Design of Tunable Broadband Graphene-Based Metasurface with Amplitude-Phase Modulation
Abstract
:1. Introduction
2. Theoretical Analysis
2.1. Graphene Conductivity
2.2. Graphene-Based Metasurface Coding
3. Unit Design of Proposed Graphene-Based Metasurface
4. Performance of Reconfigurable Graphene Metasurface
5. Performance Comparison
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mailloux, R.J. Phased Array Antenna Handbook; Artech House: New York, NY, USA, 2017. [Google Scholar]
- Rahmat-Samii, Y. Reflector antennas. In Antenna Handbook: Theory, Applications, and Design; Springer: Berlin/Heidelberg, Germany, 1988; pp. 949–1072. [Google Scholar]
- Zmuda, H.; Soref, R.A.; Payson, P.; Johns, S.; Toughlian, E.N. Photonic beamformer for phased array antennas using a fiber grating prism. IEEE Photonics Technol. Lett. 1997, 9, 241–243. [Google Scholar] [CrossRef]
- Zhang, S.; Huff, G.H.; Feng, J.; Bernhard, J.T. A pattern reconfigurable microstrip parasitic array. IEEE Trans. Antennas Propag. 2004, 52, 2773–2776. [Google Scholar] [CrossRef]
- Liu, S.; Cui, T.J.; Zhang, L.; Xu, Q.; Wang, Q.; Wan, X.; Gu, J.Q.; Tang, W.X.; Qi, M.; Han, J.G.; et al. Convolution operations on coding metasurface to reach flexible and continuous controls of terahertz beams. Adv. Sci. 2016, 3, 1600156. [Google Scholar] [CrossRef]
- Holloway, C.L.; Kuester, E.F.; Gordon, J.A.; O’Hara, J.; Booth, J.; Smith, D.R. An overview of the theory and applications of metasurfaces: The two-dimensional equivalents of metamaterials. IEEE Antennas Propag. Mag. 2012, 54, 10–35. [Google Scholar] [CrossRef]
- Ma, X.; Pan, W.; Huang, C.; Pu, M.; Wang, Y.; Zhao, B.; Cui, J.; Wang, C.; Luo, X. An active metamaterial for polarization manipulating. Adv. Opt. Mater. 2014, 2, 945–949. [Google Scholar] [CrossRef]
- Yang, S.; Chen, Y.; Yu, C.; Gong, Y.; Tong, F. Design of a low-profile, frequency-reconfigurable, and high gain antenna using a varactor-loaded AMC ground. IEEE Access 2020, 8, 158635–158646. [Google Scholar] [CrossRef]
- Pitchappa, P.; Manjappa, M.; Ho, C.P.; Singh, R.; Singh, N.; Lee, C. Active control of electromagnetically induced transparency analog in terahertz MEMS metamaterial. Adv. Opt. Mater. 2016, 4, 541–547. [Google Scholar] [CrossRef]
- Bildik, S.; Dieter, S.; Fritzsch, C.; Menzel, W.; Jakoby, R. Reconfigurable folded reflectarray antenna based upon liquid crystal technology. IEEE Trans. Antennas Propag. 2014, 63, 122–132. [Google Scholar] [CrossRef]
- Chen, P.Y.; Soric, J.; Padooru, Y.R.; Bernety, H.M.; Yakovlev, A.B.; Alù, A. Nanostructured graphene metasurface for tunable terahertz cloaking. New J. Phys. 2013, 15, 123029. [Google Scholar] [CrossRef]
- Chiang, Y.J.; Yang, C.S.; Yang, Y.H.; Pan, C.L.; Yen, T.J. An ultrabroad terahertz bandpass filter based on multiple-resonance excitation of a composite metamaterial. Appl. Phys. Lett. 2011, 99, 191909. [Google Scholar] [CrossRef] [Green Version]
- Fallahi, A.; Perruisseau-Carrier, J. Manipulation of giant Faraday rotation in graphene metasurfaces. Appl. Phys. Lett. 2012, 101, 231605. [Google Scholar] [CrossRef] [Green Version]
- Miao, Z.; Wu, Q.; Li, X.; He, Q.; Ding, K.; An, Z.; Zhang, Y.; Zhou, L. Widely tunable terahertz phase modulation with gate- controlled graphene metasurfaces. Phys. Rev. X 2015, 5, 041027. [Google Scholar] [CrossRef] [Green Version]
- Balci, O.; Polat, E.O.; Kakenov, N.; Kocabas, C. Graphene-enabled electrically switchable radar-absorbing surfaces. Nat. Commun. 2015, 6, 6628. [Google Scholar] [CrossRef] [Green Version]
- Leng, T.; Huang, X.; Chang, K.; Chen, J.; Abdalla, M.A.; Hu, Z. Graphene Nanoflakes Printed Flexible Meandered-Line Dipole Antenna on Paper Substrate for Low-Cost RFID and Sensing Applications. IEEE Antennas Wirel. Propag. Lett. 2016, 15, 1565–1568. [Google Scholar] [CrossRef]
- Chen, H.; Lu, W.B.; Liu, Z.G.; Geng, M.Y. Microwave programmable graphene metasurface. ACS Photonics 2020, 7, 1425–1435. [Google Scholar] [CrossRef]
- Meyer, J.C.; Geim, A.K.; Katsnelson, M.I.; Novoselov, K.S.; Booth, T.J.; Roth, S. The structure of suspended graphene sheets. Nature 2007, 446, 60–63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.; Lu, W.B.; Li, X.B.; Liu, J.L. Terahertz Wavefront Control Based on Graphene Manipulated Fabry-Perot Cavities. IEEE Photonics Technol. Lett. 2016, 28, 1. [Google Scholar] [CrossRef]
- Yu, N.; Genevet, P.; Kats, M.A.; Aieta, F.; Tetienne, J.P.; Capasso, F.; Gaburro, Z. Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction. Science 2011, 334, 333–337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aieta, F.; Genevet, P.; Yu, N.; Kats, M.A.; Gaburro, Z.; Capasso, F. Out- of- PlaneReflection and Refraction of Light by Anisotropic Optical Antenna Metasurfaces withPhase Discontinuities. Nano Lett. 2012, 12, 1702–1706. [Google Scholar] [CrossRef]
- Li, Z.; Yao, K.; Xia, F.; Shen, S.; Tian, J.; Liu, Y. Graphene Plasmonic Metasurfaces to Steer Infrared Light. Sci. Rep. 2015, 5, 12423. [Google Scholar] [CrossRef] [Green Version]
- Ziegler, K. Minimal conductivity of graphene: Nonuniversal values from the Kubo formula. Phys. Rev. B 2007, 75, 233407. [Google Scholar] [CrossRef] [Green Version]
- Bianco, F.; Miseikis, V.; Convertino, D.; Xu, J.-H.; Castellano, F.; Beere, H.E.; Ritchie, D.A.; Vitiello, M.S.; Tredicucci, A.; Coletti, C. THz saturable absorption in turbostratic multilayer graphene on silicon carbide. Opt. Express 2015, 23, 11632–11640. [Google Scholar] [CrossRef] [PubMed]
- Cui, T.J.; Qi, M.Q.; Wan, X.; Zhao, J.; Cheng, Q. Coding metamaterials, digital metamaterials and programmable metamaterials. Light-Sci. Appl. 2014, 3, e218. [Google Scholar] [CrossRef] [Green Version]
- Silver, S. Microwave Antenna Theory and Design; McGraw-Hill Book Co.,: Columbus, OH, USA, 1949. [Google Scholar]
- Li, H.; Wang, G.; Cai, T.; Hou, H.; Guo, W. Wideband transparent beamforming Metadevice with amplitude- and phase-controlled Metasurface. Phys. Rev. Appl. 2019, 11, 14043. [Google Scholar] [CrossRef]
- Visser, H.J. Array and Phased Array Antenna Basics; John Wiley & Sons: New York, NY, USA, 2006. [Google Scholar]
- Slawinski, M.A.; Slawinski, R.A.; Parkin, J.M. Generalized form of Snell’s law in anisotropic media: A practical approach. SEG Tech. Program Expand. Abstr. 1997, 65, 1681–1684. [Google Scholar] [CrossRef]
- Naqvi, A.H.; Lim, S. A beam-steering antenna with a fluidically programmable metasurface. IEEE Trans. Antennas Propag. 2019, 67, 3704–3711. [Google Scholar] [CrossRef]
- Taghvaee, H.; Pitilakis, A.; Tsilipakos, O.; Tasolamprou, A.C.; Kantartzis, N.V.; Kafesaki, M.; Cabellos-Aparicio, A.; Alarcon, E.; Abadal, S. Multi-Wideband Terahertz Communications via Tunable Graphene-based Metasurfaces in 6G Networks. IEEE Veh. Technol. Mag. 2022, 17, 16–25. [Google Scholar] [CrossRef]
- Wu, B.; Hu, Y.; Zhao, Y.T.; Lu, W.B.; Zhang, W. Large angle beam steering THz antenna using active frequency selective surface based on hybrid graphene-gold structure. Opt. Express 2018, 26, 15353–15361. [Google Scholar] [CrossRef]
- Wang, Y.; Cui, D.; Wang, Y.; Yang, G.; Zhang, B.; Zhang, Y.; Wang, C. All-solid-state terahertz phased array based on graphene metasurface for ultra-wide-angle beam steering. J. Light. Technol. 2022, 40, 3814–3822. [Google Scholar] [CrossRef]
Parameter | a | b | c | d | m | n | r1 | r2 | r3 | H1 | H2 | Hpvc | Hh-BN |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Value (mm) | 2.5 | 2 | 1.4 | 0.3 | 1.45 | 0.2 | 0.1 | 0.15 | 0.4 | 0.508 | 0.254 | 0.07 | 0.05 |
State | Column | #1 | #2 | #3 | #4 | #5 |
---|---|---|---|---|---|---|
1 | −60° | 0 | 0 | 1 | 1 | 1 |
2 | −36° | 0 | 0 | 0 | 1 | 1 |
3 | −25° | 0 | 0 | 0 | 1 | 0 |
4 | −16° | 1 | 0 | 0 | 1 | 0 |
5 | −3° | 0 | 1 | 1 | 1 | 1 |
6 | +3° | 1 | 1 | 1 | 1 | 0 |
7 | +16° | 0 | 1 | 0 | 0 | 1 |
8 | +23° | 0 | 1 | 0 | 0 | 0 |
9 | +38° | 1 | 1 | 0 | 0 | 0 |
10 | +60° | 1 | 1 | 1 | 0 | 0 |
State | Row | #1 | #2 | #3 | #4 | #5 |
---|---|---|---|---|---|---|
11 | −25° | 0 | 0 | 1 | 0 | 1 |
12 | −11° | 1 | 0 | 0 | 1 | 1 |
13 | −3° | 0 | 1 | 1 | 1 | 1 |
14 | +3° | 1 | 1 | 1 | 1 | 0 |
15 | +11° | 1 | 1 | 0 | 0 | 1 |
16 | +25° | 1 | 0 | 1 | 0 | 0 |
[30] | [16] | [31] | [32] | [33] | This Work | |
---|---|---|---|---|---|---|
Operating Frequency Band | 2.57–2.64 GHz | 6–14 GHz | 0.56–0.74 THz, 0.75–0.98 THz and 0.99–1.08 THz | 1.38–1.56 THz | 1–1.4 THz | 75–91.5 GHz, 99.3–115 GHz |
Regulating components or materials | High dielectric fluid | Graphene | Graphene | Graphene | Graphene | |
Coding method | Phase | Phase | Amplitude and Phase | Amplitude | Phase | Amplitude and phase |
Beam steering angle | Theta = ±20° | Theta = ±53.7° | Not mentioned | Six metasurfaces are arranged around the antenna to achieve phi = 360° beam steering | From theta = 0° to theta = 68.37° | Theta = ±60° in E-plane, theta = ±25° in H-plane, phi = 360° single-beam steering |
Multi-beam status | Not mentioned | Four beams | Three beams | Three beams | Two beams | Four beams |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, H.; Sheng, L.; Luo, Y.; Meng, L.; Cao, W. Design of Tunable Broadband Graphene-Based Metasurface with Amplitude-Phase Modulation. Materials 2023, 16, 4633. https://doi.org/10.3390/ma16134633
Jiang H, Sheng L, Luo Y, Meng L, Cao W. Design of Tunable Broadband Graphene-Based Metasurface with Amplitude-Phase Modulation. Materials. 2023; 16(13):4633. https://doi.org/10.3390/ma16134633
Chicago/Turabian StyleJiang, Huixia, Lili Sheng, Yumei Luo, Liang Meng, and Weiping Cao. 2023. "Design of Tunable Broadband Graphene-Based Metasurface with Amplitude-Phase Modulation" Materials 16, no. 13: 4633. https://doi.org/10.3390/ma16134633
APA StyleJiang, H., Sheng, L., Luo, Y., Meng, L., & Cao, W. (2023). Design of Tunable Broadband Graphene-Based Metasurface with Amplitude-Phase Modulation. Materials, 16(13), 4633. https://doi.org/10.3390/ma16134633