CrossRef]
Samples | Label | c (Å) | a (Å) | |||
---|---|---|---|---|---|---|
BiOSeBr | x = 0 | 46 | 0.035 | 28.249 | 3.941 | 0.118 |
BiOSeBr | x = 0.02 | 48 | 0.035 | 28.239 | 3.938 | 0.167 |
BiOSeBr | x = 0.03 | 50 | 0.025 | 28.237 | 3.937 | 0.157 |
BiOSeBr | x = 0.10 | 59 | 0.048 | 28.230 | 3.936 | 0.077 |
BiOSeBr | x = 0.20 | 64 | 0.042 | 28.225 | 3.934 | 0.063 |
BiOSeCl | x = 0 | 0.45 | 0.181 | 27.073 | 3.907 | 0.089 |
BiOSeCl | x = 0.03 | 3.2 | 0.054 | 27.065 | 3.906 | 0.161 |
BiOSeCl | x = 0.10 | 14 | 0.022 | 27.059 | 3.902 | 0.092 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, T.; Hu, W.; Lou, Z.; Xu, Z.; Yang, X.; Le, T.; Wang, J.; Lin, X. Thermoelectric Properties of n-Type Bi4O4SeX2 (X = Cl, Br). Materials 2023, 16, 4329. https://doi.org/10.3390/ma16124329
Wang T, Hu W, Lou Z, Xu Z, Yang X, Le T, Wang J, Lin X. Thermoelectric Properties of n-Type Bi4O4SeX2 (X = Cl, Br). Materials. 2023; 16(12):4329. https://doi.org/10.3390/ma16124329
Chicago/Turabian StyleWang, Tao, Wanghua Hu, Zhefeng Lou, Zhuokai Xu, Xiaohui Yang, Tian Le, Jialu Wang, and Xiao Lin. 2023. "Thermoelectric Properties of n-Type Bi4O4SeX2 (X = Cl, Br)" Materials 16, no. 12: 4329. https://doi.org/10.3390/ma16124329
APA StyleWang, T., Hu, W., Lou, Z., Xu, Z., Yang, X., Le, T., Wang, J., & Lin, X. (2023). Thermoelectric Properties of n-Type Bi4O4SeX2 (X = Cl, Br). Materials, 16(12), 4329. https://doi.org/10.3390/ma16124329