The Role of Lithium in the Aging Precipitation Process of Al-Zn-Mg-Cu Alloys and Its Effect on the Properties
Abstract
:1. Introduction
2. Effect of Li on the Aging Behavior and Mechanism of Al-Zn-Mg-Cu Alloy
2.1. Effect of Li on the Aging Precipitation GP Zone
2.2. Effect of Li on the Aging Precipitation Phase
2.2.1. Common Precipitated Phase in Li-Containing Aluminum Alloys
Precipitation Phase | Stoichiometric Ratio | Crystal Structure | Lattice Parameters | Common Shapes | Ref |
---|---|---|---|---|---|
η′ phase | MgZn2 | Hexagonal crystal system | a = 0.496 nm | Disc-shaped | [30] |
η phase | MgZn2 | Hexagonal crystal system | a = 0.522 nm | Multiple shapes | [40] |
δ′ phase | A13Li | Ordered fcc | a = 0.401 nm | Spherical or lenticular | [41] |
T phase | (Al,Zn)49Mg32 | body-centered cube | a = 1.416 nm | Icosahedral sphere | [42] |
S phase | Al2CuMg | Cmcm | a = 0.400 nm | lath-shaped | [43] |
- η′ phase (MgZn2)
- 2.
- η phase (MgZn2)
- 3.
- δ′ phase (Al3Li)
- 4.
- T phase ((Al,Zn)49Mg32)
- 5.
- S phase (Al2CuMg)
2.2.2. Effect of Li Content on the Precipitated Phase
2.2.3. Competition Mechanism of Forming η′ and δ′ Phases
3. Effect of Li on Properties of Al-Zn-Mg-Cu Alloys
3.1. Mechanical Properties
3.2. Friction and Wear Behavior
3.3. Fatigue Resistance
4. Summary and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hajjioui, E.A.; Bouchaâla, K.; Faqir, M.; Essadiqi, E. A review of manufacturing processes, mechanical properties and precipitations for aluminum lithium alloys used in aeronautic applications. Heliyon 2023, 9, e12565. [Google Scholar] [CrossRef]
- Dai, P.; Luo, X.; Yang, Y.Q.; Kou, Z.D.; Huang, B.; Zang, J.X.; Ru, J.G. Thermal stability analysis of a lightweight Al-Zn-Mg-Cu alloy by TEM and tensile tests. Mater. Charact. 2019, 153, 271–283. [Google Scholar] [CrossRef]
- Liu, T.S.; Qiu, F.; Yang, H.Y.; Liu, S.; Jiang, Q.C.; Zhang, L.C. Exploring the potential of FSW-ed Al-Zn-Mg-Cu-based composite reinforced by trace in-situ nanoparticles in manufacturing workpiece with customizable size and high mechanical performances. Compos. Part B Eng. 2023, 250, 110425. [Google Scholar] [CrossRef]
- Li, S.S.; Qiu, F.; Yang, H.Y.; Liu, T.S.; Chen, L.Y.; Jiang, Q.C. Strengthening of dislocation and precipitation for high strength and toughness casting Al-Zn-Mg-Cu alloy via trace TiB2+TiC particles. Mater. Sci. Eng. A 2022, 857, 144107. [Google Scholar] [CrossRef]
- Han, B.S.; Zheng, X.; Wang, W.; Zhang, Y.; Xu, Y.J.; He, K.Z.; Zeng, Y.S.; Zhang, X.M. Microstructures and properties of a high strength, toughness, and corrosion resistance Al-Zn-Mg-Cu alloy under an over-aging state. Mater. Lett. 2022, 325, 132674. [Google Scholar] [CrossRef]
- Wei, B.C.; Chen, C.Q.; Gu, Y.J.; Huang, Z.; Zhang, Y.G. Mechanism of nucleation and precipitation in Li containing Al-Zn-Mg-Cu alloys. Alum. Alloy. 2000, 331–333, 1061–1066. [Google Scholar] [CrossRef] [Green Version]
- Gomiero, P.; Brechet, Y.; Louchet, F.; Tourabi, A.; Wack, B. Microstructure and mechanical properties of a 2091 AlLi alloy-II. mechanical properties: Yield stress and work hardening. Acta Metall. Mater. 1992, 40, 857–861. [Google Scholar] [CrossRef]
- Williams, J.C.; Starke, E.A. Progress in structural materials for aerospace systems. Acta Mater. 2003, 51, 5775–5799. [Google Scholar] [CrossRef]
- Rioja, R.J.; Liu, J. The evolution of Al-Li base products for aerospace and space applications. Metall. Mater. Trans. A 2012, 43, 3325–3337. [Google Scholar] [CrossRef]
- Liu, D.Y.; Wang, J.X.; Li, J.F.; Ma, Y.L.; Zhang, K.; Zhang, R.F. The effect of Ag element on the microstructure characteristic evolution of an Al-Cu-Li-Mg alloy. J. Mater. Res. Technol. 2020, 9, 11121–11134. [Google Scholar] [CrossRef]
- Ma, Y.L.; Li, J.F.; Liu, D.Y.; Zheng, Z.Q. Influence of small indium addition on microstructures and tensile properties of Al-Cu-1.0Li-(Mg) alloy. Rare Metal. Mat. Eng. 2019, 48, 1–8. [Google Scholar]
- Ding, X.X.; Lu, Y.L.; Wang, J.; Li, X.C. Effect of Ce content on the microstructure and mechanical properties of Al-Cu-Li Alloy. Metals 2023, 13, 253. [Google Scholar] [CrossRef]
- Rezaei, M.; Aval, H.J. Effect of Cu/Mg ratio on microstructure and corrosion resistance of Al-Cu-Mg-Li cast alloy during non-isothermal aging. Met. Mater. Int. 2023, 7, 47148–71167. [Google Scholar] [CrossRef]
- Wang, Y.B.; Zhang, C.S.; Wang, Y.H.; Zhao, G.Q.; Chen, L. An Investigation on the Anisotropic Plastic Behavior and Forming Limits of an Al-Mg-Li Alloy Sheet. J. Mater. Eng. Perform. 2021, 30, 8224–8234. [Google Scholar] [CrossRef]
- Pérez-Landazábal, J.I.; Nó, M.L.; Madariaga, G.; Recarte, V.; Juan, J.S. Quantitative analysis of δ′ precipitation kinetics in Al–Li alloys. Acta Mater. 2000, 48, 1283–1296. [Google Scholar] [CrossRef]
- Bai, P.C.; Zhou, T.T.; Liu, P.Y.; Zhang, Y.G.; Chen, C.Q. Effects of lithium addition on precipitation in Li-containing Al-Zn-Mg-Cu alloy. Mater. Lett. 2004, 58, 3084–3087. [Google Scholar] [CrossRef]
- Betsofen, S.; Chizhikov, M. Quantitative phase analysis of Al-Mg-Li and Al-Cu-Li alloys. In Proceedings of the 14th International Conference on Aluminium Alloys (ICAA), Trondheim, Norway, 15–19 June 2014; pp. 915–920. [Google Scholar]
- Wang, Y.; Zhang, Z.; Wu, R.Z.; Sun, J.F.; Jiao, Y.L.; Hou, L.G.; Zhang, J.H.; Li, X.L.; Zhang, M.L. Ambient-temperature mechanical properties of isochronally aged 1420-Sc-Zr aluminum alloy. Mater. Sci. Eng. A 2019, 745, 411–419. [Google Scholar] [CrossRef]
- Zhang, Y.H.; Li, H.; Luo, C.G.; Yang, L.J. Effects of filler wires on the microstructure and mechanical properties of 2195-T6 Al-Li alloy spray formed by TIG welding. Materials 2019, 12, 3559. [Google Scholar] [CrossRef] [Green Version]
- Zhou, T.T.; Bai, P.C.; Liu, P.Y.; Zhang, Y.G.; Chen, C.Q. Preliminary research of a Li-containing Al-Zn-Mg-Cu Alloy. Mater. Sci. Forum. 2002, 396–402, 1229–1234. [Google Scholar] [CrossRef]
- Liu, L.; Shao, Q.; Fan, T.; Yuan, D.; Chen, J. The precipitation competition of η-series precipitates and δ′ precipitates in Li-containing Al-Zn-Mg-Cu alloys. Comput. Mater. Sci. 2021, 198, 110707. [Google Scholar] [CrossRef]
- Wang, S.Q.; Li, N.; Zhang, P.F.; Xie, S.H.; Zhu, J.Z.; Xie, H.T.; Wang, K.P. Effect of Li content on the organization and properties of 7050 aluminum alloy. Therm. Process. Technol. 2019, 48, 47–50. (In Chinese) [Google Scholar]
- Bai, P.C.; Zhou, T.T.; Liu, P.Y.; Zhang, Y.G.; Chen, C.Q. Effect of Li on the microstructure of Al-Zn-Mg-Cu alloy. Rare Met. Mater. Eng. 2003, 10, 807–809. (In Chinese) [Google Scholar]
- Huang, B.P.; Zheng, Z.Q. Effects of Li content on precipitation in Al-Cu-(Li)-Mg-Ag-Zr alloys. Scripta. Mater. 1998, 38, 357–362. [Google Scholar] [CrossRef]
- Duan, S.Y.; Le, Z.; Chen, Z.K.; Gao, Z.; Chen, J.H.; Ming, W.Q.; Li, S.Y.; Wu, C.L.; Yan, N. Li-atoms-induced structure changes of Guinier-Preston-Bagaryatsky zones in Al-Cu-Li-Mg alloys. Mater. Charact. 2016, 121, 207–212. [Google Scholar] [CrossRef]
- Duan, S.Y.; Wu, C.L.; Gao, Z.; Cha, L.M.; Fan, T.W.; Chen, J.H. Interfacial structure evolution of the growing composite precipitates in Al-Cu-Li alloys. Acta Mater. 2017, 129, 352–360. [Google Scholar] [CrossRef]
- Huang, Z.W.; Loretto, M.H.; Smallman, R.E. The mechanism of nucleation and precipitation in 7075-0.7 Li alloy. Acta Met. Mater. 1994, 42, 549–559. [Google Scholar] [CrossRef]
- Li, J.F.; Zheng, Z.Q.; Chen, Y.L.; Zhang, X.H. Aluminum-lithium alloy and its application in aerospace industry. Aerosp. Mater. Technol. 2012, 42, 13–19. (In Chinese) [Google Scholar]
- Sha, G.; Cerezo, A. Early-stage precipitation in Al-Zn-Mg-Cu alloy (7050). Acta Mater. 2004, 52, 4503–4516. [Google Scholar] [CrossRef]
- Xiao, H.Y.; Wang, Z.P.; Geng, J.W.; Zhang, C.C.; Li, Y.G.; Yang, Q.; Wang, M.L.; Chen, D.; Li, Z.G.; Wang, H.W. Precipitation and crystallographic relationships of nanosized η/η′ precipitates at S-Al interface in Al-Zn-Mg-Cu alloy. Scr. Mater. 2022, 214, 114643. [Google Scholar] [CrossRef]
- Berg, L.K.; Gjonnes, J.; Hansen, V.; Li, X.Z.; Knutson-Wedel, M.; Waterloo, G.; Schryvers, D.; Wallenberg, L.R. GP-zones in Al-Zn-Mg alloys and their role in artificial aging. Acta Mater. 2001, 49, 3443–3451. [Google Scholar] [CrossRef]
- Jiang, X.J.; Tafto, J.; Noble, B.; Holme, B.; Waterloo, G.; Tafto, J. Differential scanning calorimetry and electron diffraction investigation on low-temperature aging in Al-Zn-Mg alloys. Metall. Mater. Trans. A 2000, 31, 339–348. [Google Scholar] [CrossRef]
- Bai, P.C.; Zhou, T.T.; Liu, P.Y.; Zhang, Y.G.; Chen, C.Q. Theoretical and experimental study on the vacancy distribution law of 7000 series aluminum alloy containing Li. Met. Heat Treat. 2004, 29, 35–38. (In Chinese) [Google Scholar]
- Wei, F.; Zhao, Z.K.; Zhou, T.T.; Liu, P.Y.; Zhang, Y.G.; Chen, C.Q. Influence of Li on kinetics of GP zones transformation in Al-Zn-Mg-Cu alloys. Chin. J. Nonferrous Met. 2003, 876–880. (In Chinese) [Google Scholar]
- Wei, F.; Li, J.S.; Hu, R.; Kou, H.C. Influence of 1.0 wt% Li on Precipitates in Al-Zn-Mg-Cu Alloy. Chinese J. Aeronaut. 2008, 21, 565–570. [Google Scholar]
- Wei, F.; Zhao, Z.K.; Bai, P.C.; Zhou, T.T.; Liu, P.Y.; Zhang, Y.G.; Chen, C.Q. Influence of lithium on the kinetics of the microstructural transformations in 7075-Li alloy. Rare Met. Mater. Eng. 2004, 9, 945–948. (In Chinese) [Google Scholar]
- Peng, X.; Qi, G.; Liang, X.; Ying, D.; Yi, G.; Xu, G.; Yin, Z. Mechanical properties, corrosion behavior and microstructures of a non-isothermal ageing treated Al-Zn-Mg-Cu alloy. Mater. Sci. Eng. A 2017, 688, 146–154. [Google Scholar] [CrossRef]
- Zou, Y.; Cao, L.F.; Wu, X.D.; Wang, Y.C.; Sun, X.; Song, H.; Couper, M.J. Effect of ageing temperature on microstructure, mechanical property and corrosion behavior of aluminum alloy 7085. J. Alloys Compd. 2020, 823, 153792. [Google Scholar] [CrossRef]
- Duan, S.Y.; Huang, L.K.; Yang, S.H.; Zhou, Z.; Song, S.J.; Yang, X.B.; Chen, Y.Z.; Li, Y.J.; Liu, G.; Liu, F. Uncovering the origin of enhanced strengthening in Li-added Al-Cu-Mg alloys. Mater. Sci. Eng. A 2021, 827, 142079. [Google Scholar] [CrossRef]
- Cao, F.H.; Zheng, J.X.; Jiang, Y.; Chen, B.; Wang, Y.R.; Hu, T. Experimental and DFT characterization of η′ nano-phase and its interfaces in AlZnMgCu alloys. Acta Mater. 2019, 164, 207–219. [Google Scholar] [CrossRef]
- Zhao, X.; Liu, W.; Xiao, D.; Ma, Y.; Huang, L.; Tang, Y. A critical review: Crystal structure, evolution and interaction mechanism with dislocations of nano precipitates in Al-Li alloys. Mater. Design. 2022, 217, 110629. [Google Scholar] [CrossRef]
- Yang, X.B.; Chen, J.H.; Liu, J.Z.; Qin, F.; Xie, J.; Wu, C.L. A high-strength Al-Zn-Mg alloy hardened by the T-phase precipitates. J. Alloys Compd. 2014, 610, 69–73. [Google Scholar] [CrossRef]
- Liu, Z.R.; Chen, J.H.; Wang, S.B.; Yuan, D.W.; Yin, M.J.; Wu, C.L. The structure and the properties of S-phase in AlCuMg alloys. Acta Mater. 2011, 59, 7396–7405. [Google Scholar] [CrossRef]
- Chung, T.F.; Yang, Y.L.; Shiojiri, M.; Hsiao, C.N.; Li, W.C.; Tsao, C.S.; Shi, Z.S.; Lin, J.G.; Yang, J.R. An atomic scale structural investigation of nanometre-sized eta precipitates in the 7050 aluminium alloy. Acta Mater. 2019, 174, 351–368. [Google Scholar] [CrossRef]
- Zou, Y.; Wu, X.D.; Tang, S.B.; Zhu, Q.Q.; Song, H.; Guo, M.X.; Cao, L.F. Investigation on microstructure and mechanical properties of Al-Zn-Mg-Cu alloys with various Zn/Mg ratios. J. Mater. Sci. Technol. 2021, 85, 106–117. [Google Scholar] [CrossRef]
- Li, X.Z.; Hansen, V.; GjØnnes, J.; Wallenberg, L.R. HREM study and structure modeling of the η′ phase, the hardening precipitates in commercial Al-Zn-Mg alloys. Acta Mater. 1999, 47, 2651–2659. [Google Scholar] [CrossRef]
- Chung, T.F.; Yang, Y.L.; Huang, B.M.; Shi, Z.S.; Lin, J.G.; Ohmura, T.; Yang, J.R. Transmission electron microscopy investigation of separated nucleation and in-situ nucleation in AA7050 aluminium alloy. Acta Mater. 2018, 149, 377–387. [Google Scholar] [CrossRef]
- Bendo, A.; Matsuda, K.; Lee, S.; Nishimura, K.; Murakami, S. Atomic scale HAADF-STEM study of η′ and η 1 phases in peak-aged Al-Zn-Mg alloys. J. Mater. Sci. 2018, 53, 4598–4611. [Google Scholar] [CrossRef]
- Xu, X.S.; Zheng, J.X.; Zhi, L.; Luo, R.C.; Chen, B. Precipitation in an Al-Zn-Mg-Cu alloy during isothermal aging: Atomic-scale HAADF-STEM investigation. Mater. Sci. Eng. A 2017, 691, 60–70. [Google Scholar] [CrossRef]
- Liu, J.Z.; Chen, J.H.; Liu, Z.R.; Wu, C.L. Fine precipitation scenarios of AlZnMg(Cu) alloys revealed by advanced atomic-resolution electron microscopy study Part I: Structure determination of the precipitates in AlZnMg(Cu) alloys. Mater. Charact. 2015, 99, 277–286. [Google Scholar] [CrossRef]
- Chung, T.F.; Yang, Y.L.; Tai, C.L.; Shiojiri, M.; Hsiao, C.N.; Tsao, C.S.; Li, W.C.; Shi, Z.S.; Lin, J.G.; Chena, H.R. HR-STEM investigation of atomic lattice defects in different types of eta precipitates in creep-age forming Al-Zn-Mg-Cu aluminium alloy. Mater. Sci. Eng. A 2021, 815, 141213. [Google Scholar] [CrossRef]
- Fang, X.; Du, Y.; Song, M.; Li, K.; Jiang, C. Effects of Cu content on the precipitation process of Al-Zn-Mg alloys. J. Mater. Sci. 2012, 47, 8174–8187. [Google Scholar] [CrossRef]
- Li, H.Y.; Tang, Y.; Zeng, Z.D.; Zheng, Z.Q.; Zheng, F. Effect of ageing time on strength and microstructures of an Al-Cu-Li-Zn-Mg-Mn-Zr alloy. Mater. Sci. Eng. A 2008, 498, 314–320. [Google Scholar] [CrossRef]
- Kumaran, S.M.; Priyadharsini, N.; Rajendran, V.; Jayakumar, T.; Palanichamy, P.; Shankar, P.; Raj, B. In situ high temperature ultrasonic evaluation for on-line characterisation of fine scale precipitation reactions in 8090 Al-Li alloy. Mater. Sci. Eng. A 2006, 435, 29–39. [Google Scholar] [CrossRef]
- Yang, X.K.; Xiong, B.Q.; Li, X.W.; Yan, L.Z.; Li, Z.H.; Zhang, Y.A.; Li, Y.N.; Wen, K. Effect of the Addition of High Li Concentration on the Microstructure and Mechanical Properties of Al-Mg-Si Alloys with Different Mg Contents. Acta. Metall. Sin. 2021, 34, 1721–1733. [Google Scholar] [CrossRef]
- Wang, S.; Zang, C.; Wang, J.S. A review of the structure and properties of nanoprecipitated phases of aluminum-lithium alloys. Aerosp. Manuf. Technol. 2021, 64, 68–76+92. (In Chinese) [Google Scholar]
- Chakravorty, C.R. Indigenization of high-strength, light-weight Al-Li alloys for aerospace. B. Mater. Sci. 1994, 17, 1351–1367. [Google Scholar] [CrossRef]
- Pletcher, B.A.; Wang, K.G.; Glicksman, M.E. Experimental, computational and theoretical studies of delta’ phase coarsening in Al-Li alloys. Acta Mater. 2012, 60, 5803–5817. [Google Scholar] [CrossRef]
- Sun, W.; Lincoln, F.J.; Sugiyama, K.; Hiraga, K. Structure refinement of (Al, Zn)49Mg32-type phases by single-crystal X-ray diffraction. Mater. Sci. Eng. A 2000, 294–296, 327–330. [Google Scholar] [CrossRef]
- Ji, Y.L.; Zhou, T.T.; Liu, P.Y. Thermodynamics-based constituent design of lithium containing 7000 series aluminum alloys. Mater. Sci. Forum. 2005, 475–479, 325–328. [Google Scholar] [CrossRef]
- Yoshimura, R.; Konno, T.J.; Abe, E.; Hiraga, K. Transmission electron microscopy study of the evolution of precipitates in aged Al-Li-Cu alloys: The θ′ and T1 phases. Acta Mater. 2003, 51, 4251–4266. [Google Scholar] [CrossRef]
- Radmilovic, V.; Kilaas, R.; Dahmen, U. Structure and morphology of S-phase precipitates in aluminum. Acta Mater. 1999, 47, 3987–3997. [Google Scholar] [CrossRef]
- Perlitz, H.; Westgren, A. The crystal structure of Al2CuMg. Ark. Kemi Miner. Geol. B 1943, 16, 1–7. [Google Scholar]
- Mondolfo, L.F. Structure and properties. Alum. Alloy. 1976, 518. [Google Scholar]
- Kilaas, R.; Radmilovic, V. Structure determination and structure refinement of Al2CuMg precipitates by quantitative high-resolution electron microscopy. Ultramicroscopy 2001, 88, 63–72. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, X.; Cao, L.; Tong, X.; Zou, Y.; Zhu, Q.; Tang, S.; Song, H.; Guo, M. Effect of Ag on aging precipitation behavior and mechanical properties of aluminum alloy 7075. Mater. Sci. Eng. A 2021, 804, 140515. [Google Scholar] [CrossRef]
- Styles, M.J.; Hutchinson, C.R.; Chen, Y.; Deschamps, A. The coexistence of two S (Al2CuMg) phases in Al-Cu-Mg alloys. Acta Mater. 2012, 60, 6940–6951. [Google Scholar] [CrossRef]
- Charai, A.; Walther, T.; Alfonso, C.; Zahra, A.M.; Zahra, C.Y. Coexistence of clusters, GPB zones, S″-, S′- and S-phases in an Al-0.9% Cu-1.4% Mg alloy. Acta Mater. 2000, 48, 2751–2764. [Google Scholar] [CrossRef]
- Gregson, P.J.; Dinsdale, K.; Harris, S.J.; Noble, B. Evolution of microstructure in Al-Li-Zn-Mg-Cu alloys. Mater. Sci. Tech-lond. 1987, 3, 7. [Google Scholar] [CrossRef]
- Eswara Prasad, N.; Srivatsan, T.S.; Wanhill, R.J.H.; Malakondaiah, G.; Kutumbarao, V.V. Chapter11-Fatigue Behavior of Aluminum-Lithium Alloys; Butterworth-Heinemann: Boston, MA, USA, 2014; pp. 341–379. [Google Scholar]
- Zhao, Z.K.; Zhou, T.T.; Liu, P.Y.; Chen, C.Q. Research progress of Al-Zn-Mg-Cu alloys containing Li. Mater. Guide 2006, 69–70+75, (In Chinese. [Google Scholar]
- Zheng, L.J.; Chen, C.Q.; Bai, P.C. Small-angle X-ray scattering study of precipitates in Al-Zn-Mg-Cu-1.0 wt.% Li alloy. Mater. Lett. 2004, 58, 25–28. [Google Scholar] [CrossRef]
- Sodergren, A.; Lloyd, D.J. The influence of lithium on the ageing of A 7000 series alloy. Acta Mater. 1988, 36, 2107–2114. [Google Scholar] [CrossRef]
- Tu, J.; Liu, F.; Qi, W.; Wang, N.; Guo, S.; Zhang, X. Microstructure and tribological behavior of a peak aged Cu-Cr-Zr alloy. Mater. Sci. Eng. A 2003, 343, 89–96. [Google Scholar]
- Zhao, Z.K.; Zhou, T.T.; Liu, P.Y.; Chen, C.Q. Study of grain boundary phases of high-Zn Al-Zn-Mg-Cu-Li alloys. Spec. Cast. Nonferrous Alloy. 2003, 12–14+65–66. (In Chinese) [Google Scholar]
- Wei, B.C.; Chen, C.Q.; Huang, Z.; Zhang, Y.G. Aging behavior of Li containing Al-Zn-Mg-Cu alloys. Mater. Sci. Eng. A 2000, 280, 161. [Google Scholar] [CrossRef]
- Gu, Y.J.; Wahab, A.; Huang, Z.; Zhang, Y.G.; Chen, C.Q. The structure transformation in an Al-Li-Zn-Mg-Cu-Zr alloy. Mater. Sci. Eng. A 2001, 316, 39–45. [Google Scholar] [CrossRef]
- Li, S.Y.; Duan, S.Y.; Ming, W.Q.; Wu, C.L.; Chen, J.H. Genetic structural phase evolution from Li-containing S-like phase precipitates towards S-phase in Al-Cu-Li-Mg alloys. Acta Mater. 2022, 233, 117997. [Google Scholar] [CrossRef]
- Zhao, Z.K.; Zhou, T.T.; Liu, P.Y.; Chen, C.Q. Ageing behavior of high-Zn Al-Zn-Mg-Cu alloys containing Li. Met. Heat Treat. 2003, 27–30. (In Chinese) [Google Scholar]
- Wang, Y.; Wu, R.Z.; Turakhodjaev, N.; Liu, M.D. Microstructural evolution, precipitation behavior and mechanical properties of a novel Al-Zn-Mg-Cu-Li-Sc-Zr alloy. J. Mater. Res. 2021, 36, 740–750. [Google Scholar] [CrossRef]
- Mao, Z.; Chen, W.; Seidman, D.N.; Wolverton, C. First-principles study of the nucleation and stability of ordered precipitates in ternary Al-Sc-Li alloys. Acta Mater. 2011, 59, 3012–3023. [Google Scholar] [CrossRef]
- Wu, M.D.; Xiao, D.H.; Wang, X.K.; Huang, L.P.; Liu, W.S. Microstructure, mechanical properties and corrosion behaviors of Al-Li-Cu-Mg-Ag-Zn alloys. Materials 2022, 15, 443. [Google Scholar] [CrossRef] [PubMed]
- Ji, Q.; Ma, Y.J.; Wu, R.Z.; Zhang, J.; Hou, L.G.; Zhang, M.L. Effect of Y and Ce addition on microstructures and mechanical properties of LZ91 alloys. J. Alloys Compd. 2019, 800, 72–80. [Google Scholar] [CrossRef]
- Ganjehfard, K.; Taghiabadi, R.; Noghani, M.T.; Ghoncheh, M.H. Tensile properties and hot tearing susceptibility of cast Al-Cu alloys containing excess Fe and Si. Int. J. Miner. Metall. 2021, 28, 718–728. [Google Scholar] [CrossRef]
- Zhao, J.; Jiang, B.; Wang, Q.H.; Yuan, M.; Chai, Y.F.; Huang, G.S.; Pan, F.S. Effects of Li addition on the microstructure and tensile properties of the extruded Mg-1Zn-xLi alloy. Int. J. Miner. Metall. Mater. 2022, 1380–1387. [Google Scholar] [CrossRef]
- Polmear, I.J.; Chester, R.J. Abnormal age hardening in an Al-Cu-Mg alloy containing silver and lithium. Scr. Metall. 1989, 23, 1213–1217. [Google Scholar] [CrossRef]
- Wei, F.; Li, J.S.; Zhou, T.T.; Liu, P.Y. Influence of Li on kinetics of phase transformation in 7000 series aluminium alloy by SAXS investigation. Acta Aeronaut. Et Astronaut. Sin. 2008, 29, 1037–1043. [Google Scholar]
- Bai, P.C.; Zhou, T.T.; Liu, P.Y.; Zhang, Y.G.; Chen, C.Q. Precipitates in a Li-containing Al8.4Zn1.35Mg1.76Cu (wt.%) alloy. Mater. Sci. Forum. 2002, 396–402, 827–832. [Google Scholar] [CrossRef]
- Bai, P.C. Ph.D. Effect of Li on the Organization and Properties of Al-Zn-Mg-Cu Alloy; Beijing University of Aeronautic and Astronautic: Beijing, China, 2003. [Google Scholar]
- Wei, F. Ph.D. Effect of Li on the Transformation Kinetics in the GP Region of Al-Zn-Mg-Cu System Alloys; Beijing University of Aeronautic and Astronautic: Beijing, China, 2003. [Google Scholar]
- Huang, Z.W.; Loretto, M.H.; White, J. Influence of lithium additions on precipitation and age hardening of 7075 alloy. Mater. Sci. Tech-Lond. 1993, 9, 967–980. [Google Scholar] [CrossRef]
- Xie, Y.F.; Chen, Z.J.; Niu, L.F.; Fu, D.H. Ageing precipitation process of Al-Zn-Mg-Cu alloy containing Li. Nonferrous Met. Process. 2020, 49, 18–21+58. (In Chinese) [Google Scholar]
- Wei, F.; Zhao, Z.K.; Liu, P.Y.; Zhou, T.T. Research and development of Al-Zn-Mg-Cu-Li Alloys. In Proceedings of the 9th International Conference on Aluminum Alloys, Beijing, China; 2004; pp. 75–84. [Google Scholar]
- Zhao, Z.K.; Zhou, T.T.; Liu, P.Y.; Chen, C.Q. Strength and Toughness of 1.1 wt% Li-Containing Al-Zn-Mg-Cu Alloys. Key Eng. Mater. 2007, 353–358, 392–395. [Google Scholar] [CrossRef]
- Csontos, A.A.; Starke, E.A. The effect of in homogeneous plastic deformation on the ductility and fracture behavior of age hardenable aluminum alloys. Int. J. Plast. 2005, 21, 1097–1118. [Google Scholar] [CrossRef]
- Cassada, W.A.; Shiflet, G.J.; Starke, E.A., Jr. The effect of germanium on the precipitation and deformation behavior of Al-2Li alloys. Acta Mater. 1986, 34, 367–378. [Google Scholar] [CrossRef]
- Zou, Y.; Wu, X.D.; Tang, S.B.; Wang, Y.C.; Zhao, K.; Cao, L.F. The effect of pre-ageing/stretching on the ageing-hardening behavior of Al-Zn-Mg-Cu alloys correlated with Zn/Mg ratio. Mater. Sci. Eng. A 2021, 830, 142331. [Google Scholar] [CrossRef]
- Zou, Y.; Cao, L.F.; Wu, X.D.; Tang, S.B.; Guo, M.X. Synergetic effect of natural ageing and pre-stretching on the ageing behavior in Tʹ/ηʹ phase-strengthened Al-Zn-Mg-Cu alloys. J. Mater. Sci. Technol. 2023, 146, 240–251. [Google Scholar] [CrossRef]
- Deuis, R.L.; Subramanian, C.; Yellup, J.M. Dry sliding wear of aluminium composites-A review. Compos. Sci. Technol. 1997, 57, 415–435. [Google Scholar] [CrossRef]
- Vencl, A.; Bobi, I.; Mikovi, Z. Effect of thixo casting and heat treatment on the tribological properties of hypoeutectic Al-Si alloy. Wear 2008, 264, 616–623. [Google Scholar] [CrossRef]
- Chen, R.; Iwabuchi, A.; Shimizu, T. The effect of a T6 heat treatment on the fretting wear of a SiC particle-reinforced A356 aluminum alloy matrix composite. Wear 2000, 238, 110–119. [Google Scholar] [CrossRef]
- Baydogan, M.; Cimenoglu, H.; Kayali, E.S. A study on sliding wear of a 7075 aluminum alloy. Wear 2004, 257, 852–861. [Google Scholar] [CrossRef]
- Mindivan, H.; Kayah, E.S.; Cimenoglu, H. Tribological behavior of squeeze cast aluminum matrix composites. Wear 2008, 265, 645–654. [Google Scholar] [CrossRef]
- Yildirim, M.; Ozyurek, D.; Guru, M. The Effects of precipitate size on the hardness and wear behaviors of aged 7075 aluminum alloys produced by powder metallurgy route. Arab. J. Sci. Eng. 2016, 41, 4273–4281. [Google Scholar] [CrossRef]
- Zhang, K.; Liu, D.; Zhao, X. The Role of Ductility and Work Hardening in Sliding Wear of an Al–Zn–Mg–Cu Alloy. Trans. Indian. Inst. Met. 2022, 75, 749–755. [Google Scholar] [CrossRef]
- Xie, F.X.; Zhang, W.C.; Zhang, S.W.; Lu, D.X.; Sun, Q.C.; He, X.M. Effects of Li on microstructure and friction and wear behavior of 7075 aluminum alloy for drill pipe. J. Mater. Eng. 2023, 9, 1–10. (In Chinese) [Google Scholar]
- Yamanoğlu, R.; Karakulak, E.; Zeren, A.; Zeren, M. Effect of heat treatment on the tribological properties of Al-Cu-Mg/nano SiC composites. Mater. Design. 2013, 49, 820–825. [Google Scholar] [CrossRef]
- Saravanan, C.; Subramanian, K.; Anandakrishnan, V.; Sathish, S. Tribological behavior of AA7075-TiC composites by powder metallurgy. Ind. Lubr. Tribol. 2018, 70, 1066–1071. [Google Scholar]
- Reis, B.P.; Lopes, M.M.; Amauri, G.; Dos, S. The correlation of microstructure features dry sliding wear behavior hardness and tensile properties of Al-2wt% Mg-Zn alloys. J. Alloys Compd. 2018, 764, 267–278. [Google Scholar] [CrossRef]
- Zhang, W.L.; Gu, M.Y.; Chen, J.Y.; Wu, Z.G.; Zhang, F.; Deve, H.E. Tensile and fatigue response of alumina-fiber-reinforced aluminum matrix composite. Mater. Sci. Eng. A 2003, 341, 9–17. [Google Scholar] [CrossRef]
- Fakioglu, A.; Özyürek, D.; Yilmaz, R. Effects of different heat treatment conditions on fatigue behavior of AA7075 alloy. High Temp. Mater. Process. 2013, 32, 345–351. [Google Scholar] [CrossRef]
- Fakioglu, A.; Özyürek, D. Effects of Re-aging on the fatigue properties of aluminum alloy AA7075. Mater. Test. 2014, 56, 575–582. [Google Scholar] [CrossRef]
- Lewandowska, M.; Mizera, J.; Wyrzykowski, J.W. Cyclic behavior of model Al-Li alloys: Effect of the precipitate state. Mater. Charact. 2000, 45, 195–202. [Google Scholar] [CrossRef]
- Fan, X.S.; Zheng, Z.Q.; Zhang, L.; Hu, F.; Gong, Z. High-period fatigue performance and crack sprouting extension behavior of alloy 2397. Rare Met. Mater. Eng. 2017, 46, 1327–1333. (In Chinese) [Google Scholar]
- Srivatsan, T.S.; Coyne, E.J. Micromechanisms governing fatigue behavior of lithium containing aluminum alloys. Mater. Sci. Tech. 1989, 5, 548–555. [Google Scholar] [CrossRef]
- Di, Z.; Saji, S.; Hori, S. Effect of microstructure on high cycle Fatigue behavior of AL-Li binary alloy. J. Phys. Colloq. 1987, 48, 753–759. [Google Scholar] [CrossRef]
- Yang, W.L. Effect of trace amounts of Li and Zn on fatigue properties and microstructure of Al-4.2Cu-1.4Mg alloy. Therm. Process. Technol. 2020, 49, 62–65. (In Chinese) [Google Scholar]
- Alexopoulos, N.D.; Migklis, E.; Stylianos, A. Fatigue behavior of the aeronautical Al-Li (2198) aluminum alloy under constant amplitude loading. Int. J. Fatigue 2013, 56, 95–105. [Google Scholar] [CrossRef]
- Rao, K.T.V.; Ritchie, R.O. Fatigue crack propagation and cryogenic fracture toughness behavior in powder metallurgy aluminum-lithium alloys. Metall. Mater. Trans. A 1991, 22, 191–202. [Google Scholar]
- Rao, K.T.V.; Ritchie, R.O. Effect of prolonged high-temperature exposure on the fatigue and fracture behavior of aluminum-lithium alloy 2090. Mater. Sci. Eng. 1988, 100, 23–30. [Google Scholar]
- Chaturvedi, M.C.; Chen, D.L. Effect of specimen orientation and welding on the fracture and fatigue properties of 2195 Al-Li alloy. Mater. Sci. Eng. A 2004, 387–389, 465–469. [Google Scholar] [CrossRef]
- Geng, Y.X.; Tang, H.; Xu, J.H.; Hou, Y.; Wang, Y.X.; Zhen, H.; Zhang, Z.J.; Ju, H.B.; Yu, L.H. Influence of process parameters and aging treatment on the microstructure and mechanical properties of AlSi8Mg3 alloy fabricated by selective laser melting. Int. J. Miner. Metall. Mater. 2022, 29, 1770–1779. [Google Scholar] [CrossRef]
- Wu, D.; Li, W.Y.; Gao, Y.J.; Yang, J.; Wen, Q.; Vidakis, N.; Vairis, A. Impact of travel speed on the microstructure and mechanical properties of adjustable-gap bobbin-tool friction stir welded Al-Mg joints. Int. J. Miner. Metall. Mater. 2021, 28, 710–717. [Google Scholar] [CrossRef]
- Ghazanlou, S.I.; Eghbali, B. Fabrication and characterization of GNPs and CNTs reinforced Al7075 matrix composites through the stir casting process. Int. J. Miner. Metall. Mater. 2021, 28, 1204–1214. [Google Scholar] [CrossRef]
- Li, P.; Yao, W.X. Review on the development and comprehensive performance of aluminum-lithium alloy materials. Adv. Aeronaut. Eng. 2019, 10, 12–20. (In Chinese) [Google Scholar]
- Azarniya, A.; Taheri, A.K.; Taheri, K.K. Recent advances in ageing of 7xxx series aluminum alloys: A physical metallurgy perspective. J. Alloys Compd. 2019, 781, 945–983. [Google Scholar] [CrossRef]
- Zheng, Z.Q.; Li, J.F.; Chen, Z.G.; Li, H.Y.; Li, S.C.; Tan, C.Y. Alloying and microstructure evolution of aluminum-lithium alloys. Chin. J. Nonferrous Met. 2011, 21, 2337–2351. (In Chinese) [Google Scholar]
- López Freixes, M.; Zhou, X.; Zhao, H. Revisiting stress-corrosion cracking and hydrogen embrittlement in 7xxx-Al alloys at the near-atomic-scale. Nat. Commun. 2022, 13, 4290. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, J.-R.; Dong, B.-X.; Yang, H.-Y.; Shu, S.-L.; Qiu, F.; Jiang, Q.-C.; Zhang, L.-C. The Role of Lithium in the Aging Precipitation Process of Al-Zn-Mg-Cu Alloys and Its Effect on the Properties. Materials 2023, 16, 4750. https://doi.org/10.3390/ma16134750
Sun J-R, Dong B-X, Yang H-Y, Shu S-L, Qiu F, Jiang Q-C, Zhang L-C. The Role of Lithium in the Aging Precipitation Process of Al-Zn-Mg-Cu Alloys and Its Effect on the Properties. Materials. 2023; 16(13):4750. https://doi.org/10.3390/ma16134750
Chicago/Turabian StyleSun, Jing-Ran, Bai-Xin Dong, Hong-Yu Yang, Shi-Li Shu, Feng Qiu, Qi-Chuan Jiang, and Lai-Chang Zhang. 2023. "The Role of Lithium in the Aging Precipitation Process of Al-Zn-Mg-Cu Alloys and Its Effect on the Properties" Materials 16, no. 13: 4750. https://doi.org/10.3390/ma16134750
APA StyleSun, J. -R., Dong, B. -X., Yang, H. -Y., Shu, S. -L., Qiu, F., Jiang, Q. -C., & Zhang, L. -C. (2023). The Role of Lithium in the Aging Precipitation Process of Al-Zn-Mg-Cu Alloys and Its Effect on the Properties. Materials, 16(13), 4750. https://doi.org/10.3390/ma16134750