Lead-Free Halide Double Perovskite for High-Performance Photodetectors: Progress and Perspective
Abstract
:1. Introduction
2. Categories and Key Performance Parameters of Semiconductor-Based PDs
- Responsivity (R): This is a key parameter to quantify the response efficiency of photodetectors to an optical signal and is defined as the photocurrent generated by the incident light of the unit power per unit area. Its unit is A W−1.
- 2.
- Detectivity (D*): This describes the ability of detector materials to detect weak light. D* is determined by the responsivity and noise of the PD and is defined as follows:
- 3.
- Response time (rise/decay time): Response time reflects the response speed of the detector and is a key parameter to evaluate the performance of PDs. Generally, we can use the square wave test method to measure the optical response time of the detector. The rise time (τr)/decay time (τf) is defined as the rise (fall) time from 10% (90%) to 90% (10%) of the maximum current, respectively. Its unit is s.
- 4.
- On-off ratio: The on-off ratio is the ratio of the photocurrent (Ip) and the dark current (Id), reflecting the photosensitivity of PDs. The higher the on-off current ratio, the higher the accuracy of the detector in detecting weak light signals.
- 5.
- EQE: This is defined as the ratio of output carriers to the number of incident photons per unit time under specific wavelength radiation, which reflects the luminous efficiency of the whole detector.
- 6.
- LDR: This describes the region where the generated photocurrent is linearly dependent on the incident light intensity. Beyond this range, the intensity of the light signal cannot be detected and calculated precisely.
3. Design Principle for Lead-Free Double Perovskite Materials
4. A2M(I)M(III)X6-Based Double Perovskite Photodetectors
4.1. Bi-Based Double Perovskite Photodetectors
4.2. Other (Sb3+, Fe3+, In3+, Tl3+, Au3+-Based) Double Perovskite Photodetectors
5. A2M(IV)X6-Based Double Perovskite Photodetectors
5.1. Sn-Based Double Perovskite Photodetectors
5.2. Other (Ti4+, Pd4+, Hf4+, Te4+, Cr4+, Zr4+-Based) Double Perovskite Photodetectors
6. Challenges and Perspective for Lead-Free Double Perovskite-Based PDs
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, J.; Duan, J.; Yang, X.; Duan, Y.; Yang, P.; Tang, Q. Review on recent progress of lead-free halide perovskites in optoelectronic applications. Nano Energy 2021, 80, 105526. [Google Scholar] [CrossRef]
- Akkerman, Q.A.; Rainò, G.; Kovalenko, M.V.; Manna, L. Genesis, challenges and opportunities for colloidal lead halide perovskite nanocrystals. Nat. Mater. 2018, 17, 394–405. [Google Scholar] [CrossRef] [PubMed]
- Wells, H.L. Some Complex Chlorides Containing Gold. Am. J. Sci. 1922, s5-3, 315–326. [Google Scholar] [CrossRef]
- Castro-Castro, L.M.; Guloy, A.M. Organic-Based Layered Perovskites of Mixed-Valent Gold (I)/Gold (III) Iodides. Angew. Chem. 2003, 115, 2877–2880. [Google Scholar] [CrossRef]
- Slavney, A.H.; Hu, T.; Lindenberg, A.M.; Karunadasa, H.I. A bismuth-halide double perovskite with long carrier recombination lifetime for photovoltaic applications. J. Am. Chem. Soc. 2016, 138, 2138–2141. [Google Scholar] [CrossRef]
- Berzelius, J. Untersuchung über die Eigenschaften des Tellurs. Ann. Der Phys. 1834, 108, 577–627. [Google Scholar] [CrossRef]
- Zhang, Z.; Yang, G.; Zhou, C.; Chung, C.C.; Hany, I. Optical and electrical properties of all-inorganic Cs2AgBiBr6 double perovskite single crystals. RSC Adv. 2019, 9, 23459–23464. [Google Scholar] [CrossRef] [Green Version]
- Lee, W.; Hong, S.; Kim, S. Colloidal synthesis of lead-free silver–indium double-perovskite Cs2AgInCl6 nanocrystals and their doping with lanthanide ions. J. Phys. Chem. C 2019, 123, 2665–2672. [Google Scholar] [CrossRef]
- Singh, A.; Chaurasiya, R.; Bheemaraju, A.; Chen, J.S.; Satapathi, S. Strain-Induced Band-Edge Modulation in Lead-Free Antimony-Based Double Perovskite for Visible-Light Absorption. ACS Appl. Energy Mater. 2022, 5, 3926–3932. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, K.; Zou, B. Bismuth Halide Perovskite-Like Materials: Current Opportunities and Challenges. ChemSusChem 2019, 12, 1612–1630. [Google Scholar] [CrossRef]
- Longo, G.; Mahesh, S.; Buizza, L.R.; Wright, A.D.; Ramadan, A.J.; Abdi-Jalebi, M.; Nayak, P.K.; Herz, L.M.; Snaith, H.J. Understanding the performance-limiting factors of Cs2AgBiBr6 double-perovskite solar cells. ACS Energy Lett. 2020, 5, 2200–2207. [Google Scholar] [CrossRef]
- Lei, L.Z.; Shi, Z.F.; Li, Y.; Ma, Z.Z.; Zhang, F.; Xu, T.T.; Tian, Y.T.; Di, W.; Li, X.J.; Du, G.T. High-efficiency and air-stable photodetectors based on lead-free double perovskite Cs2AgBiBr6 thin films. J. Mater. Chem. C 2018, 6, 7982–7988. [Google Scholar] [CrossRef]
- Yan, G.; Jiang, B.; Yuan, Y.; Kuang, M.; Liu, X.; Zeng, Z.; Zhao, C.; He, J.; Mai, W. Importance of Bi–O Bonds at the Cs2AgBiBr6 Double-Perovskite/Substrate Interface for Crystal Quality and Photoelectric Performance. ACS Appl. Mater. Interfaces 2020, 12, 6064–6073. [Google Scholar] [CrossRef]
- Arora, N.; Dar, M.I.; Hinderhofer, A.; Pellet, N.; Schreiber, F.; Zakeeruddin, S.M.; Grätzel, M. Perovskite solar cells with CuSCN hole extraction layers yield stabilized efficiencies greater than 20%. Science 2017, 358, 768–771. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qin, P.; Tanaka, S.; Ito, S.; Tetreault, N.; Manabe, K.; Nishino, H.; Khaja, M.; Grätzel, M. Inorganic hole conductor-based lead halide perovskite solar cells with 12.4% conversion efficiency. Nat. Commun. 2014, 5, 3834. [Google Scholar] [CrossRef] [Green Version]
- Wijeyasinghe, N.; Regoutz, A.; Eisner, F.; Du, T.; Tsetseris, L.; Lin, Y.H.; Hendrik, F. Copper(I) thiocyanate (CuSCN) hole-transport layers processed from aqueous precursor solutions and their application in thin-film transistors and highly efficient organic and organometal halide perovskite solar cells. Adv. Funct Mater. 2017, 27, 1701818. [Google Scholar] [CrossRef]
- Yan, G.; Ji, Z.; Li, Z.; Jiang, B.; Kuang, M.; Cai, X.; Yuan, Y.; Mai, W. All-inorganic Cs2AgBiBr6/CuSCN-based photodetectors for weak light imaging. Sci. China Mater. 2020. [Google Scholar] [CrossRef]
- Shen, W.; Jung, U.; Xian, Z.; Jung, B.; Park, J. Enhanced device performance of Cs2AgBiBr6 double perovskite photodetector by SnO2/ZnO double electron transport layer. J. Alloy. Compd. 2022, 929, 167329. [Google Scholar] [CrossRef]
- Lee, H.J.; Na, S.I. Investigation of PCBM/ZnO and C60/BCP-based electron transport layer for high-performance pin perovskite solar cells. J. Alloy. Compd. 2022, 921, 166007. [Google Scholar] [CrossRef]
- Liu, G.; Zhong, Y.; Mao, H.; Yang, J.; Dai, R.; Hu, X.; Xing, Z.; Sheng, W.; Tan, L.; Chen, Y. Highly efficient and stable ZnO-based MA-free perovskite solar cells via overcoming interfacial mismatch and deprotonation reaction. Chem. Eng. J. 2022, 431, 134235. [Google Scholar] [CrossRef]
- Ruankham, P.; Wongratanaphisan, D.; Gardchareon, A.; Phadungdhitidhada, S.; Choopun, S.; Sagawa, T. Full coverage of perovskite layer onto ZnO nanorods via a modified sequential two-step deposition method for efficiency enhancement in perovskite solar cells. Appl. Surf. Sci. 2017, 410, 393–400. [Google Scholar] [CrossRef]
- Sivashanmugan, K.; Lin, C.H.; Hsu, S.H.; Guo, T.F.; Wen, T.C. Interfacial engineering of ZnO surface modified with poly-vinylpyrrolidone and p-aminobenzoic acid for high-performance perovskite solar cells. Mater. Chem. Phys. 2018, 219, 90–95. [Google Scholar] [CrossRef]
- Yang, Z.; Babu, B.H.; Wu, S.; Liu, T.; Fang, S.; Xiong, Z.; Han, L.; Chen, W. Review on practical interface engineering of perovskite solar cells: From efficiency to stability. Sol. Rrl. 2020, 4, 1900257. [Google Scholar] [CrossRef]
- Niu, H.; Fang, C.; Wei, X.; Wang, H.; Wan, L.; Li, Y.; Mao, X.; Xu, J.; Zhou, R. Magnetron sputtered ZnO electron transporting layers for high performance perovskite solar cells. Dalton Trans. 2021, 50, 6477–6487. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Yan, G.; Li, Z.; Jiang, B.; Liang, Z.; Fan, H.J.; Mai, W. UV soaking for enhancing the photocurrent and response speed of Cs2AgBiBr6-based all-inorganic perovskite photodetectors. Sci. China Mater. 2022, 65, 442–450. [Google Scholar]
- Tress, W.; Yavari, M.; Domanski, K.; Yadav, P.; Niesen, B.; Baena, J.P.C.; Hagfeldt, A.; Graetzel, M. Interpretation and evolution of open-circuit voltage, recombination, ideality factor and subgap defect states during reversible light-soaking and irreversible degradation of perovskite solar cells. Energy Environ. Sci. 2018, 11, 151–165. [Google Scholar] [CrossRef]
- Yamada, Y.; Endo, M.; Wakamiya, A.; Kanemitsu, Y. Spontaneous defect annihilation in CH3NH3PbI3 thin films at room temperature revealed by time-resolved photoluminescence spectroscopy. J. Phys. Chem. Lett. 2015, 6, 482–486. [Google Scholar]
- Tian, Y.; Merdasa, A.; Unger, E.; Abdellah, M.; Zheng, K.; McKibbin, S.; Mikkelsen, A.; Pullerits, T.; Yartsev, A.; Sundstrom, V. Enhanced organo-metal halide perovskite photoluminescence from nanosized defect-free crystallites and emitting sites. J. Phys. Chem. Lett. 2015, 6, 4171–4177. [Google Scholar] [CrossRef]
- Tian, Y.; Peter, M.; Unger, E.; Abdellah, M.; Zheng, K.; Pullerits, T.; Yartsev, A.; Sundström, V.; Scheblykin, I.G. Mechanistic insights into perovskite photoluminescence enhancement: Light curing with oxygen can boost yield thousandfold. Phys. Chem. Chem. Phys. 2015, 17, 24978–24987. [Google Scholar] [CrossRef]
- Chen, S.; Wen, X.; Huang, S.; Huang, F.; Cheng, Y.B.; Green, M.; Ho-Baillie, A. Light illumination induced photoluminescence enhancement and quenching in lead halide perovskite. Sol. Rrl. 2017, 1, 1600001. [Google Scholar] [CrossRef]
- Geng, X.; Chen, Y.A.; Li, Y.Y.; Ren, J.; Dun, G.H.; Qin, K.; Ren, T.L. Lead-Free Halide Perovskites for Direct X-Ray Detectors. Adv. Sci. 2023, 2300256. [Google Scholar] [CrossRef]
- Xu, Q.; Shao, W.; Li, Y.; Zhu, Z.; Liu, B.; Ouyang, X.; Liu, J. High-sensitivity X-ray imaging of a lead halide perovskite single-crystal scintillator. Opt. Lett. 2020, 45, 355–358. [Google Scholar] [CrossRef]
- Douissard, P.A.; Cecilia, A.; Rochet, X.; Chapel, X.; Martin, T.; van de Kamp, T.; Helfen, L.; Baumbach, T.; Luquot, L.; Xiao, X. A versatile indirect detector design for hard X-ray microimaging. J. Instrum. 2012, 7, P09016. [Google Scholar] [CrossRef]
- Lian, L.; Zheng, M.; Zhang, W.; Yin, L.; Du, X.; Zhang, P.; Zhang, X.; Gao, J.; Zhang, D.; Gao, L. Efficient and Reabsorption-Free Radioluminescence in Cs3Cu2I5 Nanocrystals with Self-Trapped Excitons. Adv. Sci. 2020, 7, 2000195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Q.; Wu, J.; Ou, X.; Huang, B.; Almutlaq, J.; Zhumekenov, A.A.; Guan, X.; Han, S.; Liang, L.; Yi, Z.; et al. All-inorganic perovskite nanocrystal scintillators. Nature 2018, 561, 88–93. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Yu, S.; Meng, X.; Xiao, S. A Review on Lead-Free Perovskites for X-Ray Detection and Imaging. Cryst. Res. Technol. 2023, 58, 2200232. [Google Scholar] [CrossRef]
- Wu, Y.; Feng, J.; Yang, Z.; Liu, Y.; Liu, S. Halide Perovskite: A Promising Candidate for Next-Generation X-Ray Detectors. Adv. Sci. 2023, 10, 2205536. [Google Scholar] [CrossRef] [PubMed]
- Yuan, W.; Niu, G.; Xian, Y.; Wu, H.; Wang, H.; Yin, H.; Liu, P.; Li, W.; Fan, J. In situ regulating the order–disorder phase transition in Cs2AgBiBr6 single crystal toward the application in an X-ray detector. Adv. Funct. Mater. 2019, 29, 1900234. [Google Scholar] [CrossRef]
- Pan, W.; Wu, H.; Luo, J.; Deng, Z.; Ge, C.; Chen, C.; Jiang, X.; Yin, W.; Niu, G.; Zhu, L.; et al. Cs2AgBiBr6 single-crystal X-ray detectors with a low detection limit. Nat. Photonics 2017, 11, 726–732. [Google Scholar] [CrossRef]
- Steele, J.A.; Pan, W.; Martin, C.; Keshavarz, M.; Debroye, E.; Yuan, H.; Roeffaers, M.B. Photophysical pathways in highly sensitive Cs2AgBiBr6 double-perovskite single-crystal X-ray detectors. Adv. Mater. 2018, 30, 1804450. [Google Scholar] [CrossRef]
- Yan, J.; Gao, F.; Tian, Y.; Li, Y.; Gong, W.; Wang, S.; Wang, S.; Zhu, H.; Li, L. Dopant-compensated Cs2AgBiBr6-xClx single crystals for photo-imaging and X-ray detection. J. Mater. Chem. C 2022, 10, 18366–18374. [Google Scholar]
- Tie, S.; Dong, S.; Yuan, R.; Cai, B.; Zhu, J.; Zheng, X.; Zheng, X. Halide perovskites for sensitive, stable and scalable X-ray detection and imaging. Chem. Commun. 2023, 59, 5016–5029. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Zeng, P.; Bai, S.; Gu, J.; Li, F.; Yang, Z.; Liu, M. High-quality sequential-vapor-deposited Cs2AgBiBr6 thin films for lead-free perovskite solar cells. Sol. Rrl. 2018, 2, 1800217. [Google Scholar] [CrossRef]
- Yang, B.; Hong, F.; Chen, J.; Tang, Y.; Yang, L.; Sang, Y.; Xia, X.; Guo, J.; He, H.; Yang, S.; et al. Colloidal Synthesis and Charge-Carrier Dynamics of Cs2AgSb1- yBiyX6 (X: Br, Cl; 0 ≤ y≤ 1) Double Perovskite Nanocrystals. Angew. Chem. 2019, 131, 2300–2305. [Google Scholar] [CrossRef]
- Rodrigues, J.E.F.; Escanhoela, C.A., Jr.; Fragoso, B.; Sombrio, G.; Ferrer, M.M.; Álvarez-Galván, C.; Fernández-Díaz, M.; Souza, J.; Alonso, J.A. Experimental and theoretical investigations on the structural, electronic, and vibrational properties of Cs2AgSbCl6 double perovskite. Ind. Eng. Chem. Res. 2021, 60, 18918–18928. [Google Scholar] [CrossRef]
- Wei, F.; Deng, Z.; Sun, S.; Hartono, N.T.P.; Seng, H.L.; Buonassisi, T.; Bristowe, P.D.; Cheetham, A.K. Enhanced visible light absorption for lead-free double perovskite Cs2AgSbBr6. Chem. Commun. 2019, 55, 3721–3724. [Google Scholar] [CrossRef]
- Wang, C.-F.; Li, H.; Ji, Q.; Ma, C.; Liu, L.; Ye, H.-Y.; Cao, B.; Yuan, G.; Lu, H.-F.; Fu, D.-W.; et al. Discovery of a 2D Hybrid Silver/Antimony-Based Iodide Double Perovskite Photoferroelectric with Photostrictive Effect and Efficient X-Ray Response. Adv. Funct. Mater. 2022, 32, 2205918. [Google Scholar] [CrossRef]
- Yin, H.; Xian, Y.; Zhang, Y.; Chen, W.; Wen, X.; Rahman, N.U.; Long, Y.; Jia, B.; Fan, J.; Li, W. An Emerging Lead-Free Double-Perovskite Cs2AgFeCl6: In Single Crystal. Adv. Funct. Mater. 2020, 30, 2002225. [Google Scholar] [CrossRef]
- Volonakis, G.; Haghighirad, A.A.; Milot, R.L.; Sio, W.H.; Filip, M.R.; Wenger, B.; Giustino, F. Cs2InAgCl6: A new lead-free halide double perovskite with direct band gap. J. Phys. Chem. Lett. 2017, 8, 772–778. [Google Scholar] [CrossRef] [Green Version]
- Luo, J.; Li, S.; Wu, H.; Zhou, Y.; Li, Y.; Liu, J.; Li, J.; Li, K.; Yi, F.; Niu, G.; et al. Cs2AgInCl6 double perovskite single crystals: Parity forbidden transitions and their application for sensitive and fast UV photodetectors. Acs Photonics 2018, 5, 398–405. [Google Scholar] [CrossRef]
- Liao, Q.; Chen, J.; Zhou, L.; Wei, T.; Zhang, L.; Chen, D.; Huang, F.; Pang, Q.; Zhang, J.Z. Bandgap engineering of lead-free double perovskite Cs2AgInCl6 nanocrystals via Cu2+-doping. J. Phys. Chem. Lett. 2020, 11, 8392–8398. [Google Scholar] [CrossRef]
- Locardi, F.; Cirignano, M.; Baranov, D.; Dang, Z.; Prato, M.; Drago, F.; Ferretti, M.; Pinchetti, V.; Fanciulli, M.; Brovelli, S.; et al. Colloidal synthesis of double perovskite Cs2AgInCl6 and Mn-doped Cs2AgInCl6 nanocrystals. J. Am. Chem. Soc. 2018, 140, 12989–12995. [Google Scholar] [CrossRef]
- Jia, H.; Zhang, X.; Feng, Z.; Zhang, X.; Liu, J.; Xu, X.; Peng, F.; Liu, X.; Chen, J.; Qiu, J. Na+-doped lead-free double perovskite Cs2AgInCl6 for broadband solar-blind UV detection. Opt. Mater. 2022, 128, 112365. [Google Scholar] [CrossRef]
- Slavney, A.H.; Leppert, L.; Saldivar Valdes, A.; Bartesaghi, D.; Savenije, T.J.; Neaton, J.B.; Karunadasa, H.I. Small-band-gap halide double perovskites. Angew. Chem. 2018, 130, 12947–12952. [Google Scholar] [CrossRef]
- Ghasemi, M.; Hao, M.; Xiao, M.; Chen, P.; He, D.; Zhang, Y.; Wen, X. Lead-free metal-halide double perovskites: From optoelectronic properties to applications. Nanophotonics 2020, 10, 2181–2219. [Google Scholar] [CrossRef]
- Roy, M.; Borkar, H.; Alam, A.; Aslam, M. Spontaneous anion-exchange synthesis of optically active mixed-valence Cs2Au2I6 perovskites from layered CsAuCl4 perovskites. Chem. Commun. 2021, 57, 1478–1481. [Google Scholar]
- Kangsabanik, J.; Ghorui, S.; Aslam, M.; Alam, A. Optoelectronic Properties and Defect Physics of Lead-Free Photovoltaic Absorbers Cs2AuIAuIIIX6 (X= I, Br). Phys. Rev. Appl. 2020, 13, 014005. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, B.; Febriansyah, B.; Harikesh, P.C.; Koh, T.M.; Hadke, S.; Wong, L.H.; England, J.; Mhaisalkar, S.G.; Mathews, N. Direct Band Gap Mixed-Valence Organic–inorganic Gold Perovskite as Visible Light Absorbers. Chem. Mater. 2020, 32, 6318–6325. [Google Scholar] [CrossRef]
- Stoumpos, C.C.; Malliakas, C.D.; Kanatzidis, M.G. Semiconducting tin and lead iodide perovskites with organic cations: Phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg. Chem. 2013, 52, 9019–9038. [Google Scholar] [CrossRef] [PubMed]
- Leijtens, T.; Prasanna, R.; Gold-Parker, A.; Toney, M.F.; McGehee, M.D. Mechanism of tin oxidation and stabilization by lead substitution in tin halide perovskites. ACS Energy Lett. 2017, 2, 2159–2165. [Google Scholar] [CrossRef]
- Han, X.; Liang, J.; Yang, J.H.; Soni, K.; Fang, Q.; Wang, W.; Lou, J. Lead-free double perovskite Cs2SnX6: Facile solution synthesis and excellent stability. Small 2019, 15, 1901650. [Google Scholar] [CrossRef]
- Ullah, S.; Wang, J.; Yang, P.; Liu, L.; Khan, J.; Yang, S.E.; Chen, Y. Lead-Free Cs2SnI6 Perovskites for Optoelectronic Applications: Recent Developments and Perspectives. Sol. Rrl. 2021, 5, 2000830. [Google Scholar] [CrossRef]
- Krishnaiah, M.; Khan, M.M.I.; Kumar, A.; Jin, S.H. Impact of CsI concentration, relative humidity, and annealing temperature on lead-free Cs2SnI6 perovskites: Toward visible light photodetectors application. Mater. Lett. 2020, 269, 127675. [Google Scholar] [CrossRef]
- Huang, J.; Dong, C.; Mei, Y.; Lu, X.; Yue, G.; Gao, Y.; Tan, F. The precursor-compensation strategy boosts the photoresponse performance of air-stable, self-powered Cs2SnI6 photodetectors. J. Mater. Chem. C 2021, 9, 14217–14225. [Google Scholar] [CrossRef]
- Shen, J.; Zhu, W.; Lian, Z.; Lin, A.; Shi, S.-F.; Yang, K.; Lian, J. Metal Ion-Incorporated Lead-Free Perovskites toward Broadband Photodetectors. ACS Appl. Electron. Mater. 2023. [Google Scholar] [CrossRef]
- Ye, X.; Liu, A.; Gao, L.; Zhang, C.; Yan, L.; Wen, S.; Ma, T. Computational screening of Cs based vacancy-ordered double perovskites for solar cell and photocatalysis applications. EcoMat 2022, 5, e12295. [Google Scholar] [CrossRef]
- Nouri, Y.; Hartiti, B.; Batan, A.; Fadili, S.; Ziti, A.; Labrim, H.; Thévenin, P. The structural, mechanical, thermal, electronic and optical properties of halide perovskites Cs2TiX6 (X= Cl, Br, I): First-principles investigations. Solid State Commun. 2023, 363, 115087. [Google Scholar] [CrossRef]
- Chen, M.; Ju, M.-G.; Carl, A.D.; Zong, Y.; Grimm, R.L.; Gu, J.; Padture, N.P. Cesium titanium (IV) bromide thin films based stable lead-free perovskite solar cells. Joule 2018, 2, 558–570. [Google Scholar] [CrossRef] [Green Version]
- Ju, D.; Zheng, X.; Yin, J.; Qiu, Z.; Türedi, B.; Liu, X.; Tao, X. Tellurium-based double perovskites A2TeX6 with tunable band gap and long carrier diffusion length for optoelectronic applications. ACS Energy Lett. 2018, 4, 228–234. [Google Scholar] [CrossRef]
- Yoshihiro, F.; Hideko, K.; Ryuichi, I. Molecular motion in methylammonium hexahalotellurates (IV) as studied by means of the pulsed nuclear magnetic resonance. Bull. Chem. Soc. Jpn. 1981, 54, 103–108. [Google Scholar]
- Guo, J.; Xu, Y.; Yang, W.; Xiao, B.; Sun, Q.; Zhang, X.; Jie, W. High-stability flexible X-ray detectors based on lead-free halide perovskite Cs2TeI6 films. ACS Appl. Mater. Interfaces 2021, 13, 23928–23935. [Google Scholar] [CrossRef] [PubMed]
- Hoat, P.D.; Vo, V.K.; Hung, P.T.; Oh, S.-U.; Kim, D.; Lee, J.-H.; Heo, Y.-W. Fabrication of Rb2TeI6 thin films for stable, lead-free perovskite photodetector via dry-processed approach. J. Alloy. Compd. 2023, 931, 167494. [Google Scholar] [CrossRef]
- Zhao, P.; Su, J.; Guo, Y.; Wang, L.; Lin, Z.; Zhang, J.; Chang, J. A new all-inorganic vacancy-ordered double perovskite Cs2CrI6 for high-performance photovoltaic cells and alpha-particle detection in space environment. Mater. Today Phys. 2021, 20, 100446. [Google Scholar] [CrossRef]
- Dong, Q.; Fang, Y.; Shao, Y.; Mulligan, P.; Qiu, J.; Cao, L.; Huang, J. Electron-hole diffusion lengths> 175 μm in solution-grown CH3NH3PbI3 single crystals. Science 2015, 347, 967–970. [Google Scholar] [CrossRef] [Green Version]
- Ye, F.; Lin, H.; Wu, H.; Zhu, L.; Huang, Z.; Ouyang, D.; Choy, W.C.H. High-quality cuboid CH3NH3PbI3 single crystals for high performance X-ray and photon detectors. Adv. Funct. Mater. 2019, 29, 1806984. [Google Scholar] [CrossRef]
- Hooijer, R.; Weis, A.; Biewald, A.; Sirtl, M.T.; Malburg, J.; Holfeuer, R.; Bein, T. Silver-Bismuth Based 2D Double Perovskites (4FPEA)4AgBiX8 (X= Cl, Br, I): Highly Oriented Thin Films with Large Domain Sizes and Ultrafast Charge-Carrier Localization. Adv. Opt. Mater. 2022, 10, 2200354. [Google Scholar]
- Wu, C.; Du, B.; Luo, W.; Liu, Y.; Li, T.; Wang, D.; Xiao, L. Highly efficient and stable self-powered ultraviolet and deep-blue photodetector based on Cs2AgBiBr6/SnO2 heterojunction. Adv. Opt. Mater. 2018, 6, 1800811. [Google Scholar] [CrossRef]
- Yang, J.; Bao, C.; Ning, W.; Wu, B.; Ji, F.; Yan, Z.; Gao, F. Stable, high-sensitivity and fast-response photodetectors based on lead-free Cs2AgBiBr6 double perovskite films. Adv. Opt. Mater. 2019, 7, 1801732. [Google Scholar] [CrossRef]
- Li, Y.; Shi, Z.; Liang, W.; Ma, J.; Chen, X.; Wu, D.; Fang, X. Recent advances toward environment-friendly photodetectors based on lead-free metal halide perovskites and perovskite derivatives. Mater. Horiz. 2021, 8, 1367–1389. [Google Scholar] [CrossRef]
- Shao, D.; Zhu, W.; Xin, G.; Lian, J.; Sawyer, S. Inorganic vacancy-ordered perovskite Cs2SnCl6: Bi/GaN heterojunction photodiode for narrowband, visible-blind UV detection. Appl. Phys. Lett. 2019, 115, 121106. [Google Scholar] [CrossRef]
- Li, Y.; Shi, Z.; Lei, L.; Li, S.; Yang, D.; Wu, D.; Shan, C. Ultrastable lead-free double perovskite photodetectors with imaging capability. Adv. Mater. Interfaces 2019, 6, 1900188. [Google Scholar]
- Lai, Z.; Wang, F.; Meng, Y.; Bu, X.; Kang, X.; Quan, Q.; Ho, J.C. Solution-processed lead-free double perovskite microplatelets with enhanced photoresponse and thermal stability. Sci. China Mater. 2022, 65, 1313–1319. [Google Scholar] [CrossRef]
- Sakai, N.; Haghighirad, A.A.; Filip, M.R.; Nayak, P.K.; Nayak, S.; Ramadan, A.; Snaith, H.J. Solution-processed cesium hexabromopalladate (IV), Cs2PdBr6, for optoelectronic applications. J. Am. Chem. Soc. 2017, 139, 6030–6033. [Google Scholar] [CrossRef]
- Shuang, Z.; Zhou, H.; Wu, D.; Zhang, X.; Xiao, B.; Ma, G.; Wang, H. Low-temperature process for self-powered lead-free Cs2AgBiBr6 perovskite photodetector with high detectivity. Chem. Eng. J. 2022, 433, 134544. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, X.; Sun, B.; Ye, H.; He, C.; Kong, L.; Liao, G. Ultrafast, self-powered, and charge-transport-layer-free ultraviolet photodetectors based on sequentially vacuum-evaporated lead-free Cs2AgBiBr6 thin films. ACS Appl. Mater. Interfaces 2021, 13, 35949–35960. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-W.; Bae, S.-H.; Hsieh, Y.-T.; De Marco, N.; Wang, M.; Sun, P.; Yang, Y. A bifunctional lewis base additive for microscopic homogeneity in perovskite solar cells. Chem 2017, 3, 290–302. [Google Scholar]
- Ji, F.; Boschloo, G.; Wang, F.; Gao, F. Challenges and Progress in Lead-Free Halide Double Perovskite Solar Cells. Sol. RRL 2023, 7, 2201112. [Google Scholar] [CrossRef]
- Lei, H.; Hardy, D.; Gao, F. Lead-free double perovskite Cs2AgBiBr6: Fundamentals, applications, and perspectives. Adv. Funct. Mater. 2021, 31, 2105898. [Google Scholar] [CrossRef]
- Fang, Y.; Zhang, L.; Wu, L.; Yan, J.; Lin, Y.; Wang, K.; Zou, B. Pressure-induced emission (PIE) and phase transition of a two-dimensional halide double perovskite (BA)4AgBiBr8 (BA=CH3(CH2)3NH3+). Angew. Chem. Int. Ed. 2019, 58, 15249–15253. [Google Scholar] [CrossRef]
- Yao, Y.; Kou, B.; Peng, Y.; Wu, Z.; Li, L.; Wang, S.; Luo, J. (C3H9NI)4AgBiI8: A direct-bandgap layered double perovskite based on a short-chain spacer cation for light absorption. Chem. Commun. 2020, 56, 3206–3209. [Google Scholar]
- Dong, C.; Guan, X.; Wang, Z.; Zhao, H.; Kuai, Y.; Gao, S.; Lu, P. The effects of cation and halide anion on the stability, electronic and optical properties of double perovskite Cs2NaMX6 (M = In, Tl, Sb, Bi; X = Cl, Br, I). Comput. Mater. Sci. 2023, 220, 112058. [Google Scholar] [CrossRef]
- Luo, J.; Wang, X.; Li, S.; Liu, J.; Guo, Y.; Niu, G.; Tang, J. Efficient and stable emission of warm-white light from lead-free halide double perovskites. Nature 2018, 563, 541–545. [Google Scholar] [CrossRef] [PubMed]
- Euvrard, J.; Wang, X.; Li, T.; Yan, Y.; Mitzi, D.B. Is Cs2TiBr6 a promising Pb-free perovskite for solar energy applications? J. Mater. Chem. A 2020, 8, 4049–4054. [Google Scholar] [CrossRef]
- Dai, Z.Y.; Chen, C.; Wang, G.S.; Lyu, Y.N.; Ma, N. Bandgap-tuned barium bismuth niobate double perovskite for self-powered photodetectors with a full-spectrum response. J. Mater. Chem. C 2023, 11, 574–582. [Google Scholar] [CrossRef]
- Liu, X.; Li, S.; Li, Z.; Zhang, Y.; Yang, W.; Li, Z.; Fang, X. Boosted Responsivity and Tunable Spectral Response in B-Site Substituted 2D Ca2Nb3-xTaxO10 Perovskite Photodetectors. Adv. Funct. Mater. 2021, 31, 2101480. [Google Scholar] [CrossRef]
- Zhong, F.; Nie, G.Z.; Lang, Y.; Zhang, Z.; Li, H.; Gan, L.; Zhao, Y.Q. First-principles study on photoelectric properties of all-inorganic two-dimensional double perovskite Cs3AgBiBr7. Phys. Chem. Chem. Phys. 2023, 25, 3175–3181. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Hong, M.; Luo, J. Halide double perovskite ferroelectrics. Angew. Chem. 2020, 132, 9391–9394. [Google Scholar] [CrossRef]
- Keshavarz, M.; Debroye, E.; Ottesen, M.; Martin, C.; Zhang, H.; Fron, E.; Hofkens, J. Tuning the Structural and Optoelectronic Properties of Cs2AgBiBr6 Double-Perovskite Single Crystals through Alkali-Metal Substitution. Adv. Mater. 2020, 32, 2001878. [Google Scholar] [CrossRef]
- Lin, Q.; Wang, Z.; Young, M.; Patel, J.B.; Milot, R.L.; Martinez Maestro, L.; Herz, L.M. Near-Infrared and Short-Wavelength Infrared Photodiodes Based on Dye–Perovskite Composites. Adv. Funct. Mater. 2017, 27, 1702485. [Google Scholar] [CrossRef] [Green Version]
- Xu, W.; Guo, Y.; Zhang, X.; Zheng, L.; Zhu, T.; Zhao, D.; Gong, X. Room-temperature-operated ultrasensitive broadband photodetectors by perovskite incorporated with conjugated polymer and single-wall carbon nanotubes. Adv. Funct. Mater. 2018, 28, 1705541. [Google Scholar] [CrossRef]
- Wu, G.; Fu, R.; Chen, J.; Yang, W.; Ren, J.; Guo, X.; Chen, H. Perovskite/Organic Bulk-Heterojunction Integrated Ultrasensitive Broadband Photodetectors with High Near-Infrared External Quantum Efficiency over 70%. Small 2018, 14, 1802349. [Google Scholar] [CrossRef] [PubMed]
- Shen, L.; Lin, Y.; Bao, C.; Bai, Y.; Deng, Y.; Wang, M.; Huang, J. Integration of perovskite and polymer photoactive layers to produce ultrafast response, ultraviolet-to-near-infrared, sensitive photodetectors. Mater. Horiz. 2017, 4, 242–248. [Google Scholar] [CrossRef]
- Mak, C.H.; Huang, X.; Liu, R.; Tang, Y.; Han, X.; Ji, L.; Hsu, H.-Y. Recent progress in surface modification and interfacial engineering for high-performance perovskite light-emitting diodes. Nano Energy 2020, 73, 104752. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, D.; Liu, J.; Cai, H. Review of interface passivation of perovskite layer. Nanomaterials 2021, 11, 775. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.Y.; Wang, Y.; Huang, L.; Li, G.; Qiu, X.; Zhang, X.; Sun, W. High-Efficiency and Stable Perovskite Photodetectors with an F4-TCNQ-Modified Interface of NiOx and Perovskite Layers. J. Phys. Chem. Lett. 2022, 13, 3904–3914. [Google Scholar] [CrossRef] [PubMed]
- Gkini, K.; Orfanoudakis, S.; Tsipas, P.; Skoulikidou, M.-C.; Dimoulas, A.; Falaras, P.; Stergiopoulos, T. ZrCl4 for energy level alignment at the perovskite/TiO2 interface. Electrochim. Acta 2022, 433, 141214. [Google Scholar] [CrossRef]
- Li, Y.; Xie, H.; Lim, E.L.; Hagfeldt, A.; Bi, D. Recent progress of critical interface engineering for highly efficient and stable perovskite solar cells. Adv. Energy Mater. 2022, 12, 2102730. [Google Scholar] [CrossRef]
Device Configuration | Spectral Range (nm) | R (A W−1) | D* (Jones) | Response Time (ms) | On/Off Ratio | Ref. |
---|---|---|---|---|---|---|
Au/Cs2AgBiBr6/Au | 300–800 | 7.01 | 5.66 × 1011 | 0.956/0.955 | 2.2 × 104 | [12] |
ALD-NiOx modified FTO/Cs2AgBiBr6/TiO2/Au | 350–550 | - | 1.2 × 1013 | - | - | [13] |
FTO/TiO2/Cs2AgBiBr6/CuSCN/Au | 300–600 | 0.34 | 1.03 × 1013 | 28.75/32.95 | - | [17] |
FTO/SnO2/ZnO/Cs2AgBiBr6/Au | - | 0.608 | 2.97 × 1010 | 124/61 | - | [18] |
FTO/Cs2AgBiBr6/Au | 350–500 | 9.8 | - | 1.2 × 10−3/0.5 × 10−3 | - | [25] |
Au/Cs2AgInCl6/Au | 340–400 | 0.97 | ~1012 | 0.8/1.0 | ~500 | [50] |
FTO/Cs2SnI6/FTO | - | 0.006 | 2 × 109 | - | - | [61] |
FTO/c-TiO2/Cs2SnI6/Spiro OMeTAD/Au | 300–1000 | 0.001 | 6.03 × 1010 | 590/190 | 151 | [64] |
FTO/TiO2/Cs2SnI6-Ni3+/TiO2/FTO | 350–950 | 160 | 4.52 × 1012 | - | - | [65] |
FTO/TiO2/Cs2SnI6-Zn2+/TiO2/FTO | 350–900 | 710 | 1.56 × 1013 | 190/530 | - | [65] |
ITO/Rb2TeI6/ITO | 450 | 0.0014 | 1010 | 16.4/19.2 | - | [72] |
Au/(4FPEA)4AgBiI8/Au | 400 | 0.002 | 5 × 108 | - | - | [76] |
Au/(4FPEA)4AgBiI8/Au | 400 | 0.01 | 6 × 109 | - | - | [76] |
ITO/Cs2AgBiBr6/SnO2/Au | 350 | 0.11 | 2.1 × 1010 | 2 | - | [77] |
SnO2/Cs2AgBiBr6/TFB/Au | 300–550 | 0.14 | 3.3 × 1012 | 1.7 × 10−5 | - | [78] |
FTO/Cs2SnI6/FTO | 500–900 | - | - | 100/100 | - | [79] |
MWCNT/Cs2SnCl6:Bi/GaN | 350–400 | 0.208 | 1.2 × 1012 | 7.5 × 10−4/9.1 × 10−4 | - | [80] |
In/GaN/Cs2AgBiBr6/Ag | 200–550 | 1.46 | 9.4 × 1012 | 3.463/8.442 | - | [81] |
Au/Cs2AgBiBr6 microplatelets/Au | 450 | 0.245 | 1.3 × 1011 | 145 × 10−3/136 × 10−3 | 2.8 × 103 | [82] |
Au/MA2AgBiBr6 microplatelets/Au | 450 | 0.058 | 2.9 × 1010 | - | 281 | [82] |
ITO/Cs2PdBr6/Ag | - | - | - | - | - | [83] |
Flexible ITO/SnO2/Cs2AgBiBr6/Carbon | - | 0.031 | 8.04 × 1011 | - | 0.5 × 104 | [84] |
ITO/Cs2AgBiBr6/Ag | 375 | - | - | 6.13 × 10−3/28.02 × 10−3 | 6.6 × 103 | [85] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Shi, J.; Chen, J.; Tan, Z.; Lei, H. Lead-Free Halide Double Perovskite for High-Performance Photodetectors: Progress and Perspective. Materials 2023, 16, 4490. https://doi.org/10.3390/ma16124490
Li X, Shi J, Chen J, Tan Z, Lei H. Lead-Free Halide Double Perovskite for High-Performance Photodetectors: Progress and Perspective. Materials. 2023; 16(12):4490. https://doi.org/10.3390/ma16124490
Chicago/Turabian StyleLi, Xiaoyan, Junzhe Shi, Jianjun Chen, Zuojun Tan, and Hongwei Lei. 2023. "Lead-Free Halide Double Perovskite for High-Performance Photodetectors: Progress and Perspective" Materials 16, no. 12: 4490. https://doi.org/10.3390/ma16124490
APA StyleLi, X., Shi, J., Chen, J., Tan, Z., & Lei, H. (2023). Lead-Free Halide Double Perovskite for High-Performance Photodetectors: Progress and Perspective. Materials, 16(12), 4490. https://doi.org/10.3390/ma16124490