Fabrication and Study of Dextran/Sulfonated Polysulfone Blend Membranes for Low-Density Lipoprotein Adsorption
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Dense Membranes
2.3. Characterization
2.3.1. FT-IR/ATR and XPS
2.3.2. WCA Measurement
2.3.3. Zeta Potential Measurements
2.3.4. BSA Adsorption
2.3.5. ELISA for LDL Adsorption and Desorption
3. Results and Discussion
3.1. FT-IR/ATR and XPS for Films
3.2. Hydrophilicity of the Membrane Surface
3.3. Surface Electric Properties of the Membrane Surface
3.4. BSA Adsorption
3.5. LDL Adsorption and Desorption Analysis by ELISA
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hu, J.; Cui, X.; Gong, Y.; Xu, X.; Gao, B.; Wen, T.; Lu, T.J.; Xu, F. Portable Microfluidic and Smartphone-Based Devices for Monitoring of Cardiovascular Diseases at the Point of Care. Biotechnol. Adv. 2016, 34, 305–320. [Google Scholar] [CrossRef] [PubMed]
- Dam, V.; Dobson, A.J.; Onland-Moret, N.C.; van der Schouw, Y.T.; Mishra, G.D. Vasomotor Menopausal Symptoms and Cardiovascular Disease Risk in Midlife: A Longitudinal Study. Maturitas 2020, 133, 32–41. [Google Scholar] [CrossRef] [PubMed]
- Kiberstis, P.A. Fatty Liver—Too Much of a Bad Thing? Science 2019, 364, 1044–1045. [Google Scholar] [CrossRef] [Green Version]
- Thierer, J.H.; Ekker, S.C.; Farber, S.A. The LipoGlo Reporter System for Sensitive and Specific Monitoring of Atherogenic Lipoproteins. Nat. Commun. 2019, 10, 3426. [Google Scholar] [CrossRef] [Green Version]
- Ishigaki, Y.; Oka, Y.; Katagiri, H. Circulating Oxidized LDL: A Biomarker and a Pathogenic Factor. Curr. Opin. Lipidol. 2009, 20, 363–369. [Google Scholar] [CrossRef]
- Emerging Risk Factor Collaboration. Lipoprotein (a) Concentration and the Risk of Coronary Heart Disease, Stroke, and Nonvascular Mortality. JAMA J. Am. Med. Assoc. 2009, 302, 412. [Google Scholar]
- Moriarty, P.M.; Luyendyk, J.P.; Gibson, C.A.; Backes, J.M. Effect of Low-Density Lipoprotein Apheresis on Plasma Levels of Apolipoprotein E4. Am. J. Cardiol. 2010, 105, 1585–1587. [Google Scholar] [CrossRef]
- Nicolosi, R.J.; Stucchi, A.F.; Kowala, M.C.; Hennessy, L.K.; Hegsted, D.M.; Schaefer, E.J. Effect of Dietary Fat Saturation and Cholesterol on LDL Composition and Metabolism. In Vivo Studies of Receptor and Nonreceptor-Mediated Catabolism of LDL in Cebus Monkeys. Arterioscler. Off. J. Am. Heart Assoc. Inc. 1990, 10, 119–128. [Google Scholar] [CrossRef] [Green Version]
- Gylling, H.; Plat, J.; Turley, S.; Ginsberg, H.N.; Ellegård, L.; Jessup, W.; Jones, P.J.; Lütjohann, D.; Maerz, W.; Masana, L. Plant Sterols and Plant Stanols in the Management of Dyslipidaemia and Prevention of Cardiovascular Disease. Atherosclerosis 2014, 232, 346–360. [Google Scholar] [CrossRef]
- Tolfrey, K.; Jones, A.M.; Campbell, I.G. The Effect of Aerobic Exercise Training on the Lipid-Lipoprotein Profile of Children and Adolescents. Sport. Med. 2000, 29, 99–112. [Google Scholar] [CrossRef]
- Tsouli, S.G.; Xydis, V.; Argyropoulou, M.I.; Tselepis, A.D.; Elisaf, M.; Kiortsis, D.N. Regression of Achilles Tendon Thickness after Statin Treatment in Patients with Familial Hypercholesterolemia: An Ultrasonographic Study. Atherosclerosis 2009, 205, 151–155. [Google Scholar] [CrossRef]
- Ray, K.K.; Bays, H.E.; Catapano, A.L.; Lalwani, N.D.; Bloedon, L.T.; Sterling, L.R.; Robinson, P.L.; Ballantyne, C.M. Safety and Efficacy of Bempedoic Acid to Reduce LDL Cholesterol. N. Engl. J. Med. 2019, 380, 1022–1032. [Google Scholar] [CrossRef]
- Kosmas, C.E.; Pantou, D.; Sourlas, A.; Papakonstantinou, E.J.; Uceta, R.E.; Guzman, E. New and Emerging Lipid-Modifying Drugs to Lower LDL Cholesterol. Drugs Context 2021, 10, 2021-8-3. [Google Scholar] [CrossRef]
- Huddy, K.; Dhesi, P.; Thompson, P.D. Do the Frequencies of Adverse Events Increase, Decrease, or Stay the Same with Long-Term Use of Statins? Curr. Atheroscler. Rep. 2013, 15, 301. [Google Scholar] [CrossRef]
- Kasteleyn, M.J.; Wezendonk, A.; Vos, R.C.; Numans, M.E.; Jansen, H.; Rutten, G.E. Repeat Prescriptions of Guideline-Based Secondary Prevention Medication in Patients with Type 2 Diabetes and Previous Myocardial Infarction in Dutch Primary Care. Fam. Pract. 2014, 31, 688–693. [Google Scholar] [CrossRef] [Green Version]
- Van Wijk, D.F.; Sjouke, B.; Figueroa, A.; Emami, H.; van der Valk, F.M.; MacNabb, M.H.; Hemphill, L.C.; Schulte, D.M.; Koopman, M.G.; Lobatto, M.E. Nonpharmacological Lipoprotein Apheresis Reduces Arterial Inflammation in Familial Hypercholesterolemia. J. Am. Coll. Cardiol. 2014, 64, 1418–1426. [Google Scholar] [CrossRef] [Green Version]
- Makino, H.; Koezuka, R.; Tamanaha, T.; Ogura, M.; Matsuki, K.; Hosoda, K.; Harada-Shiba, M. Familial Hypercholesterolemia and Lipoprotein Apheresis. J. Atheroscler. Thromb. 2019, 26, 679–687. [Google Scholar] [CrossRef] [Green Version]
- Hovland, A.; Hardersen, R.; Nielsen, E.W.; Enebakk, T.; Christiansen, D.; Ludviksen, J.K.; Mollnes, T.E.; Lappegård, K.T. Complement Profile and Activation Mechanisms by Different LDL Apheresis Systems. Acta Biomater. 2012, 8, 2288–2296. [Google Scholar] [CrossRef]
- Winters, J.L. Low-Density Lipoprotein Apheresis: Principles and Indications. In Proceedings of the Seminars in Dialysis; Wiley Online Library: Hoboken, NJ, USA, 2012; Volume 25, pp. 145–151. [Google Scholar]
- Winters, J.L. Lipid Apheresis, Indications, and Principles. J. Clin. Apher. 2011, 26, 269–275. [Google Scholar] [CrossRef]
- Julius, U.; Fischer, S.; Schatz, U.; Hohenstein, B.; Bornstein, S.R. Lipoprotein Apheresis: An Update. Clin. Lipidol. 2013, 8, 693–705. [Google Scholar] [CrossRef] [Green Version]
- Taylan, C.; Weber, L.T. An Update on Lipid Apheresis for Familial Hypercholesterolemia. Pediatr. Nephrol. 2023, 38, 371–382. [Google Scholar] [CrossRef] [PubMed]
- Richter, W.O.; Jacob, B.G.; Ritter, M.M.; Sühler, K.; Vierneisel, K.; Schwandt, P. Three-Year Treatment of Familial Heterozygous Hypercholesterolemia by Extracorporeal Low-Density Lipoprotein Immunoadsorption with Polyclonal Apolipoprotein B Antibodies. Metabolism 1993, 42, 888–894. [Google Scholar] [CrossRef] [PubMed]
- Bereli, N.; Şener, G.; Yavuz, H.; Denizli, A. Oriented Immobilized Anti-LDL Antibody Carrying Poly(Hydroxyethyl Methacrylate) Cryogel for Cholesterol Removal from Human Plasma. Mater. Sci. Eng. C 2011, 31, 1078–1083. [Google Scholar] [CrossRef]
- Huang, X.-J.; Guduru, D.; Xu, Z.-K.; Vienken, J.; Groth, T. Immobilization of Heparin on Polysulfone Surface for Selective Adsorption of Low-Density Lipoprotein (LDL). Acta Biomater. 2010, 6, 1099–1106. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.-J.; Guduru, D.; Xu, Z.-K.; Vienken, J.; Groth, T. Blood Compatibility and Permeability of Heparin-Modified Polysulfone as Potential Membrane for Simultaneous Hemodialysis and LDL Removal. Macromol. Biosci. 2011, 11, 131–140. [Google Scholar] [CrossRef]
- Li, J.; Huang, X.-J.; Ji, J.; Lan, P.; Vienken, J.; Groth, T.; Xu, Z.-K. Covalent Heparin Modification of a Polysulfone Flat Sheet Membrane for Selective Removal of Low-Density Lipoproteins: A Simple and Versatile Method. Macromol. Biosci. 2011, 11, 1218–1226. [Google Scholar] [CrossRef]
- Cao, J.-F.; Xu, W.; Zhang, Y.-Y.; Shu, Y.; Wang, J.-H. Chondroitin Sulfate-Enriched Hierarchical Multichannel Polydopamine Nanoparticles with Ultrahigh Sorption Capacity for Separation of Low-Density Lipoprotein. J. Mater. Chem. B 2021, 9, 1980–1987. [Google Scholar] [CrossRef]
- Cao, J.-F.; Xu, W.; Zhang, Y.-Y.; Shu, Y.; Wang, J.-H. A Salt Stimulus-Responsive Nanohydrogel for Controlled Fishing Low-Density Lipoprotein with Superior Adsorption Capacity. ACS Appl. Mater. Interfaces 2021, 13, 4583–4592. [Google Scholar] [CrossRef]
- Köse, K.; Mavlan, M.; Uzun, L.; Youngblood, J.P. Cholesterol Removal via Cyclodextrin-Decoration on Cellulose Nanocrystal (CNC)-Grafted Poly (HEMA-GMA) Nanocomposite Adsorbent. Cellulose 2021, 28, 471–487. [Google Scholar] [CrossRef]
- Wu, H.; Fang, F.; Wang, C.; Hong, X.; Chen, D.; Huang, X. Selective Molecular Recognition of Low Density Lipoprotein Based on β-Cyclodextrin Coated Electrochemical Biosensor. Biosensors 2021, 11, 216. [Google Scholar] [CrossRef]
- Fu, G.; Li, H.; Yu, H.; Liu, L.; Yuan, Z.; He, B. Synthesis and Lipoprotein Sorption Properties of Porous Chitosan Beads Grafted with Poly (Acrylic Acid). React. Funct. Polym. 2006, 66, 239–246. [Google Scholar] [CrossRef]
- Xu, Y.; Li, Y.; Zhao, W.; Zhao, C. Simple Emulsion Template Method towards Self-Anticoagulant and High-Efficiency Carboxymethyl Chitosan-Based Adsorbent for Low-Density Lipoprotein from Whole Blood. J. Colloid Interface Sci. 2023, 631, 231–244. [Google Scholar] [CrossRef]
- Yu, Y.; Dong, J.; Ma, B.; Jiang, X.; Guo, C.; Liu, Z.; Chai, Y.; Wang, L.; Sun, L.; Ou, L.; et al. Bio-Inspired Dual-Functional Phospholipid–Poly(Acrylic Acid) Brushes Grafted Porous Poly(Vinyl Alcohol) Beads for Selective Adsorption of Low-Density Lipoprotein. J. Mater. Chem. B 2021, 9, 6364–6376. [Google Scholar] [CrossRef]
- Yu, Y.; Ma, B.; Guo, C.; Jiang, X.; Liu, Z.; Chai, Y.; Wang, L.; Du, Y.; Wang, B.; Li, N.; et al. Biomembrane-mimetic Hemoperfusion Adsorbent for Efficient Removal of Low-density Lipoprotein from Hyperlipemia Blood. J. Biomed. Mater. Res. B Appl. Biomater. 2022, 110, 1956–1967. [Google Scholar] [CrossRef]
- Hospattankar, A.V.; Law, S.W.; Lackner, K.; Brewer, H.B., Jr. Identification of Low Density Lipoprotein Receptor Binding Domains of Human Apolipoprotein B-100: A Proposed Consensus LDL Receptor Binding Sequence of ApoB-100. Biochem. Biophys. Res. Commun. 1986, 139, 1078–1085. [Google Scholar] [CrossRef]
- Tani, N. Development of Selective Low-Density Lipoprotein (LDL) Apheresis System: Immobilized Polyanion as LDL-Specific Adsorption for LDL Apheresis System. Artif. Organs 1996, 20, 922–929. [Google Scholar] [CrossRef]
- Li, J.; Huang, X.-J.; Vienken, J.; Xu, Z.-K.; Groth, T. Bioinspired Multiple-Interaction Model Revealed in Adsorption of Low-Density Lipoprotein to Surface Containing Saccharide and Alkanesulfonate. Langmuir 2013, 29, 8363–8369. [Google Scholar] [CrossRef]
- Fang, F.; Zhu, X.-Y.; Chen, C.; Li, J.; Chen, D.-J.; Huang, X.-J. Anionic Glycosylated Polysulfone Membranes for the Affinity Adsorption of Low-Density Lipoprotein via Click Reactions. Acta Biomater. 2017, 49, 379–387. [Google Scholar] [CrossRef]
- Wang, L.; Fang, F.; Liu, Y.; Li, J.; Huang, X. Facile Preparation of Heparinized Polysulfone Membrane Assisted by Polydopamine/Polyethyleneimine Co-Deposition for Simultaneous LDL Selectivity and Biocompatibility. Appl. Surf. Sci. 2016, 385, 308–317. [Google Scholar] [CrossRef]
- Gnanasampanthan, T.; Karthäuser, J.F.; Spöllmann, S.; Wanka, R.; Becker, H.-W.; Rosenhahn, A. Amphiphilic Alginate-Based Layer-by-Layer Coatings Exhibiting Resistance against Nonspecific Protein Adsorption and Marine Biofouling. ACS Appl. Mater. Interfaces 2022, 14, 16062–16073. [Google Scholar] [CrossRef]
- Kruk, T.; Bzowska, M.; Hinz, A.; Szuwarzyński, M.; Szczepanowicz, K. Control of Specific/Nonspecific Protein Adsorption: Functionalization of Polyelectrolyte Multilayer Films as a Potential Coating for Biosensors. Materials 2021, 14, 7629. [Google Scholar] [CrossRef] [PubMed]
- Wild, C.P.; Jiang, Y.-Z.; Sabbioni, G.; Chapot, B.; Montesano, R. Evaluation of Methods for Quantitation of Aflatoxin-Albumin Adducts and Their Application to Human Exposure Assessment. Cancer Res. 1990, 50, 245–251. [Google Scholar] [PubMed]
- Makogonenko, E.; Tsurupa, G.; Ingham, K.; Medved, L. Interaction of Fibrin (Ogen) with Fibronectin: Further Characterization and Localization of the Fibronectin-Binding Site. Biochemistry 2002, 41, 7907–7913. [Google Scholar] [CrossRef] [PubMed]
- MacMullan, M.A.; Ibrayeva, A.; Trettner, K.; Deming, L.; Das, S.; Tran, F.; Moreno, J.R.; Casian, J.G.; Chellamuthu, P.; Kraft, J. ELISA Detection of SARS-CoV-2 Antibodies in Saliva. Sci. Rep. 2020, 10, 20818. [Google Scholar] [CrossRef]
- Wang, W.; Huang, X.-J.; Cao, J.-D.; Lan, P.; Wu, W. Immobilization of Sodium Alginate Sulfates on Polysulfone Ultrafiltration Membranes for Selective Adsorption of Low-Density Lipoprotein. Acta Biomater. 2014, 10, 234–243. [Google Scholar] [CrossRef]
- Nakamura, K.; Matsumoto, K. Protein Adsorption Properties on a Microfiltration Membrane: A Comparison between Static and Dynamic Adsorption Methods. J. Membr. Sci. 2006, 285, 126–136. [Google Scholar] [CrossRef]
- Saraydin, D.; Karadaǧ, E.; Öztop, H.N.; Güven, O. Adsorption of Bovine Serum Albumin onto Acrylamid—Maleic Acid Hydrogels. Biomaterials 1994, 15, 917–920. [Google Scholar] [CrossRef]
- Huang, S.; Ji, X.; Jackson, K.K.; Lubman, D.M.; Ard, M.B.; Bruce, T.F.; Marcus, R.K. Rapid Separation of Blood Plasma Exosomes from Low-Density Lipoproteins via a Hydrophobic Interaction Chromatography Method on a Polyester Capillary-Channeled Polymer Fiber Phase. Anal. Chim. Acta 2021, 1167, 338578. [Google Scholar] [CrossRef]
- Martins, M.C.L.; Wang, D.; Ji, J.; Feng, L.; Barbosa, M.A. Albumin and Fibrinogen Adsorption on PU–PHEMA Surfaces. Biomaterials 2003, 24, 2067–2076. [Google Scholar] [CrossRef]
- Ji, J.; Feng, L.; Barbosa, M.A. Stearyl Poly(Ethylene Oxide) Grafted Surfaces for Preferential Adsorption of Albumin. Biomaterials 2001, 22, 3015–3023. [Google Scholar] [CrossRef]
- Vroman, L.; Adams, A.L. Adsorption of Proteins out of Plasma and Solutions in Narrow Spaces. J. Colloid Interface Sci. 1986, 111, 391–402. [Google Scholar] [CrossRef]
- Shoji, T.; Hatsuda, S.; Tsuchikura, S.; Shinohara, K.; Kimoto, E.; Koyama, H.; Emoto, M.; Nishizawa, Y. Small Dense Low-Density Lipoprotein Cholesterol Concentration and Carotid Atherosclerosis. Atherosclerosis 2009, 202, 582–588. [Google Scholar] [CrossRef]
- Shah, P.K. Low-Density Lipoprotein Lowering and Atherosclerosis Progression: Does More Mean Less? Circulation 2002, 106, 2039–2040. [Google Scholar] [CrossRef] [Green Version]
Samples | Content (wt%) | ||
---|---|---|---|
C | O | S | |
PSF | 81.81% | 15.91% | 2.28% |
SPSF | 77.04% | 19.62% | 3.32% |
SPSF/GLU | 75.53% | 21.76% | 2.71% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fang, F.; Zhao, H.-Y.; Wang, R.; Chen, Q.; Wang, Q.-Y.; Zhang, Q.-H. Fabrication and Study of Dextran/Sulfonated Polysulfone Blend Membranes for Low-Density Lipoprotein Adsorption. Materials 2023, 16, 4641. https://doi.org/10.3390/ma16134641
Fang F, Zhao H-Y, Wang R, Chen Q, Wang Q-Y, Zhang Q-H. Fabrication and Study of Dextran/Sulfonated Polysulfone Blend Membranes for Low-Density Lipoprotein Adsorption. Materials. 2023; 16(13):4641. https://doi.org/10.3390/ma16134641
Chicago/Turabian StyleFang, Fei, Hai-Yang Zhao, Rui Wang, Qi Chen, Qiong-Yan Wang, and Qing-Hua Zhang. 2023. "Fabrication and Study of Dextran/Sulfonated Polysulfone Blend Membranes for Low-Density Lipoprotein Adsorption" Materials 16, no. 13: 4641. https://doi.org/10.3390/ma16134641
APA StyleFang, F., Zhao, H. -Y., Wang, R., Chen, Q., Wang, Q. -Y., & Zhang, Q. -H. (2023). Fabrication and Study of Dextran/Sulfonated Polysulfone Blend Membranes for Low-Density Lipoprotein Adsorption. Materials, 16(13), 4641. https://doi.org/10.3390/ma16134641