Interpretable Predictive Modelling of Basalt Fiber Reinforced Concrete Splitting Tensile Strength Using Ensemble Machine Learning Methods and SHAP Approach
Abstract
:1. Introduction
2. Methods
2.1. Statistical Properties of the Dataset
2.2. Equations for the Prediction of the Splitting Tensile Strength
2.3. Ensemble Learning Methods
3. Results
3.1. Predictive Equations
3.2. Ensemble Learning Techniques
3.3. SHAP Analysis
3.4. Individual Conditional Expectation (ICE) Plots
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Doğangün, A. Betonarme Yapıların Hesap ve Tasarımı; Birsen Yayınevi: İstanbul, Turkey, 2012; 844p. [Google Scholar]
- Meyer, C. Concrete as a green building material. In Proceedings of the Construction Materials Mindess Symposium, Vancouver, BC, Canada, 22–24 August 2005; Volume 10. [Google Scholar]
- Arazsu, U. Polypropylene Fiber Concrete Fresh and Hardened Concrete Properties. Master’s Thesis, Fırat University, Elazığ, Turkey, 2012. [Google Scholar]
- Neville, A.M. Properties of Concrete; Longman: London, UK, 1995; Volume 4, p. 1995. [Google Scholar]
- Sekban, İ. Investigation of Effect of Steel Fiber Contribution on the Behaviors of Ordinary and High Performance Reinforced Concrete Columns under Effect of Cyclic Loads. Master’s Thesis, Karadeniz Technical University, Trabzon, Turkey, 2007. [Google Scholar]
- Abbas, U. Materials Development of Steel-and Basalt Fiber-Reinforced Concretes. Master Thesis, Norwegian University of Science and Technology, Trondheim, Norway, 2013; 162p. [Google Scholar]
- Mindess, S.; Young, J.F.; Darwin, D. Concrete, 2nd ed.; Prentice-Hall: Upper Saddle River, NJ, USA, 2003. [Google Scholar]
- Zhang, C.; Zhu, Z.; Wang, S.; Zhang, J. Macro-micro mechanical properties and reinforcement mechanism of alkali-resistant glass fiber-reinforced concrete under alkaline environments. Constr. Build. Mater. 2023, 368, 130365. [Google Scholar] [CrossRef]
- Wang, Y.; Jin, H.; Demartino, C.; Chen, W.; Yu, Y. Mechanical properties of SFRC: Database construction and model prediction. Case Stud. Constr. Mater. 2022, 17, e01484. [Google Scholar] [CrossRef]
- Muthukumarana, T.V.; Arachchi, M.A.V.H.M.; Somarathna, H.M.C.C.; Raman, S.N. A review on the variation of mechanical properties of carbon fibre-reinforced concrete. Constr. Build. Mater. 2023, 366, 130173. [Google Scholar] [CrossRef]
- Zhou, A.; Qiu, Q.; Chow, C.L.; Lau, D. Interfacial performance of aramid, basalt and carbon fiber reinforced polymer bonded concrete exposed to high temperature. Compos. Part A Appl. Sci. Manuf. 2020, 131, 105802. [Google Scholar] [CrossRef]
- Hasan, R.; Sobuz, M.H.R.; Akid, A.S.M.; Awall, M.R.; Houda, M.; Saha, A.; Meraz, M.M.; Islam, M.S.; Sutan, N.M. Eco-friendly self-consolidating concrete production with reinforcing jute fiber. J. Build. Eng. 2023, 63, 105519. [Google Scholar] [CrossRef]
- Huang, J.; Qiu, S.; Rodrigue, D. Parameters estimation and fatigue life prediction of sisal fibre reinforced foam concrete. J. Mater. Res. Technol. 2022, 20, 381–396. [Google Scholar] [CrossRef]
- Quan, W.; Huang, W.; An, Y.; Miao, X.; Chen, Z. The effect of natural bamboo fiber and basalt fiber on the properties of autoclaved aerated concrete. Constr. Build. Mater. 2023, 377, 131153. [Google Scholar] [CrossRef]
- Cucuzza, R.; Aloisio, A.; Accornero, F.; Marinelli, A.; Bassoli, E.; Marano, G.C. Size-scale effects and modelling issues of fibre-reinforced concrete beams. Constr. Build. Mater. 2023, 392, 131727. [Google Scholar] [CrossRef]
- Shah, K.R.; Kulkarnı, S.M. The Performance of Basalt Fibre in High Strength Concrete. J. Inf. Knowl. Res. Civ. Eng. 2013, 2, 117–119. [Google Scholar]
- Basalt-Based Fiber Technology. Available online: http://www.sudaglass.com/ (accessed on 26 March 2023).
- Memon, I.A.; Jhatial, A.A.; Sohu, S.; Lakhiar, M.T.; Hussain, Z. Influence of fibre length on the behaviour of poly-propylene fibre reinforced cement concrete. Civ. Eng. J. 2018, 4, 2124–2131. [Google Scholar] [CrossRef]
- Charan, S.S.; Murthy Gupta, C.L.K. Comparative study on mechanical properties of basalt fiber reinforced concrete with partial replacement of cement with GGBS. Int. J. Eng. Res. Technol. 2016, 5, 62–67. [Google Scholar]
- Ndepete, C.P.; Sert, S. The Study of Mechanical Behavior of Saturated Silty Soil Reinforced by Basalt Fibers. In Proceedings of the ICOCEE–CAPPADOCIA 2017, Nevsehir, Turkey, 8–10 May 2017. [Google Scholar]
- Kabay, N. Abrasion resistance and fracture energy of concretes with basalt fiber. Constr. Build. Mater. 2014, 50, 95–101. [Google Scholar] [CrossRef]
- Jin, S.J.; Li, Z.L.; Zhang, J.; Wang, Y.L. Experimental study on the performance of the basalt fiber concrete resistance to freezing and thawing. In Applied Mechanics and Materials; Trans Tech Publications Ltd.: Zurich, Switzerland, 2014; Volume 584, pp. 1304–1308. [Google Scholar]
- Tumadhir, M. Thermal and mechanical properties of basalt fibre reinforced concrete. Int. J. Civ. Environ. Eng. 2013, 7, 334–337. [Google Scholar]
- Dong, J.F.; Wang, Q.Y.; Guan, Z.W. Material properties of basalt fibre reinforced concrete made with recycled earthquake waste. Constr. Build. Mater. 2017, 130, 241–251. [Google Scholar] [CrossRef]
- Zhou, H.; Jia, B.; Huang, H.; Mou, Y. Experimental study on basic mechanical properties of basalt fiber reinforced concrete. Materials 2020, 13, 1362. [Google Scholar] [CrossRef] [Green Version]
- Jiang, C.; Fan, K.; Wu, F.; Chen, D. Experimental study on the mechanical properties and microstructure of chopped basalt fibre reinforced concrete. Mater. Des. 2014, 58, 187–193. [Google Scholar] [CrossRef]
- Ayub, T.; Shafiq, N.; Nuruddin, M.F. Mechanical properties of high-performance concrete reinforced with basalt fibers. Procedia Eng. 2014, 77, 131–139. [Google Scholar] [CrossRef] [Green Version]
- Shen, D.; Li, M.; Kang, J.; Liu, C.; Li, C. Experimental studies on the seismic behavior of reinforced concrete beam-column joints strengthened with basalt fiber-reinforced polymer sheets. Constr. Build. Mater. 2021, 287, 122901. [Google Scholar] [CrossRef]
- Bajaj, S. Effect of Corrosion on Physical and Mechanical Properties of Reinforced Concrete. Doctoral Dissertation, University of Akron, Akron, OH, USA, 2012. [Google Scholar]
- Latif, S.D.; Ahmed, A.N.; Sherif, M.; Sefelnasr, A.; El-Shafie, A. Reservoir water balance simulation model utilizing machine learning algorithm. Alex. Eng. J. 2021, 60, 1365–1378. [Google Scholar] [CrossRef]
- Nguyen, P.T. Application machine learning in construction management. TEM J. 2021, 10, 1385–1389. [Google Scholar] [CrossRef]
- Tran, V.Q. Predicting and Investigating the Permeability Coefficient of Soil with Aided Single Machine Learning Algorithm. Complexity 2022, 2022, 8089428. [Google Scholar] [CrossRef]
- Zhang, Y.; Burton, H.V.; Sun, H.; Shokrabadi, M. A machine learning framework for assessing post-earthquake structural safety. Struct. Saf. 2018, 72, 1–16. [Google Scholar] [CrossRef]
- Xu, J.; Wang, Y.; Ren, R.; Wu, Z.; Ozbakkaloglu, T. Performance evaluation of recycled aggregate concrete-filled steel tubes under different loading conditions: Database analysis and modelling. J. Build. Eng. 2020, 30, 101308. [Google Scholar] [CrossRef]
- Rahman, J.; Arafin, P.; Billah, A.M. Machine learning models for predicting concrete beams shear strength externally bonded with FRP. Structures 2023, 53, 514–536. [Google Scholar] [CrossRef]
- Lai, D.; Demartino, C.; Xiao, Y. Interpretable machine-learning models for maximum displacements of RC beams under impact loading predictions. Eng. Struct. 2023, 281, 115723. [Google Scholar] [CrossRef]
- Momeni, E.; Dowlatshahi, M.B.; Omidinasab, F.; Maizir, H.; Armaghani, D.J. Gaussian process regression technique to estimate the pile bearing capacity. Arab. J. Sci. Eng. 2020, 45, 8255–8267. [Google Scholar] [CrossRef]
- Shah, H.A.; Nehdi, M.L.; Khan, M.I.; Akmal, U.; Alabduljabbar, H.; Mohamed, A.; Sheraz, M. Predicting Compressive and Splitting Tensile Strengths of Silica Fume Concrete Using M5P Model Tree Algorithm. Materials 2022, 15, 5436. [Google Scholar] [CrossRef]
- Cakiroglu, C.; Islam, K.; Bekdaş, G.; Isikdag, U.; Mangalathu, S. Explainable machine learning models for predicting the axial compression capacity of concrete filled steel tubular columns. Constr. Build. Mater. 2022, 356, 129227. [Google Scholar] [CrossRef]
- Aydın, Y.; Işıkdağ, Ü.; Bekdaş, G.; Nigdeli, S.M.; Geem, Z.W. Use of Machine Learning Techniques in Soil Classification. Sustainability 2023, 15, 2374. [Google Scholar] [CrossRef]
- Aloisio, A.; Contento, A.; Alaggio, R.; Quaranta, G. Physics-based models, surrogate models and experimental assessment of the vehicle–bridge interaction in braking conditions. Mech. Syst. Signal Process. 2023, 194, 110276. [Google Scholar] [CrossRef]
- Baljon, M.; Sharma, S.K. Rainfall Prediction Rate in Saudi Arabia Using Improved Machine Learning Techniques. Water 2023, 15, 826. [Google Scholar] [CrossRef]
- Kang, M.C.; Yoo, D.Y.; Gupta, R. Machine learning-based prediction for compressive and flexural strengths of steel fiber-reinforced concrete. Constr. Build. Mater. 2021, 266, 121117. [Google Scholar] [CrossRef]
- Rahman, J.; Ahmed, K.S.; Khan, N.I.; Islam, K.; Mangalathu, S. Data-driven shear strength prediction of steel fiber reinforced concrete beams using machine learning approach. Eng. Struct. 2021, 233, 111743. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, Q.; Kamiński, P.; Deifalla, A.F.; Sufian, M.; Dyczko, A.; Kahla, N.B.; Atig, M. Compressive strength of steel fiber-reinforced concrete employing supervised machine learning techniques. Materials 2022, 15, 4209. [Google Scholar] [CrossRef] [PubMed]
- Yan, F.; Lin, Z.; Wang, X.; Azarmi, F.; Sobolev, K. Evaluation and prediction of bond strength of GFRP-bar reinforced concrete using artificial neural network optimized with genetic algorithm. Compos. Struct. 2017, 161, 441–452. [Google Scholar] [CrossRef]
- Qi, Z.; Zhang, N.; Liu, Y.; Chen, W. Prediction of mechanical properties of carbon fiber based on cross-scale FEM and machine learning. Compos. Struct. 2019, 212, 199–206. [Google Scholar] [CrossRef]
- Upadhya, A.; Thakur, M.S.; Sihag, P.; Kumar, R.; Kumar, S.; Afeeza, A.; Afzal, A.; Saleel, C.A. Modelling and prediction of binder content using latest intelligent machine learning algorithms in carbon fiber reinforced asphalt concrete. Alex. Eng. J. 2023, 65, 131–149. [Google Scholar] [CrossRef]
- Uddin, M.N.; Mahamoudou, F.; Deng, B.Y.; Musa, M.M.E.; Sob, L.W.T. Prediction of rheological parameters of 3D printed polypropylene fiber-reinforced concrete (3DP-PPRC) by machine learning. Mater. Today Proc. 2023. [Google Scholar] [CrossRef]
- Hasanzadeh, A.; Vatin, N.I.; Hematibahar, M.; Kharun, M.; Shooshpasha, I. Prediction of the Mechanical Properties of Basalt Fiber Reinforced High-Performance Concrete Using Machine Learning Techniques. Materials 2022, 15, 7165. [Google Scholar] [CrossRef]
- Li, H.; Lin, J.; Lei, X.; Wei, T. Compressive strength prediction of basalt fiber reinforced concrete via random forest algorithm. Mater. Today Commun. 2022, 30, 103117. [Google Scholar] [CrossRef]
- Najm, O.F.; Mohamed, O.A.; Alzard, M.H. The efficiency of statistical and artificial neural network techniques on evaluating and predicting compressive strength of sustainable SCC with basalt fibers. Mater. Today Proc. 2023. [Google Scholar] [CrossRef]
- Kuang, R.; Du, B.; Lund, P.; Wang, J.; Liu, Y. Machine Learning Methods to Assess the Thermal Performance of a Novel Basalt-Fiber-Bundle Thermal Flow-Reversal Reactor. SSRN 2023, 4376198. [Google Scholar] [CrossRef]
- Li, H.; Lin, J.; Zhao, D.; Shi, G.; Wu, H.; Wei, T.; Li, D.; Zhang, J. A BFRC compressive strength prediction method via kernel extreme learning machine-genetic algorithm. Constr. Build. Mater. 2022, 344, 128076. [Google Scholar] [CrossRef]
- Ndepete, C.P.; Sert, S.; Beycioğlu, A.; Katanalp, B.Y.; Eren, E.; Bağrıaçık, B.; Topolinski, S. Exploring the effect of basalt fibers on maximum deviator stress and failure deformation of silty soils using ANN, SVM and FL supported by experimental data. Adv. Eng. Softw. 2022, 172, 103211. [Google Scholar] [CrossRef]
- Najjar, I.M.R.; Sadoun, A.M.; Abd Elaziz, M.; Abdallah, A.W.; Fathy, A.; Elsheikh, A.H. Predicting kerf quality characteristics in laser cutting of basalt fibers reinforced polymer composites using neural network and chimp optimization. Alex. Eng. J. 2022, 61, 11005–11018. [Google Scholar] [CrossRef]
- Almohammed, F.; Soni, J. Using Random Forest and Random Tree model to Predict the splitting tensile strength for the concrete with basalt fiber reinforced concrete. In Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2023; Volume 1110, p. 012072. [Google Scholar]
- Gerges, N.N.; Issa, C.A.; Fawaz, S. Effect of construction joints on the splitting tensile strength of concrete. Case Stud. Constr. Mater. 2015, 3, 83–91. [Google Scholar] [CrossRef] [Green Version]
- Kirthika, S.K.; Singh, S.K. Experimental investigations on basalt fibre-reinforced concrete. J. Inst. Eng. India Ser. A 2018, 99, 661–670. [Google Scholar] [CrossRef]
- Katkhuda, H.; Shatarat, N. Improving the mechanical properties of recycled concrete aggregate using chopped basalt fibers and acid treatment. Constr. Build. Mater. 2017, 140, 328–335. [Google Scholar] [CrossRef]
- Arslan, M.E. Bazalt liflerin geleneksel betonların mekanik özelikleri ve kırılma enerjilerine etkilerinin incelenmesi. Pamukkale Üniversitesi Mühendislik Bilim. Derg. 2017, 23, 203–208. Available online: https://dergipark.org.tr/tr/pub/pajes/issue/30194/323196 (accessed on 29 March 2023).
- Sun, X.; Gao, Z.; Cao, P.; Zhou, C. Mechanical properties tests and multiscale numerical simulations for basalt fiber reinforced concrete. Constr. Build. Mater. 2019, 202, 58–72. [Google Scholar] [CrossRef]
- Niu, D.; Su, L.; Luo, Y.; Huang, D.; Luo, D. Experimental study on mechanical properties and durability of basalt fiber reinforced coral aggregate concrete. Constr. Build. Mater. 2020, 237, 117628. [Google Scholar] [CrossRef]
- Jun, W.; Ye, Z. Experimental research on mechanical and working properties of non-dipping chopped basalt fiber reinforced concrete. In Proceedings of the 2010 3rd International Conference on Information Management, Innovation Management and Industrial Engineering, Kunming, China, 26–28 November 2010; Volume 4, pp. 635–637. [Google Scholar] [CrossRef]
- Çelik, Z.; Bingöl, A.F. Effect of basalt, polypropylene and macro-synthetic fibres on workability and mechanical properties of self-compacting concrete. Chall. J. Struct. Mech. 2019, 5, 35–41. [Google Scholar] [CrossRef]
- Jalasutram, S.; Sahoo, D.R.; Matsagar, V. Experimental investigation of the mechanical properties of basalt fiber-reinforced concrete. Struct. Concr. 2017, 18, 292–302. [Google Scholar] [CrossRef]
- Kizilkanat, A.B.; Kabay, N.; Akyüncü, V.; Chowdhury, S.; Akça, A.H. Mechanical properties and fracture behavior of basalt and glass fiber reinforced concrete: An experimental study. Constr. Build. Mater. 2015, 100, 218–224. [Google Scholar] [CrossRef]
- Günaydin, O.; Güçlüer, K. Bazalt lifi katkılı betonların mekanik özelliklerinin araştırılması. El-Cezeri 2018, 5, 416–424. [Google Scholar] [CrossRef]
- Li, M.; Gong, F.; Wu, Z. Study on mechanical properties of alkali-resistant basalt fiber reinforced concrete. Constr. Build. Mater. 2020, 245, 118424. [Google Scholar] [CrossRef]
- Erdoğan, G. Basalt Fiber Concrete Investigation of Mechanical Properties and Permeability. M.Sc. Thesis, Yıldız Technical University, Istanbul, Turkey, 2014. [Google Scholar]
- Ateşli, C. Investigation of Mechanical Properties of Basalt Fiber Added Cement Mortars. M.Sc. Thesis, Manisa Celal Bayar University, Manisa, Turkey, 2019. [Google Scholar]
- Gültekin, A. The Effect of Variable Fiber Parameters on Workability and Fracture Energy of Self-Compacting Concretes Containing Basalt and Glass Fiber. Master’s Thesis, Düzce University, Düzce, Turkey, 2017. [Google Scholar]
- Cao, H. Experimental investigation on the static and impact behaviors of basalt fiber-reinforced concrete. Open Civ. Eng. J. 2017, 11, 14–21. [Google Scholar] [CrossRef] [Green Version]
- Lipatov, Y.V.; Gutnikov, S.I.; Manylov, M.S.; Zhukovskaya, E.S.; Lazoryak, B.I. High alkali-resistant basalt fiber for reinforcing concrete. Mater. Des. 2015, 73, 60–66. [Google Scholar] [CrossRef]
- Wei, C.; Sun, X.; Yu, Z.; Zhang, P. Experimental study and mechanism analysis on basic mechanical properties of basalt fiber reinforced concrete. Struct. Concr. 2022. [Google Scholar] [CrossRef]
- Nguyen, Q.H.; Ly, H.B.; Ho, L.S.; Al-Ansari, N.; Le, H.V.; Tran, V.Q.; Prakash, I.; Pham, B.T. Influence of data splitting on performance of machine learning models in prediction of shear strength of soil. Math. Probl. Eng. 2021, 2021, 1–15. [Google Scholar] [CrossRef]
- Siddiqui, S.; Sawant, R.M. Performance of BFRC in Compressive and Split Tensile Strength. J. Constr. Build. Mater. Eng. 2020, 6, 1–7. [Google Scholar] [CrossRef]
- Cakiroglu, C.; Islam, K.; Bekdaş, G.; Nehdi, M.L. Data-driven ensemble learning approach for optimal design of cantilever soldier pile retaining walls. Structures 2023, 51, 1268–1280. [Google Scholar] [CrossRef]
- Feng, D.C.; Wang, W.J.; Mangalathu, S.; Hu, G.; Wu, T. Implementing ensemble learning methods to predict the shear strength of RC deep beams with/without web reinforcements. Eng. Struct. 2021, 235, 111979. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. XGBOOST: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar]
- Mangalathu, S.; Shin, H.; Choi, E.; Jeon, J.S. Explainable machine learning models for punching shear strength estimation of flat slabs without transverse reinforcement. J. Build. Eng. 2021, 39, 102300. [Google Scholar] [CrossRef]
- Mangalathu, S.; Hwang, S.H.; Jeon, J.S. Failure mode and effects analysis of RC members based on machine-learning-based SHapley Additive exPlanations (SHAP) approach. Eng. Struct. 2020, 219, 110927. [Google Scholar] [CrossRef]
- Lundberg, S.M.; Lee, S.I. A unified approach to interpreting model predictions. In Proceedings of the 31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA, 4–9 December 2017. [Google Scholar]
Fiber Type | Relative Density (g/cm3) | Diameter (µm) | Tensile Strength (MPa) | Modulus of Elasticity (MPa) | Strain at Failure (%) |
---|---|---|---|---|---|
Basalt | 2.60–2.65 | 6–25 | 2800–3000 | 70,000–90,000 | 3.1 |
Steel | 7.80 | 100–1000 | 500–2600 | 210,000 | 0.5–3.5 |
Glass | |||||
E* | 2.54 | 8–15 | 2000–4000 | 72,000 | 3.0–4.8 |
AR* | 2.70 | 12–20 | 1500–3700 | 80,000 | 2.5–3.6 |
Synthetic | |||||
Acrylic | 1.18 | 5–17 | 200–1000 | 17,000–19,000 | 28–50 |
Aramid | 1.44 | 10–12 | 2000–3100 | 62,000–120,000 | 2–3.5 |
Carbon | 1.90 | 8–0 | 1800–2600 | 230,000–380,000 | 0.5–1.5 |
Nylon | 1.14 | 23 | 1000 | 5200 | 20 |
Polyester | 1.38 | 10–80 | 280–1200 | 10,000–18,000 | 10–50 |
Polyethylene | 0.96 | 25–1000 | 80–600 | 5000 | 12–100 |
Polypropylene | 0.90 | 20–200 | 450–700 | 3500–5200 | 6–15 |
Natural | |||||
Wood cellulose | 1.500 | 25–125 | 350–2000 | 10,000–40,000 | |
Sisal | 280–600 | 13,000–25,000 | 3.5 | ||
Coconut | 1.12–1.15 | 100–400 | 120–200 | 19,000–25,000 | 10–25 |
Bamboo | 1.50 | 50–400 | 350–500 | 33,000–40,000 | |
Jute | 1.02–1.04 | 100–200 | 250–350 | 25,000–32,000 | 1.5–1.9 |
Elephant grass | 425 | 180 | 4900 | 3.6 |
Algorithm | R2 | MAE | RMSE | Duration [s] | |||
---|---|---|---|---|---|---|---|
Train | Test | Train | Test | Train | Test | ||
XGBoost | 0.9940 | 0.9228 | 0.0459 | 0.2072 | 0.0659 | 0.2643 | 5.94 |
Random Forest | 0.9670 | 0.7960 | 0.1069 | 0.2877 | 0.1546 | 0.4296 | 4.07 |
LightGBM | 0.9968 | 0.8361 | 0.0211 | 0.2900 | 0.0479 | 0.3850 | 5.19 |
CatBoost | 0.9981 | 0.8222 | 0.0281 | 0.2850 | 0.0364 | 0.4010 | 28.07 |
Model | Parameter | Grid Search Range | Value |
---|---|---|---|
Random Forest | n_estimators | [100, 300, 1000] | 1000 |
- | bootstrap | [True, False] | True |
- | min_samples_split | [1, 5, 10] | 5 |
- | min_samples_leaf | [1, 5, 10] | 1 |
- | max_features | [auto, sqrt, log2] | auto |
XGBoost | colsample_bytree | [0.1, 0.3, 0.5, 1.0] | 0.5 |
- | gamma | [0, 10, 20] | 0 |
- | learning_rate | [0.03, 0.3, 0.5, 0.9] | 0.9 |
- | max_depth | [2, 4, 6, 8,12] | 8 |
- | min_child_weight | [3, 10, 20, 40, 80, 400] | 3 |
- | reg_alpha | [0, 10, 20] | 0 |
- | reg_lambda | [0, 10, 20] | 10 |
LightGBM | n_estimators | [100, 200, 300] | 300 |
- | colsample_bytree | [0.1, 0.3, 0.5, 1.0] | 1.0 |
- | boosting_type | [gbdt, rf, dart] | gbdt |
- | num_leaves | [5, 10, 20, 40] | 10 |
- | max_depth | [1, 3, 5, None] | 3 |
- | learning_rate | [0.2, 0.4, 0.6, 0.9] | 0.6 |
CatBoost | iterations | [500, 1000, 3000] | 1000 |
- | leaf_estimation_method | [Newton, Gradient, Exact] | Gradient |
- | depth | [6, 8, 10] | 8 |
- | max_leaves | [16, 64, 256] | 256 |
- | learning_rate | [0.03, 0.3, 0.5, 0.9] | 0.5 |
- | bootstrap_type | [Bayesian, Bernoulli, MVS] | MVS |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cakiroglu, C.; Aydın, Y.; Bekdaş, G.; Geem, Z.W. Interpretable Predictive Modelling of Basalt Fiber Reinforced Concrete Splitting Tensile Strength Using Ensemble Machine Learning Methods and SHAP Approach. Materials 2023, 16, 4578. https://doi.org/10.3390/ma16134578
Cakiroglu C, Aydın Y, Bekdaş G, Geem ZW. Interpretable Predictive Modelling of Basalt Fiber Reinforced Concrete Splitting Tensile Strength Using Ensemble Machine Learning Methods and SHAP Approach. Materials. 2023; 16(13):4578. https://doi.org/10.3390/ma16134578
Chicago/Turabian StyleCakiroglu, Celal, Yaren Aydın, Gebrail Bekdaş, and Zong Woo Geem. 2023. "Interpretable Predictive Modelling of Basalt Fiber Reinforced Concrete Splitting Tensile Strength Using Ensemble Machine Learning Methods and SHAP Approach" Materials 16, no. 13: 4578. https://doi.org/10.3390/ma16134578
APA StyleCakiroglu, C., Aydın, Y., Bekdaş, G., & Geem, Z. W. (2023). Interpretable Predictive Modelling of Basalt Fiber Reinforced Concrete Splitting Tensile Strength Using Ensemble Machine Learning Methods and SHAP Approach. Materials, 16(13), 4578. https://doi.org/10.3390/ma16134578