The Mechanical Properties of Direct Metal Laser Sintered Thin-Walled Maraging Steel (MS1) Elements
Abstract
:1. Introduction
2. Materials and Methods
2.1. Method
- -
- fabricating specimens using DMLS;
- -
- measuring the dimensions;
- -
- performing static tensile strength tests;
- -
- examining the specimen structure using scanning electron microscopy (SEM).
2.2. Materials
2.3. Fabrication of the Specimens
2.4. Dimensional Measurement
2.5. Static Tensile Strength Test
2.6. SEM Microscopy Analysis
2.7. Specimens Nomenclature
3. Results and Discussion
3.1. Tensile Test Results
3.2. Microscopy
4. Conclusions
- -
- there was no significant anisotropy in the mechanical properties of the elements printed in different directions;
- -
- the tensile strength increased with increasing thickness, and it was approximately 19% higher for the thickest elements than for the thinnest ones;
- -
- due to a high standard deviation (SD) and a wide scatter of the results for the percentage of elongation after fracture, ε, it was difficult to accurately determine the relationship between the two parameters;
- -
- elements printed in the X direction were characterized by the highest repeatability, as indicated by the close to zero values of SD in Table 2;
- -
- the analysis of the technological process for standard technological parameters showed that for thin-walled models it was necessary to introduce a correction in the number of DownSkin layers, which resulted in an increase in the energy density.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lesiak, P.; Pogorzelec, K.; Bochenek, A.; Sobotka, P.; Bednarska, K.; Anuszkiewicz, A.; Osuch, T.; Sienkiewicz, M.; Marek, P.; Nawotka, M.; et al. Three-Dimensional-Printed Mechanical Transmission Element with a Fiber Bragg Grating Sensor Embedded in a Replaceable Measuring Head. Sensors 2022, 22, 3381. [Google Scholar] [CrossRef]
- Bochnia, J.; Blasiak, M.; Kozior, T. A Comparative Study of the Mechanical Properties of FDM 3D Prints Made of PLA and Carbon Fiber-Reinforced PLA for Thin-Walled Applications. Materials 2021, 14, 7062. [Google Scholar] [CrossRef]
- Bochnia, J.; Blasiak, M.; Kozior, T. Tensile Strength Analysis of Thin-Walled Polymer Glass Fiber Reinforced Samples Manufactured by 3D Printing Technology. Polymers 2020, 12, 2783. [Google Scholar] [CrossRef]
- Bochnia, J.; Kozior, T.; Blasiak, M. The Mechanical Properties of Thin-Walled Specimens Printed from a Bronze-Filled PLA-Based Composite Filament Using Fused Deposition Modelling. Materials 2023, 16, 3241. [Google Scholar] [CrossRef]
- Hamrol, A.; Gawlik, J.; Sładek, J. Mechanical Engineering in Industry 4.0. Manag. Prod. Eng. Rev. 2019, 10, 14–28. [Google Scholar] [CrossRef]
- Wang, P.; Song, J.; Nai, M.L.S.; Wei, J. Experimental Analysis of Additively Manufactured Component and Design Guidelines for Lightweight Structures: A Case Study Using Electron Beam Melting. Addit. Manuf. 2020, 33, 101088. [Google Scholar] [CrossRef]
- Wang, Z.; Yang, S.; Huang, Y.; Fan, C.; Peng, Z.; Gao, Z. Microstructure and Fatigue Damage of 316L Stainless Steel Manufactured by Selective Laser Melting (SLM). Materials 2021, 14, 7544. [Google Scholar] [CrossRef] [PubMed]
- Kluczynski, J.; Sniezek, L.; Grzelak, K.; Torzewski, J. The Influence of Layer Re-Melting on Tensile and Fatigue Strength of Selective Laser Melted 316L Steel. In Proceedings of the 12th International Conference on Intelligent Technologies in Logistics and Mechatronics Systems (Itelms’2018), Bologna, Italy, 26–27 April 2018; pp. 115–123. [Google Scholar]
- Druzgalski, C.L.; Ashby, A.; Guss, G.; King, W.E.; Roehling, T.T.; Matthews, M.J. Process Optimization of Complex Geometries Using Feed Forward Control for Laser Powder Bed Fusion Additive Manufacturing. Addit. Manuf. 2020, 34, 101169. [Google Scholar] [CrossRef]
- Pisula, J.M.; Budzik, G.; Przeszlowski, L. An Analysis of the Surface Geometric Structure and Geometric Accuracy of Cylindrical Gear Teeth Manufactured with the Direct Metal Laser Sintering (DMLS) Method. Stroj. Vestn.-J. Mech. Eng. 2019, 65, 78–86. [Google Scholar] [CrossRef] [Green Version]
- Muiruri, A.; Maringa, M.; du Preez, W. Quasi-Static Mechanical Properties of Post-Processed Laser Powder Bed Fusion Ti6Al4V(ELI) Parts under Compressive Loading. Appl. Sci. 2022, 12, 9552. [Google Scholar] [CrossRef]
- Mower, T.M.; Long, M.J. Mechanical Behavior of Additive Manufactured, Powder-Bed Laser-Fused Materials. Mater. Sci. Eng. A—Struct. Mater. Prop. Microstruct. Process. 2016, 651, 198–213. [Google Scholar] [CrossRef]
- Simson, T.; Koch, J.; Rosenthal, J.; Kepka, M.; Zetek, M.; Zetkova, I.; Wolf, G.; Tomcik, P.; Kulhanek, J. Mechanical Properties of 18Ni-300 Maraging Steel Manufactured by LPBF. Procedia Struct. Integr. 2019, 17, 843–849. [Google Scholar] [CrossRef]
- Shamsdini, S.; Ghoncheh, M.H.; Sanjari, M.; Pirgazi, H.; Amirkhiz, B.S.; Kestens, L.; Mohammadi, M. Plastic Deformation throughout Strain-Induced Phase Transformation in Additively Manufactured Maraging Steels. Mater. Des. 2021, 198, 109289. [Google Scholar] [CrossRef]
- Shamsdini, S.; Pirgazi, H.; Ghoncheh, M.H.; Sanjari, M.; Amirkhiz, B.S.; Kestens, L.; Mohammadi, M. A Relationship between the Build and Texture Orientation in Tensile Loading of the Additively Manufactured Maraging Steels. Addit. Manuf. 2021, 41, 101954. [Google Scholar] [CrossRef]
- Bae, K.; Kim, D.; Lee, W.; Park, Y. Wear Behavior of Conventionally and Directly Aged Maraging 18Ni-300 Steel Produced by Laser Powder Bed Fusion. Materials 2021, 14, 2588. [Google Scholar] [CrossRef] [PubMed]
- Lim, B.; Chen, H.; Nomoto, K.; Chen, Z.; Saville, A.I.; Vogel, S.; Clarke, A.J.; Paradowska, A.; Reid, M.; Primig, S.; et al. Additively Manufactured Haynes-282 Monoliths Containing Thin Wall Struts of Varying Thicknesses. Addit. Manuf. 2022, 59, 103120. [Google Scholar] [CrossRef]
- Yu, C.-H.; Leicht, A.; Peng, R.L.; Moverare, J. Low Cycle Fatigue of Additively Manufactured Thin-Walled Stainless Steel 316L. Mater. Sci. Eng. A—Struct. Mater. Prop. Microstruct. Process. 2021, 821, 141598. [Google Scholar] [CrossRef]
- Urbanek, M.; Hodek, J.; Melzer, D.; Koukolikova, M.; Prantl, A.; Vavrik, J.; Brazda, M.; Martinek, P.; Rzepa, S.; Dzugan, J. Prediction of Behaviour of Thin-Walled DED-Processed Structure: Experimental-Numerical Approach. Materials 2022, 15, 806. [Google Scholar] [CrossRef]
- Sindinger, S.-L.; Marschall, D.; Kralovec, C.; Schagerl, M. Structural Response Prediction of Thin-Walled Additively Manufactured Parts Considering Orthotropy, Thickness Dependency and Scatter. Materials 2021, 14, 2463. [Google Scholar] [CrossRef]
- Sun, Y.; Hebert, R.J.; Aindow, M. Effect of Laser Scan Length on the Microstructure of Additively Manufactured 17-4PH Stainless Steel Thin-Walled Parts. Addit. Manuf. 2020, 35, 101302. [Google Scholar] [CrossRef]
- Korkmaz, M.E.; Gupta, M.K.; Waqar, S.; Kuntoglu, M.; Krolczyk, G.M.; Maruda, R.W.; Pimenov, D.Y. A Short Review on Thermal Treatments of Titanium & Nickel Based Alloys Processed by Selective Laser Melting. J. Mater. Res. Technol. 2022, 16, 1090–1101. [Google Scholar] [CrossRef]
- Mesicek, J.; Ma, Q.-P.; Hajnys, J.; Zelinka, J.; Pagac, M.; Petru, J.; Mizera, O. Abrasive Surface Finishing on SLM 316L Parts Fabricated with Recycled Powder. Appl. Sci. 2021, 11, 2869. [Google Scholar] [CrossRef]
- Chalgham, A.; Ehrmann, A.; Wickenkamp, I. Mechanical Properties of FDM Printed PLA Parts before and after Thermal Treatment. Polymers 2021, 13, 1239. [Google Scholar] [CrossRef] [PubMed]
- ISO/ASTM 52900:2015; Additive Manufacturing—General Principles—Terminology. ISO: Geneva, Switzerland, 2015.
- EOS. EOS MaragingSteel MS1 M400-4, Material Data Sheet, EOS GmbH—Electro Optical Systems, 2018; EOS: Krailling, Germany, 2018. [Google Scholar]
- Jin, A.; Wang, S.; Wang, B.; Sun, H.; Zhao, Y. Study on the Fracture Mechanism of 3D-Printed-Joint Specimens Based on DIC Technology. Rock Soil Mech. 2020, 41, 3214–3224. [Google Scholar] [CrossRef]
- Yang, C.; Tang, J.; Huang, D.; Wang, L.; Sun, Q.; Hu, Z. New Crack Initiation Model for Open-Flawed Rock Masses under Compression-Shear Stress. Theor. Appl. Fract. Mech. 2021, 116, 103114. [Google Scholar] [CrossRef]
- Wu, Z.; Li, X.; Xiao, H.; Liu, X.; Lin, W.; Rao, Y.; Li, Y.; Zhang, J. The Establishment and Evaluation Method of Artificial Microcracks in Rocks. Energies 2021, 14, 2780. [Google Scholar] [CrossRef]
- Nicoletto, G.; Konecna, R.; Frkan, M.; Riva, E. Surface Roughness and Directional Fatigue Behavior of As-Built EBM and DMLS Ti6Al4V. Int. J. Fatigue 2018, 116, 140–148. [Google Scholar] [CrossRef]
Mechanical Property 1 | As Built 2 | |
---|---|---|
Horizontal | Vertical | |
Ultimate tensile strength, Rm | 1200 MPa | 1200 MPa |
Yield strength, Rp0.2 | 1020 MPa | 1050 MPa |
Elongation at break, A | 13% | 11% |
Heat Treated 3 | ||
Horizontal | Vertical | |
Ultimate tensile strength, Rm | 2060 MPa | 2080 MPa |
Yield strength, Rp0.2 | 1990 MPa | 2010 MPa |
Elongation at break, A | 4% | 3% |
Specimens X-0.35 | (mm) | (mm) | Specimens X-0.45 | (mm) | (mm) | Specimens X-0.5 | (mm) | (mm) |
1 | 0.36 | 5.17 | 1 | 0.45 | 5.15 | 1 | 0.50 | 5.46 |
2 | 0.36 | 5.00 | 2 | 0.45 | 5.17 | 2 | 0.49 | 5.31 |
3 | 0.36 | 5.17 | 3 | 0.45 | 5.22 | 3 | 0.52 | 5.37 |
4 | 0.35 | 5.11 | 4 | 0.45 | 5.31 | 4 | 0.50 | 5.19 |
5 | 0.36 | 5.06 | 5 | 0.45 | 5.16 | 5 | 0.50 | 5.18 |
0.36 | 5.10 | 0.45 | 5.20 | 0.50 | 5.30 | |||
SD | 0.00 | 0.07 | SD | 0.00 | 0.06 | SD | 0.01 | 0.11 |
Specimens X-0.55 | (mm) | (mm) | Specimens Z-0.5 | (mm) | (mm) | Specimens Z-0.6 | (mm) | (mm) |
1 | 0.55 | 5.17 | 1 | 0.51 | 5.17 | 1 | 0.57 | 5.19 |
2 | 0.55 | 5.15 | 2 | 0.49 | 5.24 | 2 | 0.58 | 5.34 |
3 | 0.55 | 5.16 | 3 | 0.51 | 5.22 | 3 | 0.57 | 5.30 |
4 | 0.55 | 5.14 | 4 | 0.49 | 5.36 | 4 | 0.57 | 5.29 |
5 | 0.55 | 5.19 | 5 | 0.49 | 5.32 | 5 | 0.56 | 5.37 |
0.55 | 5.16 | 0.50 | 5.26 | 0.57 | 5.30 | |||
SD | 0.00 | 0.02 | SD | 0.01 | 0.07 | SD | 0.01 | 0.06 |
No. X-0.35 | Rm (MPa) | ε (%) | No. X-0.45 | Rm (MPa) | ε (%) | No. X-0.5 | Rm (MPa) | ε (%) |
1 | 762.32 | 4.46 | 1 | 859.53 | 4.43 | 1 | 786.57 | 5.14 |
2 | 766.19 | 2.54 | 2 | 855.34 | 2.74 | 2 | 832.77 | 4.29 |
3 | 764.28 | 4.23 | 3 | 850.16 | 3.80 | 3 | 740.21 | 5.43 |
4 | 767.92 | 5.66 | 4 | 851.24 | 4.54 | 4 | 825.85 | 4.29 |
5 | 732.22 | 3.74 | 5 | 865.21 | 3.57 | 5 | 833.39 | 5.57 |
758.59 | 4.13 | 856.30 | 3.82 | 803.76 | 4.94 | |||
SD | 14.89 | 1.13 | SD | 6.21 | 0.73 | SD | 40.44 | 0.55 |
No. X-0.55 | Rm (MPa) | ε (%) | No. Z-0.5 | Rm (MPa) | ε (%) | No. Z-0.6 | Rm (MPa) | ε (%) |
1 | 917.29 | 7.34 | 1 | 853.68 | 1.46 | 1 | 917.25 | 3.43 |
2 | 908.98 | 6.83 | 2 | 814.87 | 4.86 | 2 | 873.56 | 5.43 |
3 | 878.06 | 3.51 | 3 | 787.25 | 4.34 | 3 | 887.78 | 4.77 |
4 | 903.36 | 6.14 | 4 | 819.01 | 5.49 | 4 | 897.61 | 4.26 |
5 | 904.03 | 5.20 | 5 | 809.23 | 5.03 | 5 | 916.42 | 4.57 |
902.34 | 5.80 | 816.80 | 4.24 | 898.52 | 4.49 | |||
SD | 14.67 | 1.51 | SD | 23.98 | 1.61 | SD | 18.78 | 0.73 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bochnia, J.; Kozior, T.; Zyz, J. The Mechanical Properties of Direct Metal Laser Sintered Thin-Walled Maraging Steel (MS1) Elements. Materials 2023, 16, 4699. https://doi.org/10.3390/ma16134699
Bochnia J, Kozior T, Zyz J. The Mechanical Properties of Direct Metal Laser Sintered Thin-Walled Maraging Steel (MS1) Elements. Materials. 2023; 16(13):4699. https://doi.org/10.3390/ma16134699
Chicago/Turabian StyleBochnia, Jerzy, Tomasz Kozior, and Jarosław Zyz. 2023. "The Mechanical Properties of Direct Metal Laser Sintered Thin-Walled Maraging Steel (MS1) Elements" Materials 16, no. 13: 4699. https://doi.org/10.3390/ma16134699
APA StyleBochnia, J., Kozior, T., & Zyz, J. (2023). The Mechanical Properties of Direct Metal Laser Sintered Thin-Walled Maraging Steel (MS1) Elements. Materials, 16(13), 4699. https://doi.org/10.3390/ma16134699