Design of Pt-Sn-Zn Nanomaterials for Successful Methanol Electrooxidation Reaction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Catalysts
2.2. Characterization of the Catalyst
2.3. Electrochemical Measurements
3. Results and Discussion
3.1. Characterization of PtZn/C and PtSnZn/C Catalysts
3.2. Electrochemical Performance of the Catalysts
3.3. Oxidation of Adsorbed CO
3.4. Methanol Oxidation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aminudin, M.A.; Kamarudin, S.K.; Lim, B.H.; Majilan, E.H.; Masdar, M.S.; Shaari, N. An Overview: Current Progress on Hydrogen Fuel Cell Vehicles. Int. J. Hydrogen Energy 2023, 48, 4371–4388. [Google Scholar] [CrossRef]
- Naveen, S.; Priya, P.; Tequila, H. Direct Methanol Fuel Cells. In Earth Systems and Environmental Sciences; Elsevier: Amsterdam, The Netherlands, 2022. [Google Scholar] [CrossRef]
- Aricò, A.S.; Srinivasan, S.; Antonucci, V. DMFCs: From Fundamental Aspects to Technology Development. Fuel Cells 2001, 1, 133–161. [Google Scholar] [CrossRef]
- Zaman, S.; Huang, L.; Douka, A.I.; Yang, H.; You, B.; Xia, B.Y. Oxygen Reduction Electrocatalysts toward Practical Fuel Cells: Progress and Perspectives. Angew. Chem. Int. Ed. 2021, 60, 17832–17852. [Google Scholar] [CrossRef]
- Zaman, S.; Chen, S. A Perspective on Inaccurate Measurements in Oxygen Reduction and Carbon Dioxide Reduction Reactions. J. Catal. 2023, 421, 221–227. [Google Scholar] [CrossRef]
- Zeng, J.; Yang, J.; Lee, J.Y.; Zhou, W. Preparation of Carbon-Supported Core-Shell Au-Pt Nanoparticles for Methanol Oxidation Reaction: The Promotional Effect of the Au Core. J. Phys. Chem. B 2006, 110, 24606–24611. [Google Scholar] [CrossRef]
- Tian, H.; Yu, Y.; Wang, Q.; Li, J.; Rao, P.; Li, R.; Du, Y.; Jia, C.; Luo, J.; Deng, P.; et al. Recent Advances in Two-Dimensional Pt Based Electrocatalysts for Methanol Oxidation Reaction. Int. J. Hydrogen Energy 2021, 46, 31202–31215. [Google Scholar] [CrossRef]
- Wang, W.; Bai, X.; Yuan, X.; Liu, Y.; Yang, L.; Chang, F. Platinum-Cobalt Nanowires for Efficient Alcohol Oxidation Electrocatalysis. Materials 2023, 16, 840. [Google Scholar] [CrossRef]
- Sode, A.; Bizzotto, D. Adsorbate-Induced Surface Reorganization on PtZn Electrode. Electrochim. Acta 2009, 54, 1095–1101. [Google Scholar] [CrossRef]
- Tian, H.; Wu, D.; Li, J.; Luo, J.; Jia, C.; Liu, Z.; Huang, W.; Chen, Q.; Shim, C.M.; Deng, P.; et al. Rational Design Ternary Platinum Based Electrocatalysts for Effective Methanol Oxidation Reaction. J. Energy Chem. 2022, 70, 230–235. [Google Scholar] [CrossRef]
- Hsieh, C.T.; Hung, W.M.; Chen, W.Y.; Lin, J.Y. Microwave-Assisted Polyol Synthesis of Pt-Zn Electrocatalysts on Carbon Nanotube Electrodes for Methanol Oxidation. Int. J. Hydrogen Energy 2011, 36, 2765–2772. [Google Scholar] [CrossRef]
- Zaman, S.; Tian, X.; Su, Y.Q.; Cai, W.; Yan, Y.; Qi, R.; Douka, A.I.; Chen, S.; You, B.; Liu, H.; et al. Direct Integration of Ultralow-Platinum Alloy into Nanocarbon Architectures for Efficient Oxygen Reduction in Fuel Cells. Sci. Bull. 2021, 66, 2207–2216. [Google Scholar] [CrossRef]
- Tariq, I.; Asghar, M.A.; Ali, A.; Badshah, A.; Abbas, S.M.; Iqbal, W.; Zubair, M.; Haider, A.; Zaman, S. Surface Reconstruction of Cobalt-Based Polyoxometalate and CNT Fiber Composite for Efficient Oxygen Evolution Reaction. Catalysts 2022, 12, 1242. [Google Scholar] [CrossRef]
- Wang, L.; Tian, X.L.; Xu, Y.; Zaman, S.; Qi, K.; Liu, H.; Xia, B.Y. Engineering One-Dimensional and Hierarchical PtFe Alloy Assemblies towards Durable Methanol Electrooxidation. J. Mater. Chem. A 2019, 7, 13090–13095. [Google Scholar] [CrossRef]
- Lo Vecchio, C.; Aricò, A.S.; Baglio, V. Application of Low-Cost Me-N-C (Me = Fe or Co) Electrocatalysts Derived from Edta in Direct Methanol Fuel Cells (DMFCs). Materials 2018, 11, 1193. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.W.; Chen, H.G.; Lo, M.Y.; Chen, Y.C. Modification of Carbon Black with Hydrogen Peroxide for High Performance Anode Catalyst of Direct Methanol Fuel Cells. Materials 2021, 14, 3902. [Google Scholar] [CrossRef]
- Arenz, M.; Stamenkovic, V.; Blizanac, B.B.; Mayrhofer, K.J.; Markovic, N.M.; Ross, P.N. Carbon-Supported Pt-Sn Electrocatalysts for the Anodic Oxidation of H2, CO, and H2/CO Mixtures.: Part II: The Structure-Activity Relationship. J. Catal. 2005, 232, 402–410. [Google Scholar] [CrossRef]
- Liu, Z.; Jackson, G.S.; Eichhorn, B.W. PtSn Intermetallic, Core-Shell, and Alloy Nanoparticles as CO-Tolerant Electrocatalysts for H2 Oxidation. Angew. Chem. Int. Ed. 2010, 49, 3173–3176. [Google Scholar] [CrossRef]
- Shukla, A.K.; Aricò, A.S.; El-Khatib, K.M.; Kim, H.; Antonucci, P.L.; Antonucci, V. An X-Ray Photoelectron Spectroscopic Study on the Effect of Ru and Sn Additions to Platinised Carbons. Appl. Surf. Sci. 1999, 137, 20–29. [Google Scholar] [CrossRef]
- Gallagher, M.E.; Lucas, C.A.; Stamenković, V.; Marković, N.M.; Ross, P.N. Surface Structure and Relaxation at the Pt3Sn(1 1 1)/Electrolyte Interface. Surf. Sci. 2003, 544, L729–L734. [Google Scholar] [CrossRef]
- Rodriguez, J.A.; Kuhn, M. Electronic and Chemical Properties of Ag/Pt(111) and Cu/Pt(111) Surfaces. Importance of Changes in the d Electron Populations. J. Phys. Chem. 1994, 98, 11251–11255. [Google Scholar] [CrossRef]
- Rodriguez, J.A.; Kuhn, M. Chemical and Electronic Properties of Pt in Bimetallic Surfaces: Photoemission and CO-Chemisorption Studies for Zn/Pt(111). J. Chem. Phys. 1995, 102, 4279–4289. [Google Scholar] [CrossRef]
- Miura, A.; Wang, H.; Leonard, B.M.; Abruña, H.D.; DiSalvo, F.J. Synthesis of Intermetallic PtZn Nanoparticles by Reaction of Pt Nanoparticles with Zn Vapor and Their Application as Fuel Cell Catalysts. Chem. Mater. 2009, 21, 2661–2667. [Google Scholar] [CrossRef]
- Yuan, X.; Min, Y.; Wu, J.; Xu, L.; Yue, W. Optimized Electrocatalytic Performance of PtZn Intermetallic Nanoparticles for Methanol Oxidation by Designing Catalyst Support and Fine-Tuning Surface Composition. Electrochim. Acta 2021, 394, 139106. [Google Scholar] [CrossRef]
- Qi, Z.; Xiao, C.; Liu, C.; Goh, T.W.; Zhou, L.; Maligal-Ganesh, R.; Pei, Y.; Li, X.; Curtiss, L.A.; Huang, W. Sub-4 Nm PtZn Intermetallic Nanoparticles for Enhanced Mass and Specific Activities in Catalytic Electrooxidation Reaction. J. Am. Chem. Soc. 2017, 139, 4762–4768. [Google Scholar] [CrossRef] [Green Version]
- Weibel, D.; Jovanovic, Z.R.; Gálvez, E.; Steinfeld, A. Mechanism of Zn Particle Oxidation by H2O and CO2 in the Presence of ZnO. Chem. Mater. 2014, 26, 6486–6495. [Google Scholar] [CrossRef]
- Lee, E.; Murthy, A.; Manthiram, A. Comparison of the Stabilities and Activities of Pt-Ru/C and Pt3-Sn/C Electrocatalysts Synthesized by the Polyol Method for Methanol Electro-Oxidation Reaction. J. Electroanal. Chem. 2011, 659, 168–175. [Google Scholar] [CrossRef]
- Stevanović, S.; Tripković, D.; Rogan, J.; Popović, K.; Lović, J.; Tripković, A.; Jovanović, V.M. Microwave-Assisted Polyol Synthesis of Carbon-Supported Platinum-Based Bimetallic Catalysts for Ethanol Oxidation. J. Solid State Electrochem. 2012, 16, 3147–3157. [Google Scholar] [CrossRef]
- Stevanović, S.; Tripković, D.; Tripković, V.; Minić, D.; Gavrilović, A.; Tripković, A.; Jovanović, V.M. Insight into the Effect of Sn on CO and Formic Acid Oxidation at PtSn Catalysts. J. Phys. Chem. C 2014, 118, 278–289. [Google Scholar] [CrossRef]
- Solla-Gullón, J.; Rodríguez, P.; Herrero, E.; Aldaz, A.; Feliu, J.M. Surface Characterization of Platinum Electrodes. Phys. Chem. Chem. Phys. 2008, 10, 1359–1373. [Google Scholar] [CrossRef]
- Kinoshita, K.; Lundquist, J.T.; Stonehart, P. Potential Cycling Effects on Platinum Electrocatalyst Surfaces. J. Electroanal. Chem. 1973, 48, 157–166. [Google Scholar] [CrossRef]
- Bhatt, M.D.; Geaney, H.; Nolan, M.; O’Dwyer, C. Key Scientific Challenges in Current Rechargeable Non-Aqueous Li-O2 Batteries: Experiment and Theory. Phys. Chem. Chem. Phys. 2014, 16, 12093–12130. [Google Scholar] [CrossRef]
- Peng, Z.; Yang, H. Designer Platinum Nanoparticles: Control of Shape, Composition in Alloy, Nanostructure and Electrocatalytic Property. Nano Today 2009, 4, 143–164. [Google Scholar] [CrossRef]
- Dupont, C.; Jugnet, Y.; Delbecq, F.; Loffreda, D. Mediatory Role of Tin in the Catalytic Performance of Tailored Platinum-Tin Alloy Surfaces for Carbon Monoxide Oxidation. J. Catal. 2010, 273, 211–220. [Google Scholar] [CrossRef]
- Radmilovic, V.; Richardson, T.J.; Chen, S.J.; Ross, P.N. Carbon-Supported Pt-Sn Electrocatalysts for the Anodic Oxidation of H2, CO, and H2/CO Mixtures. Part I. Microstructural Characterization. J. Catal. 2005, 232, 199–209. [Google Scholar] [CrossRef]
- Matsui, T.; Fujiwara, K.; Okanishi, T.; Kikuchi, R.; Takeguchi, T.; Eguchi, K. Electrochemical Oxidation of CO over Tin Oxide Supported Platinum Catalysts. J. Power Sources 2006, 155, 152–156. [Google Scholar] [CrossRef]
- Lin, Y.; Zhang, S.; Yan, S.; Liu, G. The Effect of Sn Content in Pt-SnO2/CNTs for Methanol Electro-Oxidation. Electrochim. Acta 2012, 66, 325–333. [Google Scholar] [CrossRef]
- Hayden, B.E.; Rendall, M.E.; South, O. Electro-Oxidation of Carbon Monoxide on Well-Ordered Pt(111)/Sn Surface Alloys. J. Am. Chem. Soc. 2003, 125, 7738–7742. [Google Scholar] [CrossRef]
- Lukaszewski, M.; Soszko, M.; Czerwiński, A. Electrochemical Methods of Real Surface Area Determination of Noble Metal Electrodes—An Overview. Int. J. Electrochem. Sci. 2016, 11, 4442–4469. [Google Scholar] [CrossRef]
- Durussel, P.; Massara, R.; Feschotte, P. Le Système Binaire PtSn. J. Alloys Compd. 1994, 215, 175–179. [Google Scholar] [CrossRef]
- Iwasita, T. Electrocatalysis of Methanol Oxidation. Electrochim. Acta 2002, 47, 3663–3674. [Google Scholar] [CrossRef]
- Markoví, N.M.; Ross, P.N. Surface Science Studies of Model Fuel Cell Electrocatalysts. Surf. Sci. Rep. 2002, 45, 117–229. [Google Scholar] [CrossRef]
- Lai, L.; Yang, G.; Zhang, Q.; Yu, H.; Peng, F. Essential Analysis of Cyclic Voltammetry of Methanol Electrooxidation Using the Differential Electrochemical Mass Spectrometry. J. Power Sources 2021, 509, 230397. [Google Scholar] [CrossRef]
- Stevanović, S.; Tripković, D.; Gavrilović-Wohlmuther, A.; Rogan, J.; Lačnjevac, U.; Jovanović, V. Carbon Supported PtSn versus PtSnO2 Catalysts in Methanol Oxidation. Int. J. Electrochem. Sci. 2021, 16, 210222. [Google Scholar] [CrossRef]
- Manoharan, R.; Goodenough, J.B. Methanol Oxidation in Acid on Ordered NiTi. J. Mater. Chem. 1992, 2, 875–887. [Google Scholar] [CrossRef]
- Zhang, L.; Xia, D. Electrocatalytic Activity of Ordered Intermetallic PtSb for Methanol Electro-Oxidation. Appl. Surf. Sci. 2006, 252, 2191–2195. [Google Scholar] [CrossRef]
- Kang, Y.; Pyo, J.B.; Ye, X.; Gordon, T.R.; Murray, C.B. Synthesis, Shape Control, and Methanol Electro-Oxidation Properties of Pt-Zn Alloy and Pt 3Zn Intermetallic Nanocrystals. ACS Nano 2012, 6, 5642–5647. [Google Scholar] [CrossRef]
- Van Dao, D.; Adilbish, G.; Lee, I.H.; Yu, Y.T. Enhanced Electrocatalytic Property of Pt/C Electrode with Double Catalyst Layers for PEMFC. Int. J. Hydrogen Energy 2019, 44, 24580–24590. [Google Scholar] [CrossRef]
- Sui, N.; Yue, R.; Wang, Y.; Bai, Q.; An, R.; Xiao, H.; Wang, L.; Liu, M.; Yu, W.W. Boosting Methanol Oxidation Reaction with Au@AgPt Yolk-Shell Nanoparticles. J. Alloys Compd. 2019, 790, 792–798. [Google Scholar] [CrossRef]
Catalyst | Metal Content from TGA (Mass %) | The Pt:Zn and Pt:Sn:Zn Atomic Ratios | |
---|---|---|---|
Nominal (Mass %) | EDS (Mass %) | ||
PtZn/C | 27.68 | 75:25 | 87:13 |
PtSnZn/C | 22.87 | 63:21:12 | 70:21:9 |
Catalyst | PtZn/C | PtSnZn/C | Pt/C |
---|---|---|---|
ECSA (cm2) | 1.77 | 1.01 | 3.02 |
Catalyst | Maximum forward Activity (mA/µg Pt) | jf/jb from Mass Activity | Maximum forward Activity (mA/cm2) | jf/jb from Specific Activity | Ref. |
---|---|---|---|---|---|
PtZn/C | 0.27 | 1.17 | 0.48 | 1.11 | This work |
PtSnZn/C | 0.32 | 1.11 | 0.99 | 1.26 | This work |
Pt/C | 0.16 | 1.33 | 0.45 | 1.53 | This work |
Pt/C E Tek (20% Pt) | 0.1 | 1.10 | / | / | [49] |
PtSn/C | / | / | 0.8 | 1.09 | [44] |
PtZn/C | 0.22 | 1.46 | / | / | [47] |
PtZn/C CNT | 0.18 | 1.2 | / | / | [10] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Milošević, D.; Stevanović, S.; Tripković, D.; Vukašinović, I.; Maksimović, V.; Ćosović, V.; Nikolić, N.D. Design of Pt-Sn-Zn Nanomaterials for Successful Methanol Electrooxidation Reaction. Materials 2023, 16, 4617. https://doi.org/10.3390/ma16134617
Milošević D, Stevanović S, Tripković D, Vukašinović I, Maksimović V, Ćosović V, Nikolić ND. Design of Pt-Sn-Zn Nanomaterials for Successful Methanol Electrooxidation Reaction. Materials. 2023; 16(13):4617. https://doi.org/10.3390/ma16134617
Chicago/Turabian StyleMilošević, Dragana, Sanja Stevanović, Dušan Tripković, Ivana Vukašinović, Vesna Maksimović, Vladan Ćosović, and Nebojša D. Nikolić. 2023. "Design of Pt-Sn-Zn Nanomaterials for Successful Methanol Electrooxidation Reaction" Materials 16, no. 13: 4617. https://doi.org/10.3390/ma16134617
APA StyleMilošević, D., Stevanović, S., Tripković, D., Vukašinović, I., Maksimović, V., Ćosović, V., & Nikolić, N. D. (2023). Design of Pt-Sn-Zn Nanomaterials for Successful Methanol Electrooxidation Reaction. Materials, 16(13), 4617. https://doi.org/10.3390/ma16134617