A Study of the Compressive Behavior of Recycled Rubber Concrete Reinforced with Hybrid Fibers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Design of Concrete Mix
2.3. Design of Concrete Specimens
2.4. Test Setup and Method
3. Slumps and Failure Mode
3.1. Slumps
3.2. Failure Modes and Mechanisms
4. Results and Discussion
4.1. Compressive Strength
4.2. Elastic Modulus
4.3. Poisson’s Ratio
4.4. Strain at Peak Stress
4.5. Compressive Toughness
5. Mechanism Analysis
6. Constitutive Analysis
6.1. Stress–Strain Curves
6.2. Constitutive Model
7. Conclusions
- (1)
- An increase in the SF and GF contents can deteriorate the workability of fresh RRC, and the GF content has a more significant impact on the workability of fresh RRC. For the same fiber content, the length of the GFs had a slight effect on the workability of fresh RRC.
- (2)
- SF can effectively improve the deformation resistance of RRC, delay the generation of cracks, and increase the ductility of RRC after the peak load. The GF can effectively suppress the development of microcracks into large cracks, resulting in more small cracks on the surface of the concrete specimens while increasing the energy absorbed by RRC during failure.
- (3)
- Single or hybrid fibers can improve the compressive behavior of RRC. The addition of fibers resulted in maximum growth rates of 27%, 8%, 45%, and 152% for the compressive strength, elastic modulus, strain at peak stress, and compressive toughness, respectively. At the same time, Poisson’s ratio ranged from 0.166 to 0.215. These positive effects are attributed to the bridging effect of SFs and GFs after the generation of cracks, which can effectively suppress the generation and development of macrocracks and microcracks.
- (4)
- The improvement of the compressive behavior of RRC due to 12 mm GF was more significant than 6 mm GF. Specifically, in this study, the optimal compressive strength, strain at peak stress, and compressive toughness were obtained with hybrid 12 mm GF and SF. Owing to the larger aspect ratio of the 12 mm GF, the improvement in the compressive behavior of RRC is greater than the 6 mm GF.
- (5)
- There are optimal SF and GF contents that improve the compressive behavior of RRC. For compressive strength, the optimal total fiber content ranges from 1.4% to 1.6%. The optimal GF content was between 0.2% and 0.4%. When the GF content is greater than 0.4%, it tends to reduce the compressive behavior of RRC; therefore, it is recommended that the GF content be less than 0.4%.
- (6)
- A constitutive model for the HFRRRC was constructed based on experimental data. The coefficients of compressive strength, strain at peak stress, and controlling parameters (a and b) pertaining to the RIS and RIG are obtained by the model using polynomial fitting and are shown in Table 5. With varying fiber content, this model can provide stress–strain curves for RRC, and it exhibits good agreement with experimentally measured stress–strain curves. This demonstrated that the constitutive model was precise enough for real-world use.
- (7)
- Finally, further research is needed on the following aspects of HFRRRC. Analyze the failure mechanism of the concrete through microscopic experiments and explain the macroscopic test results; test the mechanical properties under other loads, such as tensile, flexural, and impact loads; and test the durability performance, such as water resistance, frost resistance, and acid/alkali resistance.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Feng, W.; Wang, Y.; Sun, J.; Tang, Y.; Wu, D.; Jiang, Z.; Wang, J.; Wang, X. Prediction of thermo-mechanical properties of rubber-modified recycled aggregate concrete. Constr. Build. Mater. 2022, 318, 125970. [Google Scholar] [CrossRef]
- Fang, S.; Li, L.; Luo, Z.; Fang, Z.; Huang, D.; Liu, F.; Wang, H.; Xiong, Z. Novel FRP interlocking multi-spiral reinforced-seawater sea-sand concrete square columns with longitudinal hybrid FRP–steel bars: Monotonic and cyclic axial compressive behaviours. Compos. Struct. 2023, 305, 116487. [Google Scholar] [CrossRef]
- Tang, Y.; Feng, W.; Chen, Z.; Nong, Y.; Guan, S.; Sun, J. Fracture behavior of a sustainable material: Recycled concrete with waste crumb rubber subjected to elevated temperatures. J. Clean. Prod. 2021, 318, 128553. [Google Scholar] [CrossRef]
- Zhang, G.; Ding, Z.; Wang, Y.; Fu, G.; Wang, Y.; Xie, C.; Zhang, Y.; Zhao, X.; Lu, X.; Wang, X. Performance Prediction of Cement Stabilized Soil Incorporating Solid Waste and Propylene Fiber. Materials 2022, 15, 4250. [Google Scholar] [CrossRef] [PubMed]
- Mai, G.; Li, L.; Chen, X.; Xiong, Z.; Liang, J.; Zou, X.; Qiu, Y.; Qiao, S.; Liang, D.; Liu, F. Fatigue performance of basalt fibre-reinforced polymer bar-reinforced sea sand concrete slabs. J. Mater. Res. Technol. 2023, 22, 706–727. [Google Scholar] [CrossRef]
- Aslani, F.; Sun, J.; Huang, G. Mechanical behavior of fiber-reinforced self-compacting rubberized concrete exposed to elevated temperatures. J. Mater. Civ. Eng. 2019, 31, 04019302. [Google Scholar] [CrossRef]
- Ataria, R.B.; Wang, Y.C. Mechanical Properties and Durability Performance of Recycled Aggregate Concrete Containing Crumb Rubber. Materials 2022, 15, 1776. [Google Scholar] [CrossRef]
- Luo, T.; Zhang, C.; Sun, C.; Zheng, X.; Ji, Y.; Yuan, X. Experimental Investigation on the Freeze–Thaw Resistance of Steel Fibers Reinforced Rubber Concrete. Materials 2020, 13, 1260. [Google Scholar] [CrossRef] [Green Version]
- Grinys, A.; Augonis, A.; Daukšys, M.; Pupeikis, D. Mechanical properties and durability of rubberized and SBR latex modified rubberized concrete. Constr. Build. Mater. 2020, 248, 118584. [Google Scholar] [CrossRef]
- Feng, W.; Tang, Y.; He, W.; Wei, W.; Yang, Y. Mode I dynamic fracture toughness of rubberised concrete using a drop hammer device and split Hopkinson pressure bar. J. Build. Eng. 2022, 48, 103995. [Google Scholar] [CrossRef]
- Abbas, S.; Fatima, A.; Kazmi, S.M.S.; Munir, M.J.; Ali, S.; Rizvi, M.A. Effect of Particle Sizes and Dosages of Rubber Waste on the Mechanical Properties of Rubberized Concrete Composite. Appl. Sci. 2022, 12, 8460. [Google Scholar] [CrossRef]
- Li, Y.; Chai, J.; Wang, R.; Zhou, Y.; Tong, X. A Review of the Durability-Related Features of Waste Tyre Rubber as a Partial Substitute for Natural Aggregate in Concrete. Buildings 2022, 12, 1975. [Google Scholar] [CrossRef]
- Xie, J.; Guo, Y.; Liu, L.; Xie, Z. Compressive and flexural behaviours of a new steel-fibre-reinforced recycled aggregate concrete with crumb rubber. Constr. Build. Mater. 2015, 79, 263–272. [Google Scholar] [CrossRef]
- Mohammadi, I.; Khabbaz, H. Shrinkage performance of Crumb Rubber Concrete (CRC) prepared by water-soaking treatment method for rigid pavements. Cem. Concr. Comp. 2015, 62, 106–116. [Google Scholar] [CrossRef]
- Sukontasukkul, P.; Tiamlom, K. Expansion under water and drying shrinkage of rubberized concrete mixed with crumb rubber with different size. Constr. Build. Mater. 2012, 29, 520–526. [Google Scholar] [CrossRef]
- Fang, S.; Zhang, S.; Cao, Z.; Zhao, G.; Fang, Z.; Ma, Y.; Jiang, H. Effects of stud aspect ratio and cover thickness on push-out performance of thin full-depth precast UHPC slabs with grouped short studs: Experimental evaluation and design considerations. J. Build. Eng. 2023, 67, 105910. [Google Scholar] [CrossRef]
- Si, R.; Guo, S.; Dai, Q. Durability performance of rubberized mortar and concrete with NaOH-Solution treated rubber particles. Constr. Build. Mater. 2017, 153, 496–505. [Google Scholar] [CrossRef]
- Guo, S.; Dai, Q.; Si, R.; Sun, X.; Lu, C. Evaluation of properties and performance of rubber-modified concrete for recycling of waste scrap tire. J. Clean. Prod. 2017, 148, 681–689. [Google Scholar] [CrossRef]
- Appana, P.M.; Mohammed, B.S.; Abdulkadir, I.; Ali, M.O.A.; Liew, M.S. Mechanical, Microstructural and Drying Shrinkage Properties of NaOH-Pretreated Crumb Rubber Concrete: RSM-Based Modeling and Optimization. Materials 2022, 15, 2588. [Google Scholar] [CrossRef]
- Feng, Y.; Niu, Z.; Zhao, C.; Li, L. Compressive Test Investigation and Numerical Simulation of Polyvinyl-Alcohol (PVA)-Fiber-Reinforced Rubber Concrete. Buildings 2023, 13, 431. [Google Scholar] [CrossRef]
- Wang, T.; Fan, X.; Gao, C.; Qu, C.; Liu, J.; Yu, G. The Influence of Fiber on the Mechanical Properties of Geopolymer Concrete: A Review. Polymers 2023, 15, 827. [Google Scholar] [CrossRef] [PubMed]
- Aslani, F.; Sun, J.; Bromley, D.; Ma, G. Fiber-reinforced lightweight self-compacting concrete incorporating scoria aggregates at elevated temperatures. Struct. Concr. 2019, 20, 1022–1035. [Google Scholar] [CrossRef]
- Zhang, G.; Wang, J.; Jiang, Z.; Peng, C.; Sun, J.; Wang, Y.; Chen, C.; Morsy, A.M.; Wang, X. Properties of sustainable self-compacting concrete containing activated jute fiber and waste mineral powders. J. Mater. Res. Technol. 2022, 19, 1740–1758. [Google Scholar] [CrossRef]
- Yuan, H.; Zhu, L.; Wang, X.; Yang, H. Effect of Microstructure on the Mechanical Properties of Steel Fiber-Reinforced Recycled Concretes. Materials 2022, 15, 4018. [Google Scholar] [CrossRef] [PubMed]
- Gong, C.; Kang, L.; Zhou, W.; Liu, L.; Lei, M. Tensile Performance Test Research of Hybrid Steel Fiber—Reinforced Self-Compacting Concrete. Materials 2023, 16, 1114. [Google Scholar] [CrossRef]
- Dvorkin, L.; Bordiuzhenko, O.; Tekle, B.H.; Ribakov, Y. A Method for the Design of Concrete with Combined Steel and Basalt Fiber. Appl. Sci. 2021, 11, 8850. [Google Scholar] [CrossRef]
- Khan, M.; Cao, M.; Xie, C.; Ali, M. Efficiency of basalt fiber length and content on mechanical and microstructural properties of hybrid fiber concrete. Fatigue Fract. Eng. Mater. Struct. 2021, 44, 2135–2152. [Google Scholar] [CrossRef]
- Song, W.; Yin, J. Hybrid Effect Evaluation of Steel Fiber and Carbon Fiber on the Performance of the Fiber Reinforced Concrete. Materials 2016, 9, 704. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Li, B.; Wang, Z.; Zhang, Z.; Alselwi, O. Effects of Hybrid PVA–Steel Fibers on the Mechanical Performance of High-Ductility Cementitious Composites. Buildings 2022, 12, 1934. [Google Scholar] [CrossRef]
- GB/T 14684-2011; Sand for Construction. General Administration of Quality Supervision. Inspection and Quarantine: Beijing, China, 2011.
- GB/T 14685-2011; Pebble and Crushed Stone for Construction. General Administration of Quality Supervision. Inspection and Quarantine: Beijing, China, 2011.
- GB/T 50080-2016; Standard for Test Method of Performance of Ordinary Fresh Concrete. Ministry of Housing and Urban-Rural Development: Beijing, China, 2016.
- ASTM C39/C39M-21; Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens. ASTM International: West Conshohocken, PA, USA, 2021.
- Li, K.; Yang, C.; Huang, W.; Zhao, Y.; Wang, Y.; Pan, Y.; Xu, F. Effects of hybrid fibers on workability, mechanical, and time-dependent properties of high strength fiber-reinforced self-consolidating concrete. Constr. Build. Mater. 2021, 277, 122325. [Google Scholar] [CrossRef]
- Zuaiter, M.; El-Hassan, H.; El-Maaddawy, T.; El-Ariss, B. Properties of Slag-Fly Ash Blended Geopolymer Concrete Reinforced with Hybrid Glass Fibers. Buildings 2022, 12, 1114. [Google Scholar] [CrossRef]
- ASTM C469/C469M-22; Standard Test Method for Static Modulus of Elasticity and Poisson’s Ratio of Concrete in Compression. ASTM International: West Conshohocken, PA, USA, 2022.
- Kizilkanat, A.B.; Kabay, N.; Akyüncü, V.; Chowdhury, S.; Akça, A.H. Mechanical properties and fracture behavior of basalt and glass fiber reinforced concrete: An experimental study. Constr. Build. Mater. 2015, 100, 218–224. [Google Scholar] [CrossRef]
- Strukar, K.; Kalman Šipoš, T.; Dokšanović, T.; Rodrigues, H. Experimental Study of Rubberized Concrete Stress-Strain Behavior for Improving Constitutive Models. Materials 2018, 11, 2245. [Google Scholar] [CrossRef] [Green Version]
- Ouyang, X.; Wu, Z.; Shan, B.; Chen, Q.; Shi, C. A critical review on compressive behavior and empirical constitutive models of concrete. Constr. Build. Mater. 2022, 323, 126572. [Google Scholar] [CrossRef]
Aggregate Type | Source | Apparent Density (kg/m3) | Particle Size (mm) | Water Absorption (%) | Fineness Modulus |
---|---|---|---|---|---|
Sand | River sand | 2636 | <5 | 0.5 | 2.02 |
Recycled rubber | Waste tires | 750 | <2.5 | - | - |
Coarse aggregate | Crushed granite | 2641 | 5–16 | 2.1 | - |
Materials | Length (mm) | Apparent Density (kg/m3) | Equivalent Diameter (μm) | Tensile Strength (MPa) | Elastic Modulus (GPa) |
---|---|---|---|---|---|
Steel fibers | 12 | 7800 | 200 | 3000 | 200 |
Glass fibers | 6/12 | 2680 | 14 | 1700 | 72 |
Mix Number | Cement | Water | Recycled Rubber | Sand | Coarse Aggregate | SF | GF | SP |
---|---|---|---|---|---|---|---|---|
S0G0 | 554.1 | 245.3 | 17.1 | 531.2 | 966.3 | 0.0 | 0.0 | 2.8 |
S0.4G0 | 551.9 | 244.4 | 17.0 | 529.1 | 962.4 | 31.2 | 0.0 | 2.8 |
S0.8G0 | 549.7 | 243.4 | 16.9 | 527.0 | 958.5 | 62.4 | 0.0 | 2.8 |
S1.2G0 | 547.5 | 242.4 | 16.9 | 524.8 | 954.7 | 93.6 | 0.0 | 2.7 |
S0G0.2L6 | 553.0 | 244.9 | 17.0 | 530.2 | 964.3 | 0.0 | 5.4 | 2.8 |
S0.4G0.2L6 | 550.8 | 243.9 | 17.0 | 528.0 | 960.5 | 31.2 | 5.4 | 2.8 |
S0.8G0.2L6 | 548.6 | 242.9 | 16.9 | 525.9 | 956.6 | 62.4 | 5.4 | 2.7 |
S1.2G0.2L6 | 546.4 | 241.9 | 16.8 | 523.8 | 952.7 | 93.6 | 5.4 | 2.7 |
S0G0.4L6 | 551.9 | 244.4 | 17.0 | 529.1 | 962.4 | 0.0 | 10.7 | 2.8 |
S0.4G0.4L6 | 549.7 | 243.4 | 16.9 | 527.0 | 958.5 | 31.2 | 10.7 | 2.8 |
S0.8G0.4L6 | 547.5 | 242.4 | 16.9 | 524.8 | 954.7 | 62.4 | 10.7 | 2.7 |
S1.2G0.4L6 | 545.2 | 241.4 | 16.8 | 522.7 | 950.8 | 93.6 | 10.7 | 2.7 |
S0G0.6L6 | 550.8 | 243.9 | 17.0 | 528.0 | 960.5 | 0.0 | 16.1 | 2.8 |
S0.4G0.6L6 | 548.6 | 242.9 | 16.9 | 525.9 | 956.6 | 31.2 | 16.1 | 2.7 |
S0.8G0.6L6 | 546.4 | 241.9 | 16.8 | 523.8 | 952.7 | 62.4 | 16.1 | 2.7 |
S1.2G0.6L6 | 544.1 | 240.9 | 16.7 | 521.7 | 948.9 | 93.6 | 16.1 | 2.7 |
S0G0.2L12 | 553.0 | 244.9 | 17.0 | 530.2 | 964.3 | 0.0 | 5.4 | 2.8 |
S0.4G0.2L12 | 550.8 | 243.9 | 17.0 | 528.0 | 960.5 | 31.2 | 5.4 | 2.8 |
S0.8G0.2L12 | 548.6 | 242.9 | 16.9 | 525.9 | 956.6 | 62.4 | 5.4 | 2.7 |
S1.2G0.2L12 | 546.4 | 241.9 | 16.8 | 523.8 | 952.7 | 93.6 | 5.4 | 2.7 |
S0G0.4L12 | 551.9 | 244.4 | 17.0 | 529.1 | 962.4 | 0.0 | 10.7 | 2.8 |
S0.4G0.4L12 | 549.7 | 243.4 | 16.9 | 527.0 | 958.5 | 31.2 | 10.7 | 2.8 |
S0.8G0.4L12 | 547.5 | 242.4 | 16.9 | 524.8 | 954.7 | 62.4 | 10.7 | 2.7 |
S1.2G0.4L12 | 545.2 | 241.4 | 16.8 | 522.7 | 950.8 | 93.6 | 10.7 | 2.7 |
S0G0.6L12 | 550.8 | 243.9 | 17.0 | 528.0 | 960.5 | 0.0 | 16.1 | 2.8 |
S0.4G0.6L12 | 548.6 | 242.9 | 16.9 | 525.9 | 956.6 | 31.2 | 16.1 | 2.7 |
S0.8G0.6L12 | 546.4 | 241.9 | 16.8 | 523.8 | 952.7 | 62.4 | 16.1 | 2.7 |
S1.2G0.6L12 | 544.1 | 240.9 | 16.7 | 521.7 | 948.9 | 93.6 | 16.1 | 2.7 |
Mix Number | Slump (mm) | Compressive Strength | Elastic Modulus | Poisson’s Ratio | Strain at Peak Stress | Compressive Toughness | Controlling Parameter a | Controlling Parameter b | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
RV * (MPa) | SD * | RV (GPa) | SD | RV | SD | RV (×10−3) | SD | RV (×10−2 MPa) | SD | ||||
S0G0 | 219 | 34.36 | 1.54 | 22.11 | 0.91 | 1.84 | 0.05 | 2.70 | 0.16 | 11.11 | 2.20 | 2.11 | 1.58 |
S0.4G0 | 191 | 36.93 | 2.37 | 23.12 | 1.97 | 1.98 | 0.05 | 2.68 | 0.08 | 10.53 | 1.37 | 1.85 | 1.08 |
S0.8G0 | 202 | 35.06 | 1.25 | 22.73 | 1.20 | 1.73 | 0.19 | 2.87 | 0.32 | 11.52 | 1.54 | 2.34 | 0.66 |
S1.2G0 | 101 | 38.09 | 4.48 | 23.82 | 0.92 | 2.04 | 0.04 | 2.95 | 0.43 | 11.64 | 9.25 | 2.49 | 0.54 |
S0G0.2L6 | 176 | 34.24 | 1.97 | 21.57 | 1.86 | 1.93 | 0.05 | 2.60 | 0.28 | 12.94 | 5.19 | 2.66 | 1.01 |
S0.4G0.2L6 | 144 | 36.57 | 2.43 | 22.52 | 1.28 | 2.14 | 0.04 | 2.82 | 0.54 | 13.24 | 6.67 | 2.15 | 0.89 |
S0.8G0.2L6 | 108 | 38.57 | 1.79 | 22.44 | 1.15 | 1.71 | 0.04 | 2.84 | 0.24 | 17.82 | 6.06 | 2.14 | 0.48 |
S1.2G0.2L6 | 68 | 42.55 | 2.12 | 22.20 | 2.11 | 2.08 | 0.36 | 3.09 | 0.12 | 17.79 | 3.05 | 1.44 | 0.48 |
S0G0.4L6 | 112 | 34.77 | 1.01 | 20.56 | 1.12 | 1.90 | 0.06 | 2.79 | 0.13 | 12.17 | 3.49 | 2.08 | 0.89 |
S0.4G0.4L6 | 68 | 34.77 | 2.46 | 20.87 | 1.42 | 1.85 | 0.21 | 2.77 | 0.67 | 15.28 | 3.23 | 1.79 | 0.31 |
S0.8G0.4L6 | 55 | 40.05 | 1.39 | 22.53 | 1.69 | 2.09 | 0.09 | 3.08 | 0.24 | 19.64 | 1.56 | 2.01 | 0.34 |
S1.2G0.4L6 | 42 | 36.87 | 5.95 | 21.44 | 1.25 | 1.66 | 0.21 | 3.04 | 0.09 | 23.30 | 6.14 | 2.16 | 0.27 |
S0G0.6L6 | 51 | 35.26 | 2.48 | 21.65 | 1.37 | 2.04 | 0.12 | 2.86 | 0.38 | 12.94 | 4.40 | 1.38 | 0.67 |
S0.4G0.6L6 | 36 | 39.53 | 6.71 | 20.82 | 3.18 | 2.04 | 0.33 | 2.89 | 0.25 | 13.17 | 4.85 | 2.17 | 0.88 |
S0.8G0.6L6 | 56 | 37.58 | 1.43 | 21.13 | 3.35 | 1.94 | 0.13 | 3.03 | 0.24 | 16.29 | 2.29 | 2.74 | 0.52 |
S1.2G0.6L6 | 51 | 33.73 | 2.45 | 21.26 | 1.96 | 1.87 | 0.04 | 2.53 | 0.34 | 11.78 | 5.58 | 1.76 | 0.23 |
S0G0.2L12 | 187 | 35.68 | 2.10 | 22.10 | 1.89 | 2.15 | 0.10 | 3.07 | 0.53 | 14.58 | 5.75 | 2.25 | 1.33 |
S0.4G0.2L12 | 107 | 37.95 | 6.29 | 22.60 | 1.28 | 2.09 | 0.07 | 2.82 | 0.29 | 13.64 | 3.72 | 2.04 | 0.86 |
S0.8G0.2L12 | 83 | 39.81 | 1.56 | 23.06 | 2.56 | 1.94 | 0.04 | 3.42 | 0.16 | 21.06 | 3.00 | 2.41 | 0.61 |
S1.2G0.2L12 | 51 | 41.59 | 5.37 | 22.74 | 1.49 | 2.02 | 0.28 | 3.46 | 0.13 | 21.24 | 1.23 | 2.10 | 0.80 |
S0G0.4L12 | 81 | 36.36 | 3.78 | 21.72 | 2.77 | 1.97 | 0.11 | 3.05 | 0.19 | 14.30 | 3.13 | 2.06 | 1.02 |
S0.4G0.4L12 | 58 | 38.49 | 1.05 | 22.03 | 2.92 | 1.97 | 0.16 | 2.96 | 0.10 | 14.43 | 1.07 | 1.90 | 0.73 |
S0.8G0.4L12 | 66 | 38.99 | 0.98 | 22.60 | 2.21 | 1.96 | 0.08 | 3.00 | 0.15 | 18.51 | 5.44 | 1.68 | 0.44 |
S1.2G0.4L12 | 35 | 43.60 | 1.68 | 22.11 | 3.33 | 2.09 | 0.07 | 3.92 | 0.11 | 27.96 | 1.05 | 2.51 | 0.33 |
S0G0.6L12 | 50 | 37.18 | 2.03 | 21.70 | 1.21 | 1.88 | 0.13 | 3.15 | 0.11 | 12.55 | 5.70 | 1.93 | 1.42 |
S0.4G0.6L12 | 23 | 39.90 | 2.09 | 21.03 | 0.68 | 2.03 | 0.17 | 3.32 | 0.13 | 17.59 | 2.21 | 2.19 | 0.56 |
S0.8G0.6L12 | 35 | 38.02 | 4.96 | 21.04 | 2.81 | 2.03 | 0.34 | 3.26 | 0.30 | 18.63 | 3.50 | 2.30 | 0.50 |
S1.2G0.6L12 | 27 | 40.28 | 6.92 | 22.57 | 1.80 | 1.89 | 0.09 | 3.31 | 0.19 | 18.58 | 3.10 | 2.34 | 0.56 |
Value of j | α1j for fc | α2j for εc | α3j for a | α4j for b | ||||
---|---|---|---|---|---|---|---|---|
6 mm GFs | 12 mm GFs | 6 mm GFs | 12 mm GFs | 6 mm GFs | 12 mm GFs | 6 mm GFs | 12 mm GFs | |
1 | 6.72 × 10−6 | 7.28 × 10−5 | −4.01 × 10−6 | −1.94 × 10−6 | −1.27 × 10−5 | −3.41 × 10−6 | 2.57 × 10−6 | −1.89 × 10−7 |
2 | 1.20 × 10−6 | 3.07 × 10−8 | −6.03 × 10−8 | 1.15 × 10−8 | 2.26 × 10−8 | 1.60 × 10−8 | 1.06 × 10−7 | 1.99 × 10−8 |
3 | −1.55 × 10−5 | 5.32 × 10−8 | −9.92 × 10−7 | −3.56 × 10−9 | −3.00 × 10−6 | −1.91 × 10−7 | −1.09 × 10−6 | 3.16 × 10−7 |
4 | −5.07 × 10−6 | −8.89 × 10−7 | −3.42 × 10−7 | −1.08 × 10−7 | 9.23 × 10−7 | 6.73 × 10−8 | −2.09 × 10−7 | −7.39 × 10−8 |
5 | 2.67 × 10−4 | −7.66 × 10−3 | 5.16 × 10−4 | 3.49 × 10−4 | 1.64 × 10−3 | 5.35 × 10−4 | −8.57 × 10−5 | 1.68 × 10−4 |
6 | −3.46 × 10−4 | −1.86 × 10−5 | 3.11 × 10−5 | −8.08 × 10−6 | −3.85 × 10−5 | −1.35 × 10−5 | −2.08 × 10−5 | −1.11 × 10−5 |
7 | 2.11 × 10−3 | 4.46 × 10−4 | 1.31 × 10−4 | 5.40 × 10−5 | −2.81 × 10−7 | −1.99 × 10−5 | 1.61 × 10−4 | 2.14 × 10−5 |
8 | −8.18 × 10−3 | 2.19 × 10−1 | −1.30 × 10−2 | −1.20 × 10−2 | −4.94 × 10−2 | −1.54 × 10−2 | −2.17 × 10−2 | −2.58 × 10−2 |
9 | 1.35 × 10−2 | 7.06 × 10−3 | −3.45 × 10−3 | 2.08 × 10−3 | 5.20 × 10−3 | 2.54 × 10−3 | −4.83 × 10−3 | 1.30 × 10−5 |
10 | 35.03 | 34.60 | 2.72 | 2.77 | 2.25 | 2.10 | 1.59 | 1.57 |
0.78 | 0.95 | 0.86 | 0.78 | 0.65 | 0.48 | 0.92 | 0.95 |
Mix Number | 6 mm GF Series | 12 mm GF Series | ||||||
---|---|---|---|---|---|---|---|---|
Predicted Values of fc (MPa) | Change (%) | Predicted Values of εc (×103) | Change (%) | Predicted Values of fc (MPa) | Change (%) | Predicted Values of εc (×103) | Change (%) | |
S0G0 | 35.03 | 1.95 | 2.72 | 0.95 | 34.60 | 0.70 | 2.77 | 2.58 |
S0.4G0 | 35.08 | −5.01 | 2.65 | −0.82 | 36.46 | −1.28 | 2.65 | −0.82 |
S0.8G0 | 36.00 | 2.67 | 2.85 | −0.69 | 35.53 | 1.34 | 2.78 | −2.95 |
S1.2G0 | 38.33 | 0.64 | 2.97 | 0.54 | 37.85 | −0.62 | 2.99 | 1.24 |
S0G0.2 | 34.40 | 0.47 | 2.62 | 0.66 | 35.42 | −0.73 | 2.94 | −4.20 |
S0.4G0.2 | 37.14 | 1.55 | 2.71 | −3.90 | 38.49 | 1.42 | 2.98 | 5.57 |
S0.8G0.2 | 39.21 | 1.66 | 2.97 | 4.49 | 38.78 | −2.58 | 3.25 | −4.95 |
S1.2G0.2 | 41.18 | −3.22 | 3.05 | −1.12 | 42.34 | 1.80 | 3.60 | 4.09 |
S0G0.4 | 33.21 | −4.47 | 2.74 | −1.80 | 36.07 | −0.79 | 2.99 | −1.77 |
S0.4G0.4 | 36.85 | 5.98 | 2.87 | 3.67 | 39.10 | 1.59 | 3.02 | 2.03 |
S0.8G0.4 | 38.29 | −4.39 | 3.07 | −0.37 | 39.36 | 0.96 | 3.29 | 9.46 |
S1.2G0.4 | 38.10 | 3.34 | 3.00 | −1.31 | 42.90 | −1.60 | 3.63 | −7.40 |
S0G0.6 | 35.98 | 2.05 | 2.87 | 0.26 | 37.49 | 0.83 | 3.26 | 3.60 |
S0.4G0.6 | 38.73 | −2.02 | 2.92 | 1.05 | 39.22 | −1.70 | 3.13 | −5.88 |
S0.8G0.6 | 37.76 | 0.48 | 2.94 | −3.17 | 38.20 | 0.48 | 3.23 | −0.92 |
S1.2G0.6 | 33.62 | −0.31 | 2.59 | 2.31 | 40.47 | 0.46 | 3.42 | 3.39 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Li, L.; Zheng, Y.; Li, Y.; Chen, Z.; Xiao, J.; Yuan, M.; Zhang, J.; Pan, Z.; Xiong, Z. A Study of the Compressive Behavior of Recycled Rubber Concrete Reinforced with Hybrid Fibers. Materials 2023, 16, 4731. https://doi.org/10.3390/ma16134731
Li X, Li L, Zheng Y, Li Y, Chen Z, Xiao J, Yuan M, Zhang J, Pan Z, Xiong Z. A Study of the Compressive Behavior of Recycled Rubber Concrete Reinforced with Hybrid Fibers. Materials. 2023; 16(13):4731. https://doi.org/10.3390/ma16134731
Chicago/Turabian StyleLi, Xiaohui, Lijuan Li, Yingming Zheng, Yanlong Li, Zijiang Chen, Jie Xiao, Min Yuan, Jian Zhang, Zezhou Pan, and Zhe Xiong. 2023. "A Study of the Compressive Behavior of Recycled Rubber Concrete Reinforced with Hybrid Fibers" Materials 16, no. 13: 4731. https://doi.org/10.3390/ma16134731
APA StyleLi, X., Li, L., Zheng, Y., Li, Y., Chen, Z., Xiao, J., Yuan, M., Zhang, J., Pan, Z., & Xiong, Z. (2023). A Study of the Compressive Behavior of Recycled Rubber Concrete Reinforced with Hybrid Fibers. Materials, 16(13), 4731. https://doi.org/10.3390/ma16134731