Study on Quasi-Static Axial Compression Performance and Energy Absorption of Aluminum Foam-Filled Steel Tubes
Abstract
:1. Introduction
2. Axial Compression Performance Test
2.1. Mechanical Properties of Galvanized Steel
2.2. Performance Test of Foamed Metal Material
2.3. Loading Scheme
2.4. Axial Compression Test of Aluminum Foam-Filled Steel Tube
3. Numerical Simulation Model Validation
3.1. The Establishment of a Numerical Model
3.2. Reliability Verification of the Numerical Simulation Method
4. Comparative Analysis of Axial Compression Performance of Foam-Filled Steel Tube and Empty Steel Tube
4.1. Comparative Analysis of Different Member Lengths
4.1.1. Comparative Analysis of Bearing Capacity
4.1.2. Comparative Analysis of the Deformation Pattern and Stress Cloud Diagram
4.1.3. Comparative Analysis of Different Member Lengths
4.2. Comparative Analysis of the Wall Thickness of Different Components
4.2.1. Comparative Analysis of Carrying Capacity
4.2.2. Comparative Analysis of Carrying Capacity
4.2.3. Comparative Analysis of Energy Absorption Capacity
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, P.; Kaewunruen, S.; Tang, B. Dynamic pressure analysis of hemispherical shell vibrating in unbounded compressible fluid. Appl. Sci. 2018, 8, 1938. [Google Scholar] [CrossRef] [Green Version]
- Xu, T.; Shao, J.H.; Zhang, J.Y.; Kaewunruen, S. Experimental performance evaluation of multi-storey steel plate shear walls designed by different methods. Int. J. Civ. Eng. 2019, 17, 1145–1154. [Google Scholar] [CrossRef]
- Pan, Z.; Si, Q.; Zhou, Z.; Zhang, Y.; Zhu, Y.; Chen, X. Experimental and numerical investigations of seismic performance of hybrid joints with bolted connections. J. Constr. Steel Res. 2017, 138, 867–876. [Google Scholar] [CrossRef]
- Shao, J.; Wang, K.; Kaewunruen, S.; Cai, W.; Wang, Z. Experimental Investigations into Earthquake Resistance of Steel Frame Retrofifitted by Low-Yield-Point Steel Energy Absorbers. Appl. Sci. 2019, 9, 3299. [Google Scholar] [CrossRef] [Green Version]
- Nagel, G.M.; Thambiratnam, D.P. A numerical study on the impact response and energy absorption of tapered thin-walled tubes. Int. J. Mech. Sci. 2004, 46, 201–216. [Google Scholar] [CrossRef]
- Zhang, Z.; Sun, W.; Zhao, Y.; Hou, S. Crashworthiness of different composite tubes by experiments and simulations. Compos. B Eng. 2018, 143, 86–95. [Google Scholar] [CrossRef]
- Baroutaji, A.; Sajjia, M.; Olabi, A.G. On the crashworthiness performance of thin-walled energy absorbers: Recent advances and future developments. Thin-Walled Struct. 2017, 118, 137–163. [Google Scholar] [CrossRef] [Green Version]
- Arnold, B.; Altenhof, W. Experimental observations on the crush characteristics of AA6061 T4 and T6 structural square tubes with and without circular discontinuities. Int. J. Crashworthiness 2004, 9, 73–87. [Google Scholar] [CrossRef]
- Niknejad, A.; Elahi, S.M.; Elahi, S.A.; Elahi, S.A. Theoretical and experimental study on the flattening deformation of the rectangular brazen and aluminum columns. Arch. Civ. Mech. Eng. 2013, 13, 449–464. [Google Scholar] [CrossRef]
- Estrada, Q.; Szwedowicz, D.; Majewski, T.; Oliver, M.; Cortes, C.; Castro, F. Effect of quadrilateral discontinuity size on the energy absorption of structural steel profiles. Eksploat. I Niezawodn. Maint. Reliab. 2016, 18, 186–193. [Google Scholar] [CrossRef]
- Gümrük, R.; Karadeniz, S. A numerical study of the influence of bump type triggers on the axial crushing of top hat thin-walled sections. Steel Constr. 2009, 46, 1094–1106. [Google Scholar] [CrossRef]
- Rahi, A. Controlling energy absorption capacity of combined bitubular tubes under axial loading. Thin-Walled Struct. 2018, 123, 222–231. [Google Scholar] [CrossRef]
- Peixinho, N.; Soares, D.; Vilarinho, C.; Pereira, P.; Dimas, D. Experimental study of impact energy absorption in aluminium square tubes with thermal triggers. Mater. Res. 2012, 15, 323–332. [Google Scholar] [CrossRef] [Green Version]
- Dattoma, V.; Giannoccaro, N.; Messina, A.; Nobile, R. Fatigue and Fracture Behaviour of Closed Cell Aluminium Foam. Key Eng. Mater. 2011, 985, 105–112. [Google Scholar] [CrossRef]
- Matsumoto, R.; Kanatani, S.; Utsunomiya, H. Filling of Surface Pores of Aluminum Foam with Polyamide by Selective Laser Melting for Improvement in Mechanical Properties. J. Mater. Process. Technol. 2016, 86–93. [Google Scholar] [CrossRef]
- Hanssen, A.G.; Langseth, M.; Hopperstad, O.S. Static and dynamic crushing of circular aluminium extrusions with aluminium foam filler. Int. J. Impact. Eng. 2000, 24, 475–507. [Google Scholar] [CrossRef]
- Yamada, Y.; Banno, T.; Xie, Z.K.; Wen, C. Energy absorption and crushing behaviour of foam-filled aluminium tubes. Mater. Trans. 2005, 46, 2633–2636. [Google Scholar] [CrossRef] [Green Version]
- Zhang, T.; Xu, Z.; Zhu, X.; He, Z. Dynamic crushing of thin-walled extrusions filled with aluminium-foam. Nav. Sci. Technol. 2007, 2, 52–56. (In Chinese) [Google Scholar]
- Liu, Y. Crashworthiness design of multi-corner thin-walled columns. Thin-Walled Struct. 2008, 46, 1329–1337. [Google Scholar] [CrossRef]
- Li, Z.; Yu, J.; Zheng, Z.; Guo, L. An Exper-imental Study on the Crashworthiness of Thin-walled Tubes and Their Metallic Foam-Filled Structures. Exp. Mech. 2012, 27, 77–86. (In Chinese) [Google Scholar]
- Yang, Z.; Yuan, P. Numerical study on the energy absorption of foam-filled multi-layers Aluminum tubes under dynamic axial crushing. J. Vib. Eng. 2012, 25, 12–16. (In Chinese) [Google Scholar]
- Luo, C.; Liu, R.; Deng, Z.; Wang, C.; Li, M. Experimental study on a plastic deformation energy absorber filled with aluminum foam in a thin-walled metal tube. J. Vib. Shock 2009, 28, 26–30+223. (In Chinese) [Google Scholar]
- Rajak, D.K.; Mahajan, N.N.; Linul, E. Crashworthiness performance and microstructural characteristics of foam-filled thin-walled tubes under diverse strain rate. J. Alloys Compd. 2019, 775, 675–689. [Google Scholar] [CrossRef]
- Patel, S.K.; Singh, V.P.; Yadav, S.K.; Kuriachen, B.; Nateriya, R. Microstructural and Compressive Deformation Behavior of Aluminum Foam-Filled Sections. Soft Mater. 2019, 17, 14–23. [Google Scholar] [CrossRef]
- Jia, B.; Ma, Z.; Pang, B. Numerical simulation investigation in hypervelocity impact on Al-foam stuffed shields. J. Harbin Inst. Technol. 2011, 43, 16–20. (In Chinese) [Google Scholar]
- Liang, G.; Fan, Z.; Wang, Q. Energy-absorption properties of foam-filled circular tubes subjected to dynamic axial crushing. J. Tsinghua Univ. (Sci. Technol.) 2004, 44, 709–712. (In Chinese) [Google Scholar]
- Djamaluddin, F.; Abdullah, S.; Ariffin, A.K.; Nopiah, Z.M. Optimization of foam-filled double circular tubes under axial and oblique impact loading conditions. Thin-Walled Struct. 2015, 87, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Gao, Q.; Wang, L.; Wang, Y.; Wang, C. Crushing analysis and multiobjective crashworthiness optimization of foam-filled ellipse tubes under oblique impact loading. Thin-Walled Struct. 2016, 100, 105–112. [Google Scholar] [CrossRef]
- Qiu, N.; Gao, Y.; Fang, J.; Feng, Z.; Sun, G.; Li, Q. Crashworthiness analysis and design of multi-cell hexagonal columns under multiple loading cases. Finite Elem. Anal. Design. 2015, 104, 89–101. [Google Scholar] [CrossRef]
- Wang, T.; Shao, J.; Xu, T.; Wang, Z. Study on Axial Compression Properties of Aluminum Foam-filled Steel Tube Members After High Temperature. Iran. J. Sci. Technol. 2022, 46, 883–900. [Google Scholar] [CrossRef]
- Hanssen, G.A.; Hopperstad, O.S.; Langseth, M. Validation of constitutive models applicable to aluminium foams. Int. J. Mech. Sci. 2002, 44, 359–406. [Google Scholar] [CrossRef]
- Zhang, H.-S.; Hu, R.-X.; Kang, S.-T. The Tutorial of Ansys14.5/LS-DYNA Nonlinear Finite Element Analysis of Examples; Mechanical Industry Press: Beijing, China, 2013. (In Chinese) [Google Scholar]
- Wang, Z.; Luo, X.; Li, J. Research on compress-ion properties of square galvanized steel pipeshort column after undergoing high temperatures. Steel Constr. 2018, 33, 110+115–118. (In Chinese) [Google Scholar]
Specimen | Galvanized Steel Tube |
---|---|
Density ρ (kg/m3) | 7850 |
Elastic modulus E (GPa) | 206 |
Poisson’s ratio μ | 0.28 |
Yield stress σy (MPa) | 345 |
Ultimate stress σu (MPa) | 470 |
Porosity Ratios Pr | Elasticity Modulus/MPa | Yield Strength/MPa |
---|---|---|
70% | 530 | 12.73 |
80% | 157 | 9.42 |
90% | 76 | 3.8 |
Name | ρ/kg·m−3 | E/GPa | μ | fy/MPa | fu/MPa |
---|---|---|---|---|---|
a | 7850 | 206 | 0.28 | 345 | 470 |
b | 7850 | 206 | 0.28 | 345 | 470 |
c | 7850 | 206 | 0.28 | 345 | 470 |
d | 270 | 0.076 | 0.01 | 3.8 | 64 |
Material | Peak Load | Length/mm | |||
---|---|---|---|---|---|
100 | 150 | 200 | 250 | ||
Empty steel tube/kN | ET-1 | 45.64 | 42.71 | 40.93 | 37.62 |
ET-2 | 25.44 | 24.46 | 26.39 | 20.65 | |
ET-3 | 20.17 | 19.79 | 19.2 | 21.73 | |
ET-4 | 20.41 | 17.86 | 18.8 | 20.15 | |
Aluminum foam-filled steel tube/kN | FFT-1 | 46.72 | 43.56 | 41.41 | 39.07 |
FFT-2 | 28.58 | 28.78 | 32.24 | 31.21 | |
FFT-3 | 30.62 | 29.92 | 35.72 | 35.13 | |
FFT-4 | 30.63 | 33.38 | 37.89 | 37.35 | |
Peak difference value/% | Peak-1 | 2.4 | 2.0 | 1.2 | 3.9 |
Peak-2 | 12.3 | 17.7 | 22.2 | 51.1 | |
Peak-3 | 51.8 | 51.2 | 86.1 | 61.7 | |
Peak-4 | 50.1 | 86.9 | 101.5 | 85.4 |
Component | Length/mm | Total Energy/J | Average Load/kN | Compression Force Efficiency/% |
---|---|---|---|---|
Empty steel tube/kN | 100 | 683.66 | 17.11 | 37.2 |
150 | 685.17 | 16.41 | 38.4 | |
200 | 694.85 | 17.36 | 42.4 | |
250 | 700.85 | 16.73 | 44.4 | |
Aluminum foam-filled steel tube/kN | 100 | 1038.76 | 25.91 | 55.4 |
150 | 1066.83 | 25.45 | 58.4 | |
200 | 1094.91 | 26.63 | 64.3 | |
250 | 1106.58 | 26.73 | 68.4 | |
Value difference/% | 100 | 51.9 | 51.4 | 48.9 |
150 | 55.7 | 55.1 | 52.1 | |
200 | 57.6 | 53.4 | 51.7 | |
250 | 57.9 | 59.8 | 54.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Shao, J. Study on Quasi-Static Axial Compression Performance and Energy Absorption of Aluminum Foam-Filled Steel Tubes. Materials 2023, 16, 4485. https://doi.org/10.3390/ma16124485
Wang Z, Shao J. Study on Quasi-Static Axial Compression Performance and Energy Absorption of Aluminum Foam-Filled Steel Tubes. Materials. 2023; 16(12):4485. https://doi.org/10.3390/ma16124485
Chicago/Turabian StyleWang, Zhanguang, and Jianhua Shao. 2023. "Study on Quasi-Static Axial Compression Performance and Energy Absorption of Aluminum Foam-Filled Steel Tubes" Materials 16, no. 12: 4485. https://doi.org/10.3390/ma16124485
APA StyleWang, Z., & Shao, J. (2023). Study on Quasi-Static Axial Compression Performance and Energy Absorption of Aluminum Foam-Filled Steel Tubes. Materials, 16(12), 4485. https://doi.org/10.3390/ma16124485