Analyzing Forged Quality of Thin-Walled A-286 Superalloy Tube under Multi-Stage Cold Forging Processes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Forging Quality Requirement
2.2. Multi-Stage Cold Forging of the Thin-Walled Tube
2.2.1. Materials and Cold Forging Machine
2.2.2. Cold Forging Processes
2.3. FE Modeling
2.3.1. Material Properties and Constitutive Model
2.3.2. FE Model
2.4. Test and Characterization
3. Results
3.1. Influence of the Forging Processes on Forming Quality
3.1.1. Forging Force
3.1.2. Geometrical Defect
3.1.3. Effective Strain and Hardness Distribution
3.2. Selection of the Appropriate Forging Process
3.3. Experimental Validation
3.3.1. Geometrical Quality
3.3.2. Hardness Distribution
3.3.3. Flow Lines
3.3.4. Strain Distribution
3.3.5. Microstructure Evolution
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yuan, L.; Gu, D.; Lin, K.; Ge, Q.; Shi, X.; Wang, H.; Hu, K. Influence of structural features on processability, microstructures, chemical compositions, and hardness of selective laser melted complex thin-walled components. Int. J. Adv. Manuf. Technol. 2020, 109, 1643–1654. [Google Scholar] [CrossRef]
- Yan, B.; Bin, W.; Zengxu, H.; Renke, K.; Jiang, G. Recent progress in flexible supporting technology for aerospace thin-walled parts: A review. Chin. J. Aeronaut. 2021, 35, 10–26. [Google Scholar] [CrossRef]
- Li, D.; Qin, R.; Xu, J.; Zhou, J.; Chen, B. Topology optimization of thin-walled tubes filled with lattice structures. Int. J. Mech. Sci. 2022, 227, 107457. [Google Scholar] [CrossRef]
- Vidhyasagar, M.; Balachandran, G. Spheroidization of 100Cr6 Bearing Steel by Warm Forging. Trans. Indian Inst. Met. 2021, 74, 767–774. [Google Scholar] [CrossRef]
- Plogmeyer, M.; Kruse, J.; Stonis, M.; Paetsch, N.; Behrens, B.-A.; Bräuer, G. Temperature measurement with thin film sensors during warm forging of steel. Microsyst. Technol. 2021, 27, 3841–3850. [Google Scholar] [CrossRef]
- Ozturk, M.; Kocaoglan, S.; Sonmez, F.O. Concurrent design and process optimization of forging. Comput. Struct. 2016, 167, 24–36. [Google Scholar] [CrossRef]
- Chandrasekaran, M. Forging of metals and alloys for biomedical applications. In Metals for Biomedical Devices; Woodhead Publishing: Cambridge, UK, 2019; pp. 293–310. [Google Scholar] [CrossRef]
- Joun, M.S.; Jeong, S.W.; Park, Y.T.; Hong, S.M. Experimental and numerical study on shearing of a rod to produce long billets for cold forging. J. Manuf. Process. 2021, 62, 797–805. [Google Scholar] [CrossRef]
- Dalbosco, M.; da Silva Lopes, G.; Schmitt, P.D.; Pinotti, L.; Boing, D. Improving fatigue life of cold forging dies by finite element analysis: A case study. J. Manuf. Process. 2021, 64, 349–355. [Google Scholar] [CrossRef]
- Aghabeyki, F.; Mirnia, M.J.; Elyasi, M. Cold and warm flaring of thin-walled titanium tube using single-point incremental forming. Int. J. Adv. Manuf. Technol. 2021, 114, 3357–3376. [Google Scholar] [CrossRef]
- Samołyk, G.; Winiarski, G. Selected aspects of a cold forging process for hollow balls. Int. J. Adv. Manuf. Technol. 2022, 119, 2479–2494. [Google Scholar] [CrossRef]
- Liu, J.-z.; Fang, H.; Chan, T.-M. Investigations on material properties and residual stresses in cold-formed high strength steel irregular hexagonal hollow sections. Thin-Walled Struct. 2022, 176, 109220. [Google Scholar] [CrossRef]
- Gardner, L.; Saari, N.; Wang, F. Comparative experimental study of hot-rolled and cold-formed rectangular hollow sections. Thin-Walled Struct. 2010, 48, 495–507. [Google Scholar] [CrossRef]
- Aksenov, L.; Kunkin, S.; Potapov, N. System analysis of cold axial rotary forging of thin-walled tube blanks. In Advances in Mechanical Engineering, Proceedings of the International Conference Modern Engineering: Science and Education, Saint Petersburg, Russia, 25 June 2020; Springer: Cham, Switzerland, 2021; pp. 20–29. [Google Scholar]
- Lee, J.-H.; Kang, B.-S.; Lee, J.-H. Process design in multi-stage cold forging by the finite-element method. J. Mater. Process. Technol. 1996, 58, 174–183. [Google Scholar] [CrossRef]
- Pandya, V.A.; George, P. Effect of preform design on forging load and effective stress during closed die hot forging process of pin. Mater. Today Proc. 2021, 44, 106–112. [Google Scholar] [CrossRef]
- Lin, S.-H.; Chen, D.-C.; Chai, U.-C.; Tzou, G.-Y. FEM analysis and experiment validation on multi-pass forging of torx round flange bolt. Int. J. Automot. Technol. 2020, 21, 1113–1119. [Google Scholar] [CrossRef]
- Jo, A.R.; Jeong, M.S.; Lee, S.K.; Moon, Y.H.; Hwang, S.K. Multi-stage cold forging process for manufacturing a high-strength one-body input shaft. Materials 2021, 14, 532. [Google Scholar] [CrossRef]
- Chen, Q.; Hu, H.; Lin, J.; Huang, S.; Wu, Y.; Shu, D.; Huang, W.; Mingbo, Y. Multi-stage cold forging process for H68 brass cylindrical shell part with deep blind hole: Simulation and experiment. Int. J. Adv. Manuf. Technol. 2017, 91, 3789–3798. [Google Scholar] [CrossRef]
- Lee, H.-S.; Park, S.-G.; Hong, M.-P.; Kim, Y.-S. Process design of multi-stage cold forging with small size for ESC solenoid valve parts. J. Mech. Sci. Technol. 2022, 36, 359–370. [Google Scholar] [CrossRef]
- Chen, M.; Zhu, C.; Yu, Z.; Ma, C. A novel process for manufacturing large-diameter thin-walled metal ring: Double-roll pendulum hot rotary forging technology. J. Manuf. Process. 2022, 76, 379–396. [Google Scholar] [CrossRef]
- Xu, Y.; Ma, Y.; Zhang, S.; Chen, D.; Zhang, X.; Li, J.; Zhao, C. Numerical and experimental study on large deformation of thin-walled tube through hydroforging process. Int. J. Adv. Manuf. Technol. 2016, 87, 1885–1890. [Google Scholar] [CrossRef]
- Simonetto, E.; Venturato, G.; Ghiotti, A.; Bruschi, S. Modelling of hot rotary draw bending for thin-walled titanium alloy tubes. Int. J. Mech. Sci. 2018, 148, 698–706. [Google Scholar] [CrossRef]
- AMS5731; Aerospace Material Specification. SAE International Group: Warrendale, PA, USA, 2012.
- Yuan, K.; Wu, H.; Yang, L.; Zhao, L.; Wang, Y.; He, M. Experiments, analysis and parametric optimization of roll grinding for high-speed steel W6Mo5Cr4V2. Int. J. Adv. Manuf. Technol. 2020, 109, 1275–1284. [Google Scholar] [CrossRef]
- Xianrui, W.; Hu, Z.; Jung, D.W. Numerical Simulation of CNC Incremental Forming of Straight Wall Parts Based on Model Partition and Non-Steep Surface. Adv. Mater. Eng. Mater. 2022, 1066, 26–32. [Google Scholar] [CrossRef]
- Obiko, J.; Mwema, F.M.; Bodunrin, M. Finite element simulation of X20CrMoV121 steel billet forging process using the Deform 3D software. SN Appl. Sci. 2019, 1, 1044. [Google Scholar] [CrossRef] [Green Version]
- Sidelnikov, S.; Sokolov, R.; Voroshilov, D.; Motkov, M.; Bespalov, V.; Voroshilova, M.; Sokolova, S.; Rudnitskiy, E.; Lebedeva, O.; Borisyuk, V. Modeling the process of obtaining bars from aluminum alloy 01417 by combined rolling-extruding method with application of the deform-3D complex. In Key Engineering Materials; Trans Tech Publications, Ltd.: Wollerau, Switzerland, 2020; pp. 540–546. [Google Scholar]
- Francy, K.A.; Rao, C.S.; Gopalakrishnaiah, P. Optimization of direct extrusion process parameter on 16MnCr5 and AISI1010 using DEFORM-3D. Procedia Manuf. 2019, 30, 498–505. [Google Scholar] [CrossRef]
- Xiao, Z.; Li, S.; Liu, H.; Liu, J.; Zhou, X.; Duan, H. Multi-stage cold forging and extruding process of small thin wall casing. Forg. Stamp. Technol. 2017, 42, 15–19. [Google Scholar]
- Lertchirakarn, V.; Palamara, J.E.; Messer, H.H. Patterns of vertical root fracture: Factors affecting stress distribution in the root canal. J. Endod. 2003, 29, 523–528. [Google Scholar] [CrossRef] [Green Version]
- Huang, Q.; Du, J.; Chen, J.; He, Y. Coupling control on pillar stress concentration and surface cracks in shallow multi-seam mining. Int. J. Min. Sci. Technol. 2021, 31, 95–101. [Google Scholar] [CrossRef]
- Liu, X.; Lu, L.; Ma, M.; Kang, W.; Che, B.; Xue, Y. Microstructure Evolution and Mechanical Properties of AQ80 Alloy During Forward Extrusion and Twist Deformation. J. Mater. Eng. Perform. 2020, 29, 6774–6783. [Google Scholar] [CrossRef]
- Hosseini, S.; Abrinia, K.; Faraji, G. Applicability of a modified backward extrusion process on commercially pure aluminum. Mater. Des. 2015, 65, 521–528. [Google Scholar] [CrossRef]
- Magalhães, D.C.C.; Pratti, A.L.; Kliauga, A.M.; Rubert, J.B.; Ferrante, M.; Sordi, V.L. Numerical simulation of cryogenic cyclic closed-die forging of Cu: Hardness distribution, strain maps and microstructural stability. J. Mater. Res. Technol. 2019, 8, 333–343. [Google Scholar] [CrossRef]
- Peng, P.; She, J.; Tang, A.; Zhang, J.; Zhou, S.; Xiong, X.; Pan, F. Novel continuous forging extrusion in a one-step extrusion process for bulk ultrafine magnesium alloy. Mater. Sci. Eng. A 2019, 764, 138144. [Google Scholar] [CrossRef]
- Yang, Z.; Liu, H.; Cui, Z.; Zhang, H.; Chen, F. Refinement mechanism of centimeter-grade coarse grains in as-cast Ti2AlNb-based alloy during multi-directional forging. Mater. Des. 2023, 225, 111508. [Google Scholar] [CrossRef]
Ni | Cr | Mo | Mn | Co | C | B | Ti | Al | V | Cu | Si | Fe |
---|---|---|---|---|---|---|---|---|---|---|---|---|
24.7 | 15.2 | 1.3 | 1.5 | 0.19 | 0.05 | 0.001 | 2.1 | 0.29 | 0.28 | 0.03 | 0.6 | Bal |
Forging Stroke/mm | |||||
---|---|---|---|---|---|
Forging Process | Stage 1 | Stage2 | Stage 3 | Stage 4 | Stage 5 |
Type-I | 3.27 | 2.21 | 1.26 | 2.49 | 2.67 |
Type-II | 2.09 | 2.27 | 1.62 | 1.63 | 2.67 |
Parameters | Unit | Billet | Dies |
---|---|---|---|
Material | - | A-286 | W6Mo5Cr4V2 |
Density | g/cm3 | 7.92 | 7.81 |
Young’s modulus | MPa | 206,754 | 212,000 |
Poisson’s ratio | - | 0.3 | 0.29 |
Constant | ||||
---|---|---|---|---|
Value | 9.99802 | 0.732542 | 0.231611 | 234.407 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tao, L.; Feng, Z.; Jiang, Y.; Tong, J. Analyzing Forged Quality of Thin-Walled A-286 Superalloy Tube under Multi-Stage Cold Forging Processes. Materials 2023, 16, 4598. https://doi.org/10.3390/ma16134598
Tao L, Feng Z, Jiang Y, Tong J. Analyzing Forged Quality of Thin-Walled A-286 Superalloy Tube under Multi-Stage Cold Forging Processes. Materials. 2023; 16(13):4598. https://doi.org/10.3390/ma16134598
Chicago/Turabian StyleTao, Liang, Zhiguo Feng, Yulian Jiang, and Jinfang Tong. 2023. "Analyzing Forged Quality of Thin-Walled A-286 Superalloy Tube under Multi-Stage Cold Forging Processes" Materials 16, no. 13: 4598. https://doi.org/10.3390/ma16134598
APA StyleTao, L., Feng, Z., Jiang, Y., & Tong, J. (2023). Analyzing Forged Quality of Thin-Walled A-286 Superalloy Tube under Multi-Stage Cold Forging Processes. Materials, 16(13), 4598. https://doi.org/10.3390/ma16134598