Tailoring SnO2 Defect States and Structure: Reviewing Bottom-Up Approaches to Control Size, Morphology, Electronic and Electrochemical Properties for Application in Batteries
Abstract
:1. Introduction
2. Stabilization of SnO2 Polymorphs
3. Electronic Structure of SnO2
3.1. Bandgap Engineering in SnO2
3.2. Point-Defect Engineering in SnO2
4. Synthesis of SnO2 Nanostructures: Thin Films, Nanoparticles and Nanocomposites
4.1. Thin-Film Growth of SnO2: Role of Substrate-Induced Strain in the Stabilization of High-Pressure Phases of SnO2
Deposition Technique | Target/Precursor | Oxygen Supply | Substrate | Conditions | Structure | Ref. |
---|---|---|---|---|---|---|
Physical deposition methods | ||||||
Pulsed laser deposition (PLD) | Rutile SnO2 | O2 | Si [100] | 308 nm 10 Hz 20–400 °C <10−5 Pa | Amorphous + Tetragonal rutile | [116] |
PLD | Sintered rutile SnO2 | Target | Si [001] | 532 nm 5 pulses/s 20–1150 °C 4 h | Tetragonal rutile + Orthorhombic | [54] |
PLD | Rutile SnO2 | Target | Si [100] | 248 nm 10 Hz 320 °C 3 × 10−2 Pa | Tetragonal rutile + Orthorhombic | [53] |
Direct-current (DC) sputtering | Tin metal plate | O2 | Si [100] | Ar gas 40–60 W 5 × 10−5 Pa 550 °C | Tetragonal rutile | [128] |
DC sputtering | Rutile SnO2 | Target | SiO2 | N2-Ar gas 15 W 5 × 10−1 Pa 20–500 °C | Tetragonal rutile + cubic | [119] |
DC sputtering | Tin metallic disk | O2 | Si [100] | Ar gas 60 W 40 min 1 × 10−1 Pa 148–243 °C | Tetragonal rutile + Orthorhombic | [118] |
DC sputtering | Sb2O3 doped rutile SnO2 | Target | Si [100] | N2-Ag gas 60 W 4 × 10−1 Pa 300 °C | Cubic | [44] |
Radio-frequency (RF) sputtering | Pure metallic Sn | O2 | SiO2 | Ar gas 25 W 2 h | Tetragonal rutile | [129] |
RF sputtering | Rutile SnO2 | Target | Sapphire (0001) | 50 W 6.67 × 10−4 Pa 600 °C | Tetragonal rutile + Orthorhombic | [117] |
RF sputtering | Rutile SnO2 | Target | Si/SiO2 + MgO [001] | N2-NH3 gas 25 to 75 W 0.67 Pa 400 °C | Cubic | [61] |
Chemical deposition methods | ||||||
Plasma-enhanced atomic-layer deposition (PEALD) | SnCl4 | O2 | Si [100] | Ar gas 100 to 400 W 400 Pa 150–350 °C | Tetragonal rutile | [130] |
PEALD | Dibutyl tin acetate | O2 | yttria-stabilized zirconia | Ar gas 100 W 2.67 Pa 300 °C | Orthorhombic | [55] |
PEALD | dimethylamino-2-methyl-2-propoxy-tin(II) | O2 or H2O | Si | N2 gas 100–300 °C | Tetragonal rutile + orthorhombic | [56] |
Combustion vapor deposition | tin(II) 2-ethylhexanoate in absolute ethanol | Precursor | SiO2 | 20 min 850 °C | Tetragonal rutile | [131] |
Aerosol-assisted chemical vapor deposition | MgxSn1−xO2 in ethanol | Precursor | Glass | Ar gas 30 min 400 °C | Tetragonal rutile | [132] |
Metal–organic chemical vapor deposition (MOCVD) | Dibutyl tin acetate | O2 | Sapphire (0001) | N2 gas 2667 Pa 600–700 °C 30–100 sccm | Tetragonal rutile | [126] |
MOCVD | Tetraethyl tin | O2 | MgF2 (001) | N2 gas 50 sccm 2 h 540–660 °C | Tetragonal rutile | [127] |
MOCVD | Tetraethyl tin and trimethylstibine | O2 | 6H-SiC (0001) | N2 gas 40 sccm 2 h 600 °C | Orthorhombic | [124] |
MOCVD | Dibutyl tin acetate | O2 | yttria-stabilized zirconia (100) | N2 gas 30 sccm 500–600 °C | Orthorhombic | [125] |
Mist chemical vapor deposition | SnCl2·2H2O in methanol | Precursor | Si | 1.5 MHz N2 gas 1000 sccm 250–300 °C | Tetragonal rutile | [57] |
MCVD | SnCl2·2H2O in acetone | Precursor | Si | 1.5 MHz N2 gas 1000 sccm 350–400 °C | Orthorhombic | [57] |
4.2. Hydrothermal Synthesis of SnO2 Nanomaterials
5. Prospects of SnO2 Nanomaterials as Anode Materials in LiB: Correlating Their Morphology Obtained from Synthesis Routes to Their Electrochemical Performance
Label | Chemicals | Sample Preparation | Shape and Size | Potential Window vs. Li/Li+ (V) | Initial Energy Density (mAhg−1) | CE/CR | Energy Capacity (mAhg−1) | Ref. |
---|---|---|---|---|---|---|---|---|
SnO2 | SnCl4·5H2O, NH3, HCl in water | Autoclave at 160 °C for 30 min | Nanospheres 6–21 | 0.01–2.0 | Discharge: 1196.6 Charge: 520 (100 mAg−1) | CE = 42% first cycle CE > 98% after 10 cycles CR = 22.8% 50th cycle | 217.0 mAhg−1 at 100 mAg−1 after 50 cycles | [149] |
SnO2 | SnCl4·5H2O, citric acid in water | Microwave at 2.4 GHz under 160 °C for 30 min | Nanosheets <10 nm thick | 0.005–2.0 | Discharge: 1350 Charge: 840 (100 mAg−1) | CE = 62% first cycle and >97% from the 10th cycle CR = 19.1% 50th cycle | 257.8 mAhg−1 at 100 mAg−1 after 50 cycles | [155] |
SnO2 | Tin(IV) isopropoxide in water | Hydrothermal in air at reflux for 30 min then calcination at 400 °C for 1 h | Nanospheres 9 nm agglomerated in um blocks | 0.01–1.5 | Discharge: 674.5 (782 mAg−1) | CR = 81.9% 100th (782 mAg−1) | 500 mAhg−1 at 782 mAg−1 100th cycle | [150] |
SnO2 | SnCl4·5H2O, NaOH, oleic acid in water | Hydrothermal, 180 °C for 24 h then annealed for 24 h at 500 °C | Flowerlike nanorod bundles 30 nm | 0–2.5 | Discharge: 1673 Charge: 815 (78 mAg−1) | CE = 49% 1st cycle CR = 41.5% 40th cycle | 694 mAhg−1 at 78.2 mAg−1 after 40 cycles | [158] |
SnO2 | SnCl4·5H2O, NaOH in water | Hydrothermal, 200 °C for 24 h | Nanorods of 60 by 670 nm | 0.005–2.5 | Discharge: 1918 Charge: 1128 (78.1 mAg−1) | CE = 59% 1st cycle CR = 57.5% after 100th cycle | 645 mAhg−1 at 78.2 mAg−1 after 100 cycles | [159] |
SnO2 | SnCl2·2H2O in ethanol | Autoclave 150 °C, 10 h then heat treated at 360 °C for 10 min | Micrometric aggregates | 0.01–3.0 | Discharge: 768.1 Charge: 414.8 (100 mAg−1) | CE = 54.0% 1st cycle CE = 93.2% 3rd cycle CR = 29.9% 100th cycle at 200 mAg−1 | 244.8 mAhg−1 at 200 mAg−1 after 100 cycles | [165] |
SnO2-CNTH | SnCl2·2H2O, CNTH in ethanol | Autoclave 150 °C 10 h then heat treated at 360 °C for 10 min | Micrometric hairball shape containing SnO2 nanospheres (5–10 nm) and CNTH (30 nm diameter) | 0.01–3.0 | Discharge: 2255.2 Charge: 1098.3 (100 mAg−1) | CE = 48.7% 1st cycle CE = 88.8% 3rd cycle CR = 74.2% 100th cycle at 200 mAg−1 | 809.2 mAhg−1 at 200 mAg−1 after 100 cycles | [165] |
SnO2 | Sucrose, acetic acid, tin acetate in water | 180 °C to evaporate then 300 °C to completely dry then calcinated at 450 °C for 3 h | Nanospheres of 15 nm | 0.01–3.0 | Discharge: 1139 Charge: 679 (50 mAg−1) | CE = 40.4% 1st cycle | 764 mAhg−1 at 50 mAg−1 after 10 cycles | [167] |
Fe-doped SnO2 | Iron(II) gluconate·2H2O sucrose, acetic acid, tin acetate in water | 180 °C to evaporate then 300 °C to completely dry then calcinated at 450 °C for 3 h | Nanospheres of 7–8 nm | 0.01–3.0 | Discharge: 1726 Charge: 1241 (50 mAg−1) | CE = 28.1% 1st cycle | 1519 mAhg−1 at 50 mAg−1 after 10 cycles | [167] |
SnO2 | Tin acetate and sucrose in water | 180 °C to evaporate then 450 °C for 3 h | Nanospheres of 12.5 nm | 0.01–3.0 | Discharge: ~850 Charge: ~750 | CE = 92.7% 50th cycle | 242 mAhg−1 at 50 mAg−1 after 50 cycles | [168] |
Co-doped SnO2 | Cobalt(II) gluconate, tin acetate and sucrose in water | 180 °C to evaporate then 450 °C for 3 h | Nanospheres of 6.7–7.7–10.1 nm | 0.01–3.0 | Discharge: ~1200 Charge: ~1100 | CE = 70.4% 1st cycle CE = 94.6–94.9% 50th cycle | 493 mAhg−1 at 100 mAg−1 after 50 cycles 435.8 mAhg−1 at 50 mAg−1 after 50 cycles | [168] |
Co-doped SnO2 with C coating | Cobalt(II) gluconate, tin acetate, sucrose and glucose in water | 180 °C to evaporate then 450 °C for 3 h. Heat up again at 180 °C for 13 h | Nanospheres of ~10 nm embedded in carbon matrix | 0.01–3.0 | Discharge: ~1900 Charge: ~1700 | CE = 74.2–74.4% 1st cycle CE = 96.0–97.2% 50th cycle | 1000–1200 mAhg−1 at 50 mAg−1 after 50 cycles | [168] |
SnO2 | Na2SnO3·3H2O, urea in water | 170 °C for 36 h then calcinated at 500 °C for 4 h | Shallow nanospheres of 500 nm and 38 nm thick | 0.01–3.0 | Discharge: 1203 | CE = 61.6% 1st cycle | 87 mAhg−1 at 100 mAg−1 after 300 cycles | [169] |
Ni-doped SnO2 | Na2SnO3·3H2O, urea, NiNO3 in ethanol/water | 170 °C for 36 h then calcinated at 500 °C for 4 h | Shallow nanospheres of 500 nm and 20 nm thick | 0.01–3.0 | Discharge: 1463–1581 | CE = 58.8–62.1% 1st cycle | 542 mAhg−1 at 100 mAg−1 after 300 cycles | [169] |
SnO2 | SnO2 nanopowder | vapor deposition process at 1050 °C for 1 h 15 mbar | Nanowires of lengths 50 nm and 500 nm | 0.005–2.5 | Discharge: 612 Charge: 267 (1000 mAg−1) | CE = 43.6% first cycle | 148 mAhg−1 at 1000 mAg−1 after 30 cycles | [170] |
SnO2-Fe2O3 | SnO2 nanopowder and FeCl3·6H2O | vapor deposition process at 1050 °C for 1 h 15 mbar | Nanowires with Fe2O3 nanoarrays | 0.005–2.5 | Discharge: 1167 Charge: 809 (1000 mAg−1) | CE = 69.4% first cycle | 207 mAhg−1 at 1000 mAg−1 after 30 cycles | [170] |
SnO2-graphene oxide- | SnCl2 and graphene oxide | Autoclave 220 °C 24 h | 5–10 nm SnO2 nanoparticles | 0.01–3.0 | Discharge: 810 (100 mAg−1) | CR = 73.8% after 100 cycles | 597 mAhg−1 at 100 mAg−1 after 100 cycles | [171] |
SnO2-graphene oxide- Co3O4 | SnCl2 and graphene oxide and Co(CH3COO)2 | Autoclave 220 °C 24 h then 80 °C for 8 h | 5–10 nm SnO2 and Co3O4 nanoparticles | 0.01–3.0 | Discharge: 1038 (1000 mAg−1) | CR = 100% after 100 cycles | 1038 mAhg−1 at 100 mAg−1 after 100 cycles | [171] |
6. Conclusions and Outlook
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bruno Scrosati, J.G. Lithium batteries: Status, prospects and future. J. Power Sources 2010, 195, 2419–2430. [Google Scholar] [CrossRef]
- Nishi, Y. Lithium ion secondary batteries; past 10 years and the future. J. Power Sources 2001, 100, 101–106. [Google Scholar] [CrossRef]
- Liu, K.; Liu, Y.; Lin, D.; Pei, A.; Cui, Y. Materials for lithium-ion battery safety. Sci. Adv. 2018, 4, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Blomgren, G.E. The Development and Future of Lithium Ion Batteries. J. Electrochem. Soc. 2016, 164, A5019–A5025. [Google Scholar] [CrossRef] [Green Version]
- Zhao, S.; Sewell, C.D.; Liu, R.; Jia, S.; Wang, Z.; He, Y.; Yuan, K.; Jin, H.; Wang, S.; Liu, X.; et al. SnO2 as Advanced Anode of Alkali-Ion Batteries: Inhibiting Sn Coarsening by Crafting Robust Physical Barriers, Void Boundaries, and Heterophase Interfaces for Superior Electrochemical Reaction Reversibility. Adv. Energy Mater. 2019, 10, 1902657. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, X.; Yan, B.; Li, D.; Lawes, S.; Sun, X. Significant impact of 2D graphene nanosheets on large volume change tin-based anodes in lithium-ion batteries: A review. J. Power Sources 2015, 274, 869–884. [Google Scholar] [CrossRef]
- Zhang, W.-J. A review of the electrochemical performance of alloy anodes for lithium-ion batteries. J. Power Sources 2011, 196, 13–24. [Google Scholar] [CrossRef]
- Peng, B.; Chen, J. Functional materials with high-efficiency energy storage and conversion for batteries and fuel cells. Coord. Chem. Rev. 2009, 253, 2805–2813. [Google Scholar] [CrossRef]
- Huang, B.; Pan, Z.; Su, X.; An, L. Tin-based materials as versatile anodes for alkali (earth)-ion batteries. J. Power Sources 2018, 3955, 41–59. [Google Scholar] [CrossRef]
- Ovejas, V.J.; Cuadras, A. Effects of cycling on lithium-ion battery hysteresis and overvoltage. Sci. Rep. 2019, 9, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, Y.; Li, J.; Wang, N.; Wu, C.; Dong, G.; Guan, L. Fully Reversible Conversion between SnO2 and Sn in SWNTs@SnO2@PPy Coaxial Nanocable As High Performance Anode Material for Lithium Ion Batteries. J. Phys. Chem. 2012, 116, 18612–18617. [Google Scholar] [CrossRef]
- Hu, R.; Chen, D.; Waller, G.; Ouyang, Y.; Chen, Y.; Zhao, B.; Rainwater, B.; Yang, C.; Zhu, M.; Liu, M. Dramatically enhanced reversibility of Li2O in SnO2-based electrodes: The effect of nanostructure on high initial reversible capacity. Energy Environ. Sci. 2016, 9, 595–603. [Google Scholar] [CrossRef]
- Kim, H.; Kim, M.-C.; Kim, S.-B.; Kim, Y.-S.; Choi, J.-H.; Park, K.-W. Porous SnO2 nanostructure with a high specific surface area for improved electrochemical performance. RSC Adv. 2020, 10, 10519–10525. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zoller, F.; Böhm, D.; Bein, T.; Fattakhova-Rohlling, D. Tin Oxide Based Nanomaterials and Their Application as Anodes in Lithium-Ion Batteries and Beyond. ChemSusChem 2019, 12, 4140–4159. [Google Scholar] [CrossRef] [Green Version]
- Cheng, Y.; Nie, A.; Gan, L.-Y.; Zhang, Q.; Schwingenschlögl, U. A global view of the phase transitions of SnO2 in rechargeable batteries based on results of high throughput calculations. J. Phys. Chem. A 2015, 3, 19486–19489. [Google Scholar] [CrossRef] [Green Version]
- Ferraresi, G.; Villevieille, C.; Czekaj, I.; Horisberger, M.; Novák, P.; El Kazzi, M. SnO2 Model Electrode Cycled in Li-Ion Battery Reveals the Formation of Li2SnO3 and Li8SnO6 Phases through Conversion Reactions. ACS Appl. Mater. Interfaces 2018, 10, 8712–8720. [Google Scholar] [CrossRef] [PubMed]
- Zhao, B.; Dhara, A.; Dendooven, J.; Detavernier, C. Atomic Layer Deposition of SnO2-Based Composite Anodes for Thin-Film Lithium-Ion Batteries. Front. Energy Res. 2020, 8, 609417. [Google Scholar] [CrossRef]
- Scott Kriklin, J.E.S.; Meredig, B.; Thomson, A.; Doak, J.W.; Aykol, M.; Rühl, S.; Wolverton, C. The Open Quantum Materials Database (OQMD): Assessing the accuracy of DFT formation energies. NPJ Comput. Mater. 2015, 1, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Ahn, H.-J.; Choi, H.-C.; Park, K.-W.; Kim, S.-B.; Sung, Y.-E. Investigation of the Structural and Electrochemical Properties of Size-Controlled SnO2 Nanoparticles. J. Phys. Chem. B 2004, 108, 9815–9820. [Google Scholar] [CrossRef]
- Emerich, D.F.; Thanos, C.G. Nanotechnology and medicine. Expert Opin. Biol. Ther. 2003, 3, 655–663. [Google Scholar] [CrossRef]
- Sekhon, B.S. Food nanotechnology—An overview. Nanotechnol. Sci. Appl. 2010, 3, 1–15. [Google Scholar]
- Ali Mansoori, G.; Bastami, T.R.; Ahmadpour, A.; Eshaghi, Z. Environmental application of nanotechnology. In Annual Review of Nano Research; World Scientific: Singapore, 2008; Volume 2, pp. 439–493. [Google Scholar]
- Patra, J.K.; Gouda, S. Application of nano technology in textile engineering: An overview. J. Eng. Technol. Res. 2013, 5, 104–111. [Google Scholar] [CrossRef]
- Raj, S.; Jose, S.; Sumod, U.S.; Sabitha, M. Nanotechnology in cosmetics: Opportunities and challenges. J. Pharm. Bioallied Sci. 2012, 4, 186–193. [Google Scholar] [CrossRef] [PubMed]
- Payal; Pandey, P. Role of Nanotechnology in Electronics: A Review of Recent Developments and Patents. Recent Pat. Nanotechnol. 2022, 16, 45–66. [Google Scholar] [CrossRef] [PubMed]
- Serrano, E.; Rus, G.; García-Martínez, J. Nanotechnology for sustainable energy. Renew. Sustain. Energy Rev. 2009, 13, 2373–2384. [Google Scholar] [CrossRef]
- Wen, H.; Kang, W.; Liu, X.; Li, W.; Zhang, L.; Zhang, C. Two-phase interface hydrothermal synthesis of binder-free SnS2/graphene flexible paper electrodes for high-performance Li-ion batteries. RSC Adv. 2019, 9, 23607–23613. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, R.; Zhang, H.; Lu, Z.; Liu, J.; Zeng, M.; Yang, L.; Yuan, B.; Zhu, M. Unveiling critical size of coarsened Sn nanograins for achieving high round-trip efficiency of reversible conversion reaction in lithiated SnO2 nanocrystals. Nano Energy 2018, 45, 255–265. [Google Scholar] [CrossRef]
- Liang, Z.; Li, S.; Yuan, B.; Hu, R.; Liu, J.; Zhu, M. Reversible formation of metastable Sn-rich solid solution in SnO2-based anode for high-performance lithium storage. Appl. Mater. Today 2021, 25, 101242. [Google Scholar] [CrossRef]
- Wei, L.; Yu, Q.; Yang, X.; Li, J.-H.; Shen, W.; Kang, F.; Lv, R.; Ma, L.; Huang, Z.-H. A facile assembly of SnO2 nanoparticles and moderately exfoliated graphite for advanced lithium-ion battery anode. Electrochim. Acta 2022, 432, 141210. [Google Scholar] [CrossRef]
- Xu, X.; Xu, F.; Qu, C.; Jiang, G.; Yu, H.; Repich, H.; Han, H.; Cao, F.; Li, L.; Wang, H. Laser-Manufactured Metastable Supranano SnOx for Efficient Electron/Ion Bridging in SnO2-Graphene Heterostructure Boosting Lithium Storage. Adv. Funct. Mater. 2021, 31, 2101059. [Google Scholar] [CrossRef]
- Dai, Y.; Li, F.; Fu, Y.-X.; Mo, D.-C.; Lyu, S.-S. Carbon-coated SnO2 riveted on a reduced graphene oxide composite (C@SnO2/RGO) as an anode material for lithium-ion batteries. RSC Adv. 2021, 11, 8521–8529. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.; Zhang, Y.; Li, L.; Wang, N.; Chai, Y. Nano SnO2 and Sb2O3 combined with CNTs as a high-capacity lithium storage material. Appl. Surf. Sci. 2021, 543, 148870. [Google Scholar] [CrossRef]
- Kim, W.-S.; Hwa, Y.; Kim, H.-C.; Choi, J.-H.; Sohn, H.-J.; Hong, S.-H. SnO2@Co3O4 hollow nano-spheres for a Li-ion battery anode with extraordinary performance. Nano Res. 2014, 7, 1128–1136. [Google Scholar] [CrossRef]
- Liang, T.; Hu, R.; Zhang, H.; Zhang, H.; Wang, H.; Ouyang, Y.; Liu, J.; Yang, L.; Zhu, M. A scalable ternary SnO2–Co–C composite as a high initial coulombic efficiency, large capacity and long lifetime anode for lithium ion batteries. J. Mater. Chem. A 2018, 6, 7206–7220. [Google Scholar] [CrossRef]
- Li, J.; Xu, X.; Luo, Z.; Zhang, C.; Zuo, Y.; Zhang, T.; Tang, P.; Infante-Carrió, M.F.; Arbiol, J.; Llorca, J.; et al. Co–Sn Nanocrystalline Solid Solutions as Anode Materials in Lithium-Ion Batteries with High Pseudocapacitive Contribution. ChemSusChem 2019, 12, 1451–1458. [Google Scholar] [CrossRef]
- Yi, Z.; Wang, Z.; Cheng, Y.; Wang, L. Sn-based Intermetallic Compounds for Li-ion Batteries: Structures, Lithiation Mechanism, and Electrochemical Performances. Energy Environ. Mater. 2018, 1, 132–147. [Google Scholar] [CrossRef] [Green Version]
- Christian Julien, A.M.; Vijh, A.; Zaghib, K. Lithium Batteries; Springer: Cham, Switzerland, 2016; p. 619. [Google Scholar]
- Chen, J.S.; Lou, X.W. SnO2-Based Nanomaterials: Synthesis and Application in Lithium-Ion Batteries. Small 2013, 9, 1877–1893. [Google Scholar] [CrossRef]
- Goodenough, J.B. Evolution of Strategies for Modern Rechargeable Batteries. Acc. Chem. Res. 2012, 45, 1053–1061. [Google Scholar] [CrossRef] [PubMed]
- Armand, M.; Tarascon, J.M. Building better batteries. Nature 2008, 451, 652–657. [Google Scholar] [CrossRef]
- Arlinghaus, F.J. Energy bands in stannic oxide (SnO2). J. Phys. Chem. Solids 1974, 35, 931–935. [Google Scholar] [CrossRef]
- Zhang, Q.; Liu, P.; Miao, C.; Chen, Z.; Lawrence Wu, C.M.; Shek, C.-H. Formation of orthorhombic SnO2 originated from lattice distortion by Mn-doped tetragonal SnO2. RSC Adv. 2015, 5, 39285–39290. [Google Scholar] [CrossRef]
- Le, T.; Dang, H.P. Effect of the Sb content in the SnO2 lattice and N2 percentage in a mixed sputtering gas on the N solubility in SnO2 films. Sens. Actuators A Phys. 2020, 316, 112421. [Google Scholar] [CrossRef]
- Zhu, B.; Liu, C.-M.; Lv, M.-B.; Chen, X.-R.; Zhu, J.; Ji, G.-F. Structures, phase transition, elastic properties of SnO2 from first-principles analysis. Phys. B Condens. Matter 2011, 406, 3508–3513. [Google Scholar] [CrossRef]
- Shieh, S.R.; Kubo, A.; Duffy, T.S.; Prakapenka, V.B.; Shen, G. High-pressure phases in SnO2 to 117 GPa. Phys. Rev. B 2006, 73, 014105. [Google Scholar] [CrossRef]
- Lian, Y.; Huang, X.; Yu, J.; Tang, T.B.; Zhang, W.; Gu, M. Characterization of scrutinyite SnO2 and investigation of the transformation with 119Sn NMR and complex impedance method. AIP Adv. 2018, 8, 125226. [Google Scholar] [CrossRef] [Green Version]
- Hays, J.; Punnoose, A.; Baldner, R.; Engelhard, M.H.; Peloquin, J.; Reddy, K.M. Relationship between the structural and magnetic properties of Co-doped SnO2 nanoparticles. Phys. Rev. B 2005, 72, 075203. [Google Scholar] [CrossRef]
- Haines, J.; Léger, J.M.; Schulte, O. Pa3 Modified Fluorite-Type Structures in Metal Dioxides at High Pressure. Science 1996, 271, 629–631. [Google Scholar] [CrossRef]
- Das, S.; Jayaraman, V. SnO2: A comprehensive review on structures and gas sensors. Prog. Mater. Sci. 2014, 66, 112–255. [Google Scholar] [CrossRef]
- Gracia, L.; Beltrán, A.; Andrés, J. Characterization of the High-Pressure Structures and Phase Transformations in SnO2. A Density Functional Theory Study. J. Phys. Chem. B 2007, 111, 6479–6485. [Google Scholar] [CrossRef] [PubMed]
- Saldaña-Ramírez, A.; Cruz, M.R.A.; Juárez-Ramírez, I.; Torres-Martínez, L.M. Influence of the power density and working pressure in the magnetron co-sputtering deposition of ZnO–SnO2 thin films and their effect in photocatalytic hydrogen production. Opt. Mater. 2020, 110, 110501. [Google Scholar] [CrossRef]
- Chen, Z.; Lai, J.K.L.; Shek, C.-H. Facile strategy and mechanism for orthorhombic SnO2 thin films. Appl. Phys. Lett. 2006, 89, 231902. [Google Scholar] [CrossRef]
- Lamelas, F.J.; Reid, S.A. Thin-film synthesis of the orthorhombic phase of SnO2. Phys. Rev. B 1999, 60, 9347–9352. [Google Scholar] [CrossRef]
- Kim, S.; Kim, D.-H.; Hong, S.-H. Epitaxial growth of orthorhombic SnO2 films on various YSZ substrates by plasma enhanced atomic layer deposition. J. Cryst. Growth 2012, 348, 15–19. [Google Scholar] [CrossRef]
- Won, J.H.; Han, S.H.; Park, B.K.; Chung, T.-M.; Han, J.H. Effect of Oxygen Source on the Various Properties of SnO2 Thin Films Deposited by Plasma-Enhanced Atomic Layer Deposition. Coatings 2020, 10, 692. [Google Scholar] [CrossRef]
- Bae, J.-Y.; Park, J.; Kim, H.Y.; Kim, H.-S.; Park, J.-S. Facile Route to the Controlled Synthesis of Tetragonal and Orthorhombic SnO2 Films by Mist Chemical Vapor Deposition. ACS Appl. Mater. Interfaces 2015, 7, 12074–12079. [Google Scholar] [CrossRef]
- Tian, S.; Gao, Y.; Zeng, D.; Xie, C. Effect of Zinc Doping on Microstructures and Gas-Sensing Properties of SnO2 Nanocrystals. J. Am. Ceram. Soc. 2012, 95, 436–442. [Google Scholar] [CrossRef]
- Parthibavarman, M.; Renganathan, B.; Sastikumar, D. Development of high sensitivity ethanol gas sensor based on Co-doped SnO2 nanoparticles by microwave irradiation technique. Curr. Appl. Phys. 2013, 13, 1537–1544. [Google Scholar] [CrossRef]
- Carvalho, M.H.; Pereira, E.C.; de Oliveira, A.J.A. Orthorhombic SnO2 phase observed composite (Sn1−xCex)O2 synthesized by sol–gel route. RSC Adv. 2018, 8, 3958–3963. [Google Scholar] [CrossRef] [Green Version]
- Gwon, H.J.; Kang, N.-R.; Lee, Y.; Won, S.O.; Chang, H.J.; Choi, J.-W.; Kang, C.-Y.; Kim, S.K.; Kwon, B.; Nahm, S.; et al. Enhancement of Mechanical Hardness in SnOxNy with a Dense High-Pressure Cubic Phase of SnO2. Chem. Mater. 2016, 28, 7051–7057. [Google Scholar] [CrossRef]
- Dubourdieu, C.; Rauwel, E.; Roussel, H.; Ducroquet, F.; Holländer, B.; Rossell, M.; Van Tendeloo, G.; Lhostis, S.; Rushworth, S. Addition of yttrium into HfO2 films: Microstructure and electrical properties. J. Vac. Sci. Technol. A 2009, 27, 503–514. [Google Scholar] [CrossRef]
- Rauwel, P.; Rauwel, E.; Persson, C.; Sunding, M.F.; Galeckas, A. One step synthesis of pure cubic and monoclinic HfO2 nanoparticles: Correlating the structure to the electronic properties of the two polymorphs. J. Appl. Phys. 2012, 112, 104107. [Google Scholar] [CrossRef]
- Barbarat, P.; Matar, S.F. First-principles investigations of the electronic, optical and chemical bonding properties of SnO2. Comput. Mater. Sci. 1998, 10, 368–372. [Google Scholar] [CrossRef]
- Kucheyev, S.O.; Baumann, T.F.; Sterne, P.A.; Wang, Y.M.; van Buuren, T.; Hamza, A.V.; Terminello, L.J.; Willey, T.M. Surface electronic states in three-dimensional SnO2 nanostructures. Phys. Rev. B 2005, 72, 035404. [Google Scholar] [CrossRef]
- Buzin, E.R.; Prellier, W.; Mercey, B.; Ch, S.; Raveau, B. Relations between structural distortions and transport properties in Nd0.5Ca0.5MnO3 strained thin films. J. Phys. Condens. Matter 2002, 14, 3951. [Google Scholar] [CrossRef] [Green Version]
- Zhou, W.; Liu, Y.; Yang, Y.; Wu, P. Band Gap Engineering of SnO2 by Epitaxial Strain: Experimental and Theoretical Investigations. J. Phys. Chem. C 2014, 118, 6448–6453. [Google Scholar] [CrossRef]
- Xiao, W.-Z.; Xiao, G.; Wang, L.-L. A first-principles study of the SnO2 monolayer with hexagonal structure. J. Chem. Phys. 2016, 145, 174702. [Google Scholar] [CrossRef]
- Bouamra, F.; Boumeddiene, A.; Rérat, M.; Belkhir, H. First principles calculations of magnetic properties of Rh-doped SnO2 (110) surfaces. Appl. Surf. Sci. 2013, 269, 41–44. [Google Scholar] [CrossRef]
- Liu, Q.-J.; Liu, Z.-T.; Feng, L.-P. First-principles calculations of structural, electronic and optical properties of tetragonal SnO2 and SnO. Comput. Mater. Sci. 2010, 47, 1016–1022. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef] [Green Version]
- Tran, F.; Blaha, P. Accurate Band Gaps of Semiconductors and Insulators with a Semilocal Exchange-Correlation Potential. Phys. Rev. Lett. 2009, 102, 226401. [Google Scholar] [CrossRef] [Green Version]
- Becke, A.D.; Johnson, E.R. A simple effective potential for exchange. J. Chem. Phys. 2006, 124, 221101. [Google Scholar] [CrossRef]
- Slassi, A.; Hammi, M.; Oumekloul, Z.; Nid-bahami, A.; Arejdal, M.; Ziat, Y.; El Rhazouani, O. Effect of halogens doping on transparent conducting properties of SnO2 rutile: An ab initio investigation. Opt. Quantum Electron. 2017, 50, 8. [Google Scholar] [CrossRef]
- Ikhmayies, S.J.; Ahmad-Bitar, R.N. An investigation of the bandgap and Urbach tail of vacuum-evaporated SnO2 thin films. Renew. Energy 2013, 49, 143–146. [Google Scholar] [CrossRef]
- Abass, A.K.; Mohammad, M.T. Optical properties of fluorine-doped SnO2 films. J. Appl. Phys. 1986, 59, 1641–1643. [Google Scholar] [CrossRef]
- Cai, X.; Zhang, P.; Wei, S.-H. Revisit of the band gaps of rutile SnO2 and TiO2: A first-principles study. J. Semicond. 2019, 40, 092101. [Google Scholar] [CrossRef]
- Han, X.; Deng, R.; Sun, B.; Jiang, D.; Zhao, M.; Yao, B.; Li, Y. Tuning optical and electrical properties of TixSn1−xO2 alloy thin films with dipole-forbidden transition via band gap and defect engineering. J. Alloys Compd. 2021, 885, 160974. [Google Scholar] [CrossRef]
- Li, Y.; Yin, W.; Deng, R.; Chen, R.; Chen, J.; Yan, Q.; Yao, B.; Sun, H.; Wei, S.-H.; Wu, T. Realizing a SnO2-based ultraviolet light-emitting diode via breaking the dipole-forbidden rule. NPG Asia Mater. 2012, 4, e30. [Google Scholar] [CrossRef]
- Wang, Y.; Su, J.; Lin, Z.; Zhang, J.; Chang, J.; Hao, Y. Recent progress on the effects of impurities and defects on the properties of Ga2O3. J. Mater. Chem. C 2022, 10, 13395–13436. [Google Scholar] [CrossRef]
- Hu, Z.; Lin, Z.; Su, J.; Zhang, J.; Chang, J.; Hao, Y. A Review on Energy Band-Gap Engineering for Perovskite Photovoltaics. Sol. RRL 2019, 3, 1900304. [Google Scholar] [CrossRef]
- Jithin, P.V.; Sudheendran, K.; Sankaran, K.J.; Kurian, J. Influence of Fe-doping on the structural and photoluminescence properties and on the band-gap narrowing of SnO2 nanoparticles. Opt. Mater. 2021, 120, 111367. [Google Scholar] [CrossRef]
- Munetoshi, S. Bandgap-Engineered Iron Oxides for Solar Energy Harvesting. In Iron Ores and Iron Oxide Materials; Volodymyr, S., Ed.; IntechOpen: Rijeka, Croatia, 2018; Chapter 13. [Google Scholar]
- El Radaf, I.M.; Hameed, T.A.; El Komy, G.M.; Dahy, T.M. Synthesis, structural, linear and nonlinear optical properties of chromium doped SnO2 thin films. Ceram. Int. 2019, 45, 3072–3080. [Google Scholar] [CrossRef]
- Keskenler, E.F.; Turgut, G.; Aydın, S.; Doğan, S. W doped SnO2 growth via sol–gel routes and characterization: Nanocubes. Optik 2013, 124, 4827–4831. [Google Scholar] [CrossRef]
- Butcher, K.S.A.; Hirshy, H.; Perks, R.M.; Wintrebert-Fouquet, M.; Chen, P.P.T. Stoichiometry effects and the Moss–Burstein effect for InN. Phys. Status Solidi A 2006, 203, 66–74. [Google Scholar] [CrossRef]
- Jain, A.; Ong, S.P.; Hautier, G.; Chen, W.; Richards, W.D.; Dacek, S.; Cholia, S.; Gunter, D.; Skinner, D.; Ceder, G.; et al. Commentary: The Materials Project: A materials genome approach to accelerating materials innovation. APL Mater. 2013, 1, 011002. [Google Scholar] [CrossRef] [Green Version]
- Erdem, I.; Kart, H.H.; Cagin, T. High pressure phase transitions in SnO2 polymorphs by first-principles calculations. J. Alloys Compd. 2014, 587, 638–645. [Google Scholar] [CrossRef]
- Jarzebski, Z.M.; Marton, J.P. Physical Properties of SnO2 Materials: I. Preparation and Defect Structure. J. Electrochem. Soc. 1976, 123, 199C. [Google Scholar] [CrossRef]
- Crapanzano, R.; Villa, I.; Mostoni, S.; D’Arienzo, M.; Di Credico, B.; Fasoli, M.; Scotti, R.; Vedda, A. Morphology Related Defectiveness in ZnO Luminescence: From Bulk to Nano-Size. Nanomaterials 2020, 10, 1983. [Google Scholar] [CrossRef]
- Najib, S.; Bakan, F.; Abdullayeva, N.; Bahariqushchi, R.; Kasap, S.; Franzò, G.; Sankir, M.; Demirci Sankir, N.; Mirabella, S.; Erdem, E. Tailoring morphology to control defect structures in ZnO electrodes for high-performance supercapacitor devices. Nanoscale 2020, 12, 16162–16172. [Google Scholar] [CrossRef] [PubMed]
- Kar, A.; Olszówka, J.; Sain, S.; Sloman, S.-R.I.; Montes, O.; Fernández, A.; Pradhan, S.K.; Wheatley, A.E.H. Morphological effects on the photocatalytic properties of SnO2 nanostructures. J. Alloys Compd. 2019, 810, 151718. [Google Scholar] [CrossRef]
- Xiong, Y.; Lin, Y.; Wang, X.; Zhao, Y.; Tian, J. Defect engineering on SnO2 nanomaterials for enhanced gas sensing performances. Adv. Powder Mater. 2022, 1, 100033. [Google Scholar] [CrossRef]
- Wang, X.; Ren, P.; Tian, H.; Fan, H.; Cai, C.; Liu, W. Enhanced gas sensing properties of SnO2: The role of the oxygen defects induced by quenching. J. Alloys Compd. 2016, 669, 29–37. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, Y.; Guo, Y.; Xu, J.; Xu, X.; Fang, X.; Liu, J.; Chen, W.; Arandiyan, H.; Wang, X. Tuning SnO2 Surface Area for Catalytic Toluene Deep Oxidation: On the Inherent Factors Determining the Reactivity. Ind. Eng. Chem. Res. 2018, 57, 14052–14063. [Google Scholar] [CrossRef]
- Rauwel, E.; Galeckas, A.; Rauwel, P. Photoluminescent cubic and monoclinic HfO2 nanoparticles: Effects of temperature and ambient. Mater. Res. Express 2014, 1, 015035. [Google Scholar] [CrossRef]
- Rauwel, E.; Galeckas, A.; Soares, M.R.; Rauwel, P. Influence of the Interface on the Photoluminescence Properties in ZnO Carbon-Based Nanohybrids. J. Phys. Chem. C 2017, 121, 14879–14887. [Google Scholar] [CrossRef]
- Peng, Y.-K.; Tsang, S.C.E. Facet-dependent photocatalysis of nanosize semiconductive metal oxides and progress of their characterization. Nano Today 2018, 18, 15–34. [Google Scholar] [CrossRef]
- Bahuguna, G.; Verma, M.; Gupta, R. Chemical insights into electrophilic fluorination of SnO2 for photoelectrochemical applications. J. Mater. Chem. A 2021, 9, 19965–19974. [Google Scholar] [CrossRef]
- Godinho, K.G.; Walsh, A.; Watson, G.W. Energetic and Electronic Structure Analysis of Intrinsic Defects in SnO2. J. Phys. Chem. C 2009, 113, 439–448. [Google Scholar] [CrossRef]
- Sun, X.; Long, R.; Cheng, X.; Zhao, X.; Dai, Y.; Huang, B. Structural, Electronic, and Optical Properties of N-doped SnO2. J. Phys. Chem. C 2008, 112, 9861–9864. [Google Scholar] [CrossRef]
- Dai, G.; Zhou, W.; Ma, X.; Yuan, J.; Wu, P. Structure and magnetic properties of Cr-Doped tin monoxide prepared by hydrothermal method. Ceram. Int. 2020, 46, 13350–13355. [Google Scholar] [CrossRef]
- Ricciarelli, D.; Meggiolaro, D.; Ambrosio, F.; De Angelis, F. Instability of Tin Iodide Perovskites: Bulk p-Doping versus Surface Tin Oxidation. ACS Energy Lett. 2020, 5, 2787–2795. [Google Scholar] [CrossRef]
- Villamagua, L.; Stashans, A.; Lee, P.-M.; Liu, Y.-S.; Liu, C.-Y.; Carini, M. Change in the electrical conductivity of SnO2 crystal from n-type to p-type conductivity. Chem. Phys. 2015, 452, 71–77. [Google Scholar] [CrossRef]
- Ahmed, A.; Naseem Siddique, M.; Alam, U.; Ali, T.; Tripathi, P. Improved photocatalytic activity of Sr doped SnO2 nanoparticles: A role of oxygen vacancy. Appl. Surf. Sci. 2019, 463, 976–985. [Google Scholar] [CrossRef]
- Zeng, Q.; Cui, Y.; Zhu, L.; Yao, Y. Increasing oxygen vacancies at room temperature in SnO2 for enhancing ethanol gas sensing. Mater. Sci. Semicond. Process. 2020, 111, 104962. [Google Scholar] [CrossRef]
- Toloman, D.; Popa, A.; Stefan, M.; Silipas, T.D.; Suciu, R.C.; Barbu-Tudoran, L.; Pana, O. Enhanced photocatalytic activity of Co doped SnO2 nanoparticles by controlling the oxygen vacancy states. Opt. Mater. 2020, 110, 110472. [Google Scholar] [CrossRef]
- Mehraj, S.; Ansari, M.S.; Al-Ghamdi, A.A.; Alimuddin. Annealing dependent oxygen vacancies in SnO2 nanoparticles: Structural, electrical and their ferromagnetic behavior. Mater. Chem. Phys. 2016, 171, 109–118. [Google Scholar] [CrossRef]
- Wang, X.; Wang, X.; Di, Q.; Zhao, H.; Liang, B.; Yang, J. Mutual Effects of Fluorine Dopant and Oxygen Vacancies on Structural and Luminescence Characteristics of F Doped SnO2 Nanoparticles. Materials 2017, 10, 1398. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, M.; Ruan, X.; Yan, J.; Zhang, Z.; Yun, J.; Zhao, W.; Li, T.; Shi, Y. Synthesis, growth mechanism, and photoluminescence property of hierarchical SnO2 nanoflower-rod arrays: An experimental and first principles study. J. Mater. Sci. 2016, 51, 9613–9624. [Google Scholar] [CrossRef]
- Gu, F.; Wang, S.F.; Lü, M.K.; Zhou, G.J.; Xu, D.; Yuan, D.R. Photoluminescence Properties of SnO2 Nanoparticles Synthesized by Sol–Gel Method. J. Phys. Chem. B 2004, 108, 8119–8123. [Google Scholar] [CrossRef]
- Habte, A.G.; Hone, F.G.; Dejene, F.B. Zn doping effect on the properties of SnO2 nanostructure by co-precipitation technique. Appl. Phys. A 2019, 125, 402. [Google Scholar] [CrossRef]
- Salem, J.K.; Hammad, T.M.; Harrison, R.R. Synthesis, structural and optical properties of Ni-doped ZnO micro-spheres. J. Mater. Sci. Mater. Electron. 2013, 24, 1670–1676. [Google Scholar] [CrossRef]
- Mishra, R.K.; Sahay, P.P. Synthesis, characterization and alcohol sensing property of Zn-doped SnO2 nanoparticles. Ceram. Int. 2012, 38, 2295–2304. [Google Scholar] [CrossRef]
- Mishra, R.K.; Kushwaha, A.; Sahay, P.P. Cr-induced modifications in the structural, photoluminescence and acetone-sensing behaviour of hydrothermally synthesised SnO2 nanoparticles. J. Exp. Nanosci. 2015, 10, 1042–1056. [Google Scholar] [CrossRef]
- Khandelwal, R.; Singh, A.P.; Kapoor, A.; Grigorescu, S.; Miglietta, P.; Stankova, N.E.; Perrone, A. Effects of deposition temperature on the structural and morphological properties of SnO2 films fabricated by pulsed laser deposition. Opt. Laser Technol. 2009, 41, 89–93. [Google Scholar] [CrossRef]
- Ham, D.; Oh, S.; Kang, H.C. Competing phases in epitaxial SnO2 thin films deposited on sapphire (0001) substrates using radio-frequency powder sputtering. Ceram. Int. 2022, 48, 28396–28403. [Google Scholar] [CrossRef]
- Camacho-López, M.A.; Galeana-Camacho, J.R.; Esparza-García, A.; Sánchez-Pérez, C.; Julien, C.M. Characterization of nanostructured SnO2 films deposited by reactive DC-magnetron sputtering. Superf. Vacio 2013, 26, 95–99. [Google Scholar]
- Nguyen, T.T.; Dang, H.P.; Luc, Q.H.; Le, T. Studying the influence of deposition temperature and nitrogen contents on the structural, optical, and electrical properties of N-doped SnO2 films prepared by direct current magnetron sputtering. Ceram. Int. 2019, 45, 9147–9156. [Google Scholar] [CrossRef]
- Xu, Y.; Li, R. Wet-chemical synthesis and characterization of nitrogen-doped CeO2 powders for oxygen storage capacity. Appl. Surf. Sci. 2018, 455, 997–1004. [Google Scholar] [CrossRef]
- Sharma, R.; Naedele, D.; Schweda, E. In Situ Studies of Nitridation of Zirconia (ZrO2). Chem. Mater. 2001, 13, 4014–4018. [Google Scholar] [CrossRef]
- Xu, L.; Nishimura, T.; Shibayama, S.; Yajima, T.; Migita, S.; Toriumi, A. Ferroelectric phase stabilization of HfO2 by nitrogen doping. Appl. Phys. Express 2016, 9, 091501. [Google Scholar] [CrossRef]
- He, L.; Luan, C.; Feng, X.; Xiao, H.; Ma, J. Effect of niobium doping on the structural, electrical and optical properties of epitaxial SnO2 films on MgF2 (110) substrates by MOCVD. J. Alloys Compd. 2018, 741, 677–681. [Google Scholar] [CrossRef]
- Luan, C.; Zhu, Z. Structural and electrical properties of epitaxial SnO2: Sb films deposited on 6 H-SiC by MOCVD. J. Mater. Sci. Mater. Electron. 2021, 32, 21798–21803. [Google Scholar] [CrossRef]
- Kong, L.; Ma, J.; Zhu, Z.; Luan, C.; Yu, X.; Yu, Q. Synthesis of orthorhombic structure epitaxial tin oxide film. Mater. Lett. 2010, 64, 1350–1353. [Google Scholar] [CrossRef]
- Liu, D.; Wang, Q.; Chang, H.L.M.; Chen, H. Variant structure in metal-organic-chemical-vapor-deposition-derived SnO2 thin films on sapphire (0001). J. Mater. Res. 1995, 10, 1516–1522. [Google Scholar] [CrossRef]
- He, L.; Luan, C.; Cao, Q.; Feng, X.; Zhao, W.; Ma, J. Characterization of Rutile SnO2 Epitaxial Films Grown on MgF2 (001) Substrates by MOCVD. Cryst. Res. Technol. 2018, 53, 1700168. [Google Scholar] [CrossRef]
- Sheng Pan, S.; Fung Yu, S.; Xia Zhang, Y.; Yuan Luo, Y.; Wang, S.; Min Xu, J.; Hai Li, G. Crystallite size-modulated exciton emission in SnO2 nanocrystalline films grown by sputtering. J. Appl. Phys. 2013, 113, 143104. [Google Scholar] [CrossRef] [Green Version]
- Saipriya, S.; Sultan, M.; Singh, R. Effect of environment and heat treatment on the optical properties of RF-sputtered SnO2 thin films. Phys. B Condens. Matter 2011, 406, 812–817. [Google Scholar] [CrossRef]
- Lee, D.-K.; Wan, Z.; Bae, J.-S.; Lee, H.-B.-R.; Ahn, J.-H.; Kim, S.-D.; Kim, J.; Kwon, S.-H. Plasma-enhanced atomic layer deposition of SnO2 thin films using SnCl4 and O2 plasma. Mater. Lett. 2016, 166, 163–166. [Google Scholar] [CrossRef]
- Liu, Y.; Koep, E.; Liu, M. A Highly Sensitive and Fast-Responding SnO2 Sensor Fabricated by Combustion Chemical Vapor Deposition. Chem. Mater. 2005, 17, 3997–4000. [Google Scholar] [CrossRef]
- Ali, S.M.; Hussain, S.T.; Bakar, S.A.; Muhammad, J.; ur Rehman, N. Effect of doping on the Structural and Optical Properties of SnO2 Thin Films fabricated by Aerosol Assisted Chemical Vapor Deposition. J. Phys. Conf. Ser. 2013, 439, 012013. [Google Scholar] [CrossRef]
- Gavaskar, D.S.; Nagaraju, P.; Vijayakumar, Y.; Reddy, P.S.; Ramana Reddy, M.V. Low-cost ultra-sensitive SnO2-based ammonia sensor synthesized by hydrothermal method. J. Asian Ceram. Soc. 2020, 8, 605–614. [Google Scholar] [CrossRef]
- Vuong, D.D.; Hien, V.X.; Trung, K.Q.; Chien, N.D. Synthesis of SnO2 micro-spheres, nano-rods and nano-flowers via simple hydrothermal route. Phys. E Low-Dimens. Syst. Nanostructures 2011, 44, 345–349. [Google Scholar] [CrossRef]
- Guan, M.; Zhao, X.; Duan, L.; Cao, M.; Guo, W.; Liu, J.; Zhang, W. Controlled synthesis of SnO2 nanostructures with different morphologies and the influence on photocatalysis properties. J. Appl. Phys. 2013, 114, 114302. [Google Scholar] [CrossRef]
- Mishra, R.K.; Upadhyay, S.B.; Sahay, P.P. Volatile Organic Compounds (VOCs) Response Characteristics of the Hydrothermally Synthesized SnO2 Nanocapsules. Sens. Lett. 2013, 11, 1611–1616. [Google Scholar] [CrossRef]
- Zhou, X.; Fu, W.; Yang, H.; Ma, D.; Cao, J.; Leng, Y.; Guo, J.; Zhang, Y.; Sui, Y.; Zhao, W.; et al. Synthesis and ethanol-sensing properties of flowerlike SnO2 nanorods bundles by poly(ethylene glycol)-assisted hydrothermal process. Mater. Chem. Phys. 2010, 124, 614–618. [Google Scholar] [CrossRef]
- Xi, G.; Ye, J. Ultrathin SnO2 Nanorods: Template- and Surfactant-Free Solution Phase Synthesis, Growth Mechanism, Optical, Gas-Sensing, and Surface Adsorption Properties. Inorg. Chem. 2010, 49, 2302–2309. [Google Scholar] [CrossRef] [PubMed]
- Cao, S.; Zeng, W.; Zhang, H.; Li, Y. Hydrothermal synthesis of SnO2 nanocubes and nanospheres and their gas sensing properties. J. Mater. Sci. Mater. Electron. 2015, 26, 2871–2878. [Google Scholar] [CrossRef]
- Runa, A.; Bala, H.; Wang, Y.; Chen, J.; Zhang, B.; Li, H.; Fu, W.; Wang, X.; Sun, G.; Cao, J.; et al. Synthesis, characterization, and gas-sensing properties of monodispersed SnO2 nanocubes. Appl. Phys. Lett. 2014, 105, 053102. [Google Scholar] [CrossRef]
- Huang, Q.; Wang, S.; Chen, Y.; Liu, C.; Li, Q. Brief Introduction on Manufacturing and Characterization of Metallic Electrode and Corresponding Modified Materials. Metals 2023, 13, 703. [Google Scholar] [CrossRef]
- Ma, Y.; Liu, P.; Xie, Q.; Zhang, C.; Wang, L.; Peng, D.-L. Intrinsic performance regulation in hierarchically porous Co3O4 microrods towards high-rate lithium ion battery anode. Mater. Today Energy 2020, 16, 100383. [Google Scholar] [CrossRef]
- Noerochim, L.; Indra, M.A.T.; Purwaningsih, H.; Subhan, A. Porous Fe2O3 Microspheres as Anode for Lithium-Ion Batteries. IOP Conf. Ser. Mater. Sci. Eng. 2018, 367, 012038. [Google Scholar] [CrossRef]
- Zhang, L.; Song, J.; Liu, Y.; Yuan, X.; Guo, S. Tailoring nanostructured MnO2 as anodes for lithium ion batteries with high reversible capacity and initial Coulombic efficiency. J. Power Sources 2018, 379, 68–73. [Google Scholar] [CrossRef]
- Shi, S.; Deng, T.; Zhang, M.; Yang, G. Fast facile synthesis of SnO2/Graphene composite assisted by microwave as anode material for lithium-ion batteries. Electrochim. Acta 2017, 246, 1104–1111. [Google Scholar] [CrossRef]
- Kim, A.-R.; Nahm, K.S.; Yoo, D.J. Lithium Insertion Behavior of Nanoscopic Co3O4 Prepared with Avian Egg Membrane as a Template. Bull. Korean Chem. Soc. 2011, 32, 1204–1208. [Google Scholar] [CrossRef] [Green Version]
- Khamsanga, S.; Pornprasertsuk, R.; Yonezawa, T.; Mohamad, A.A.; Kheawhom, S. δ-MnO2 nanoflower/graphite cathode for rechargeable aqueous zinc ion batteries. Sci. Rep. 2019, 9, 8441. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mittal, N.; Ojanguren, A.; Niederberger, M.; Lizundia, E. Degradation Behavior, Biocompatibility, Electrochemical Performance, and Circularity Potential of Transient Batteries. Adv. Sci. 2021, 8, 2004814. [Google Scholar] [CrossRef]
- Yin, L.; Chai, S.; Wang, F.; Huang, J.; Li, J.; Liu, C.; Kong, X. Ultrafine SnO2 nanoparticles as a high performance anode material for lithium ion battery. Ceram. Int. 2016, 42, 9433–9437. [Google Scholar] [CrossRef]
- Etacheri, V.; Seisenbaeva, G.A.; Caruthers, J.; Daniel, G.; Nedelec, J.-M.; Kessler, V.G.; Pol, V.G. Ordered Network of Interconnected SnO2 Nanoparticles for Excellent Lithium-Ion Storage. Adv. Energy Mater. 2015, 5, 1401289. [Google Scholar] [CrossRef]
- Huang, B.; Li, X.; Pei, Y.; Li, S.; Cao, X.; Massé, R.C.; Cao, G. Novel Carbon-Encapsulated Porous SnO2 Anode for Lithium-Ion Batteries with Much Improved Cyclic Stability. Small 2016, 12, 1945–1955. [Google Scholar] [CrossRef]
- Li, H.; Su, Q.; Kang, J.; Huang, M.; Feng, M.; Feng, H.; Huang, P.; Du, G. Porous SnO2 hollow microspheres as anodes for high-performance lithium ion battery. Mater. Lett. 2018, 217, 276–280. [Google Scholar] [CrossRef]
- Li, L.; Yin, X.; Liu, S.; Wang, Y.; Chen, L.; Wang, T. Electrospun porous SnO2 nanotubes as high capacity anode materials for lithium ion batteries. Electrochem. Commun. 2010, 12, 1383–1386. [Google Scholar] [CrossRef]
- Tan, L.; Wang, M.S.; Liu, Y.J.; Xiao, X.C.; Fan, L.Z.; Wang, Y.D. Synthesis of SnO2 nanorods and hollow spheres and their electrochemical properties as anode materials for lithium ion batteries. Mater. Technol. 2012, 27, 191–195. [Google Scholar] [CrossRef]
- Narsimulu, D.; Vinoth, S.; Srinadhu, E.S.; Satyanarayana, N. Surfactant-free microwave hydrothermal synthesis of SnO2 nanosheets as an anode material for lithium battery applications. Ceram. Int. 2018, 44, 201–207. [Google Scholar] [CrossRef]
- Kulmala, M.; Kerminen, V.-M. On the formation and growth of atmospheric nanoparticles. Atmos. Res. 2008, 90, 132–150. [Google Scholar] [CrossRef]
- Kulmala, M.; Kerminen, V.-M.; Anttila, T.; Laaksonen, A.; O’Dowd, C.D. Organic aerosol formation via sulphate cluster activation. J. Geophys. Res. Atmos. 2004, 109, D04205. [Google Scholar] [CrossRef] [Green Version]
- Wen, Z.; Zheng, F.; Yu, H.; Jiang, Z.; Liu, K. Hydrothermal synthesis of flowerlike SnO2 nanorod bundles and their application for lithium ion battery. Mater. Charact. 2013, 76, 1–5. [Google Scholar] [CrossRef]
- Liu, J.; Li, Y.; Huang, X.; Ding, R.; Hu, Y.; Jiang, J.; Liao, L. Direct growth of SnO2 nanorod array electrodes for lithium-ion batteries. J. Mater. Chem. 2009, 19, 1859–1864. [Google Scholar] [CrossRef]
- Sharma, A.; Khosla, A.; Arya, S. Synthesis of SnO2 nanowires as a reusable and flexible electrode for electrochemical detection of riboflavin. Microchem. J. 2020, 156, 104858. [Google Scholar] [CrossRef]
- Ding, S.; Chen, J.S.; Qi, G.; Duan, X.; Wang, Z.; Giannelis, E.P.; Archer, L.A.; Lou, X.W. Formation of SnO2 Hollow Nanospheres inside Mesoporous Silica Nanoreactors. J. Am. Chem. Soc. 2011, 133, 21–23. [Google Scholar] [CrossRef]
- Wu, H.B.; Chen, J.S.; Lou, X.W.; Hng, H.H. Synthesis of SnO2 Hierarchical Structures Assembled from Nanosheets and Their Lithium Storage Properties. J. Phys. Chem. C 2011, 115, 24605–24610. [Google Scholar] [CrossRef]
- Park, M.-S.; Wang, G.-X.; Kang, Y.-M.; Wexler, D.; Dou, S.-X.; Liu, H.-K. Preparation and Electrochemical Properties of SnO2 Nanowires for Application in Lithium-Ion Batteries. Angew. Chem. Int. Ed. 2007, 46, 750–753. [Google Scholar] [CrossRef]
- Chen, J.S.; Lou, X.W. SnO2 and TiO2 nanosheets for lithium-ion batteries. Mater. Today 2012, 15, 246–254. [Google Scholar] [CrossRef]
- Liu, M.; Zhang, S.; Dong, H.; Chen, X.; Gao, S.; Sun, Y.; Li, W.; Xu, J.; Chen, L.; Yuan, A.; et al. Nano-SnO2/Carbon Nanotube Hairball Composite as a High-Capacity Anode Material for Lithium Ion Batteries. ACS Sustain. Chem. Eng. 2019, 7, 4195–4203. [Google Scholar] [CrossRef]
- Deng, Y.; Fang, C.; Chen, G. The developments of SnO2/graphene nanocomposites as anode materials for high performance lithium ion batteries: A review. J. Power Sources 2016, 304, 81–101. [Google Scholar] [CrossRef]
- Mueller, F.; Bresser, D.; Chakravadhanula, V.S.K.; Passerini, S. Fe-doped SnO2 nanoparticles as new high capacity anode material for secondary lithium-ion batteries. J. Power Sources 2015, 299, 398–402. [Google Scholar] [CrossRef] [Green Version]
- Ma, Y.; Ma, Y.; Ulissi, U.; Ji, Y.; Streb, C.; Bresser, D.; Passerini, S. Influence of the doping ratio and the carbon coating content on the electrochemical performance of Co-doped SnO2 for lithium-ion anodes. Electrochim. Acta 2018, 277, 100–109. [Google Scholar] [CrossRef]
- Ou, P.; Cao, Z.; Rong, J. Multi-scale Design and Synthesis Strategy of Ni-doped SnO2 Hollow Spheres as Anode Material for Lithium-ion Batteries. Int. J. Electrochem. Sci. 2022, 17, 2. [Google Scholar] [CrossRef]
- Zhou, W.; Cheng, C.; Liu, J.; Tay, Y.Y.; Jiang, J.; Jia, X.; Zhang, J.; Gong, H.; Hng, H.H.; Yu, T.; et al. Epitaxial Growth of Branched α-Fe2O3/SnO2 Nano-Heterostructures with Improved Lithium-Ion Battery Performance. Adv. Funct. Mater. 2011, 21, 2439–2445. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, Z.X.; Shi, Y.; Wong, J.I.; Ding, M.; Yang, H.Y. Designed hybrid nanostructure with catalytic effect: Beyond the theoretical capacity of SnO2 anode material for lithium ion batteries. Sci. Rep. 2015, 5, 9164. [Google Scholar] [CrossRef] [Green Version]
Structure | Symbol | Structure | Volume (Å3) | Density (g.cm−3) | Direct Bandgap (eV) | ||
---|---|---|---|---|---|---|---|
[87] | [88] | [87] | Cal. [51] | Exp. | |||
Rutile | P42/mnm | Tetragonal | 75.73 | 73.27 | 6.61 | 3.50 | 3.68 [42] |
CaCl2 | Pnnm | Orthorhombic | 75.52 | 72.76 | 6.63 | 3.58 | |
α-PbO2 | Pbcn | Orthorhombic | 75.12 | 71.84 | 6.66 | 3.80 | |
Pyrite | Pa | Cubic | 69.30 | 66.95 | 7.22 | 3.55 | |
ZrO2 | Pbca | Orthorhombic | 68.74 | 66.07 | 7.28 | 3.44 | |
Fluorite | Fm3m | Cubic | 68.23 | 65.86 | 7.34 | 3.01 | |
Cotunnite | Pnam | Orthorhombic | 69.25 | 63.76 | 7.23 | 2.84 | 4.1 [85] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ponte, R.; Rauwel, E.; Rauwel, P. Tailoring SnO2 Defect States and Structure: Reviewing Bottom-Up Approaches to Control Size, Morphology, Electronic and Electrochemical Properties for Application in Batteries. Materials 2023, 16, 4339. https://doi.org/10.3390/ma16124339
Ponte R, Rauwel E, Rauwel P. Tailoring SnO2 Defect States and Structure: Reviewing Bottom-Up Approaches to Control Size, Morphology, Electronic and Electrochemical Properties for Application in Batteries. Materials. 2023; 16(12):4339. https://doi.org/10.3390/ma16124339
Chicago/Turabian StylePonte, Reynald, Erwan Rauwel, and Protima Rauwel. 2023. "Tailoring SnO2 Defect States and Structure: Reviewing Bottom-Up Approaches to Control Size, Morphology, Electronic and Electrochemical Properties for Application in Batteries" Materials 16, no. 12: 4339. https://doi.org/10.3390/ma16124339
APA StylePonte, R., Rauwel, E., & Rauwel, P. (2023). Tailoring SnO2 Defect States and Structure: Reviewing Bottom-Up Approaches to Control Size, Morphology, Electronic and Electrochemical Properties for Application in Batteries. Materials, 16(12), 4339. https://doi.org/10.3390/ma16124339