Effect of Traverse Speed Variation on Microstructural Properties and Corrosion Behavior of Friction Stir Welded WE43 Mg Alloy Joints
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Grain Morphology Analysis Using Macro and Micrographs
3.2. Chemistry and Distribution of Secondary-Phase Particles Using SEM–EDS
3.3. Electrochemical Analysis Using Potentiodynamic Polarization Measurements
4. Conclusions
- A defect-free weldment was obtained at a traverse and rotational speed of 100 mm/min and 710 rpm, respectively. With a decrease in the traverse speed, a tunneling defect was obtained at the transition of the pin-affected and shoulder-affected stir zone.
- Ultra-refined grains were observed in both weldments. The average grain size decreased from 256 µm (base metal) to 12.037 µm and 14 µm in weld I and weld II, respectively. As traverse speed decreased, the grain size of the welded samples increased. The grains were more refined and equiaxed at a higher traverse speed compared to a lower traverse speed.
- The base alloy had a significant presence of secondary-phase particles. These precipitates were redistributed within the Mg substrate after performing the FSW.
- A substantial enhancement in corrosion resistance was obtained in both weldments in comparison to the base alloy. The corrosion rate for the defect-free welded sample was 22 times lower as compared to the base alloy.
- The primary reasons for the enhancement in corrosion resistance are the decrease in grain size and the dissolution of solute particles within the substrate. A larger grain size is more prone to corrosion. Furthermore, the presence of precipitates/solute particles intensifies the formation of the galvanic couple, thereby increasing the corrosion potential.
- Corrosion resistance decreases with an increase in grain size in the case of the welded specimens.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Maqbool, A.; Lone, N.F.; Ahmad, T.; Khan, N.Z.; Siddiquee, A.N. Effect of hybrid reinforcement and number of passes on microstructure, mechanical and corrosion behavior of we43 mg alloy based metal matrix composite. J. Manuf. Process. 2023, 89, 170–181. [Google Scholar] [CrossRef]
- Calado, L.M.; Carmezim, M.J.; Montemor, M.F. Rare earth based magnesium alloys—A review on we series. Front. Mater. 2022, 8, 804906. [Google Scholar] [CrossRef]
- Jayasathyakawin, S.; Ravichandran, M.; Baskar, N.; Anand Chairman, C.; Balasundaram, R. Mechanical properties and applications of magnesium alloy—Review. Mater. Today Proc. 2020, 27, 909–913. [Google Scholar] [CrossRef]
- Woodall, B. Gm Tests Magnesium Sheet Metal to Make Cars Lighter. Available online: https://www.reuters.com/article/us-gm-magnesium-idUSBRE89M0UP20121023 (accessed on 1 June 2023).
- Song, K.; Pan, F.S.; Chen, X.H.; Zhang, Z.H.; Tang, A.T.; She, J.; Yu, Z.W.; Pan, H.C.; Xu, X.Y. Effect of texture on the electromagnetic shielding property of magnesium alloy. Mater. Lett. 2015, 157, 73–76. [Google Scholar] [CrossRef]
- Ghorbanpour, S.; McWilliams, B.A.; Knezevic, M. Effect of hot working and aging heat treatments on monotonic, cyclic, and fatigue behavior of we43 magnesium alloy. Mater. Sci. Eng. A 2019, 747, 27–41. [Google Scholar] [CrossRef]
- Esmaily, M.; Svensson, J.E.; Fajardo, S.; Birbilis, N.; Frankel, G.S.; Virtanen, S.; Arrabal, R.; Thomas, S.; Johansson, L.G. Fundamentals and advances in magnesium alloy corrosion. Prog. Mater. Sci. 2017, 89, 92–193. [Google Scholar] [CrossRef]
- Pereira, G.S.; Koga, G.Y.; Avila, J.A.; Bittencourt, I.M.; Fernandez, F.; Miyazaki, M.H.; Botta, W.J.; Bose Filho, W.W. Corrosion resistance of we43 mg alloy in sodium chloride solution. Mater. Chem. Phys. 2021, 272, 124930. [Google Scholar] [CrossRef]
- Singh, I.B.; Singh, M.; Das, S. A comparative corrosion behavior of mg, az31 and az91 alloys in 3.5% nacl solution. J. Magnes. Alloy. 2015, 3, 142–148. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Y.F.; Zhai, C.Q.; Liu, L.F.; Zhu, Y.P.; Ding, W.J. Zn–ni alloy coatings pulse-plated on magnesium alloy. Surf. Coat. Technol. 2005, 191, 393–399. [Google Scholar] [CrossRef]
- Kubásek, J.; Dvorský, D.; Čavojský, M.; Roudnická, M.; Vojtěch, D. We43 magnesium alloy-material for challenging applications. Kov. Mater. (Mettalic Mater.) 2019, 57, 159–165. [Google Scholar] [CrossRef] [Green Version]
- Jiang, H.S.; Zheng, M.Y.; Qiao, X.G.; Wu, K.; Peng, Q.Y.; Yang, S.H.; Yuan, Y.H.; Luo, J.H. Microstructure and mechanical properties of WE43 magnesium alloy fabricated by direct-chill casting. Mater. Sci. Eng. A 2017, 684, 158–164. [Google Scholar] [CrossRef]
- Loukil, N. Alloying elements of magnesium alloys: A literature review. In Magnesium Alloys Structure and Properties; Intech Open: London, UK, 2021; pp. 58–78. [Google Scholar]
- Makar, G.L.; Kruger, J. Corrosion of magnesium. Int. Mater. Rev. 1993, 38, 138–153. [Google Scholar] [CrossRef]
- Hu, H.; Nie, X.; Ma, Y. Corrosion and surface treatment of magnesium alloys. In Magnesium Alloys-Properties in Solid and Liquid States; Czerwinski, F., Ed.; IntechOpen: London, UK, 2014; pp. 23–29. [Google Scholar]
- Afrin, N.; Chen, D.L.; Cao, X.; Jahazi, M. Microstructure and tensile properties of friction stir welded az31b magnesium alloy. Mater. Sci. Eng. A 2008, 472, 179–186. [Google Scholar] [CrossRef]
- Singh, K.; Singh, G.; Singh, H. Review on friction stir welding of magnesium alloys. J. Magnes. Alloys 2018, 6, 399–416. [Google Scholar] [CrossRef]
- Jacob, A.; Maheshwari, S.; Siddiquee, A.N.; Al-Ahmari, A.; Abidi, M.H.; Konovalov, S.; Chen, X. The effects of in-process cooling during friction stir welding of 7475 aluminium alloy. Sains Malays. 2021, 50, 2743–2754. [Google Scholar] [CrossRef]
- Lone, N.F.; Bajaj, D.; Gangil, N.; Khan, T.; Abidi, M.H.; Al-Ahmari, A.; Siddiquee, A.N. Multi principal element alloy particle reinforced metal matrix composites: Synthesis, microstructure, and mechanical aspects. Manuf. Lett. 2023, 36, 46–51. [Google Scholar] [CrossRef]
- Beygi, R.; Galvão, I.; Akhavan-Safar, A.; Pouraliakbar, H.; Fallah, V.; da Silva, L.F. Effect of Alloying Elements on Intermetallic Formation during Friction Stir Welding of Dissimilar Metals: A Critical Review on Aluminum/Steel. Metals 2023, 13, 768. [Google Scholar] [CrossRef]
- Weng, F.; Liu, Y.; Chew, Y.; Lee, B.Y.; Ng, F.L.; Bi, G. Double-side friction stir welding of thick magnesium alloy: Microstructure and mechanical properties. Sci. Technol. Weld. Join. 2020, 25, 359–368. [Google Scholar] [CrossRef]
- Kasai, H.; Morisada, Y.; Fujii, H. Dissimilar FSW of immiscible materials: Steel/magnesium. Mater. Sci. Eng. A 2015, 624, 250–255. [Google Scholar] [CrossRef] [Green Version]
- Carlone, P.; Astarita, A.; Palazzo, G.S.; Paradiso, V.; Squillace, A. Microstructural aspects in Al–Cu dissimilar joining by FSW. Int. J. Adv. Manuf. Technol. 2015, 79, 1109–1116. [Google Scholar] [CrossRef]
- Gangil, N.; Maheshwari, S.; Siddiquee, A.N.; Abidi, M.H.; El-Meligy, M.A.; Mohammed, J.A. Investigation on friction stir welding of hybrid composites fabricated on al–zn–mg–cu alloy through friction stir processing. J. Mater. Res. Technol. 2019, 8, 3733–3740. [Google Scholar] [CrossRef]
- Singh, G.; Singh, H.; Singh, K. Friction stir welding of magnesium alloys: A review. Asian Reviwes Mech. Eng. 2016, 5, 5–8. [Google Scholar] [CrossRef]
- Palanivel, S.; Mishra, R.S.; Davis, B.; DeLorme, R.; Doherty, K.J.; Cho, K.C. Effect of initial microstructure on the microstructural evolution and joint efficiency of a we43 alloy during friction stir welding. In Friction Stir Welding and Processing VII; Mishra, R., Mahoney, M.W., Sato, Y., Hovanski, Y., Verma, R., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 253–261. [Google Scholar]
- Abidi, M.H.; Moiduddin, K.; Siddiquee, A.N.; Mian, S.H.; Mohammed, M.K. Development of aluminium metal foams via friction stir processing by utilizing mgco3 precursor. Coatings 2023, 13, 162. [Google Scholar] [CrossRef]
- Pouraliakbar, H.; Beygi, R.; Fallah, V.; Monazzah, A.H.; Jandaghi, M.R.; Khalaj, G.; da Silva, L.F.; Pavese, M. Processing of Al-Cu-Mg alloy by FSSP: Parametric analysis and the effect of cooling environment on microstructure evolution. Mater. Lett. 2022, 308, 131157. [Google Scholar] [CrossRef]
- Mehdi, H.; Mishra, R.S. Influence of friction stir processing on weld temperature distribution and mechanical properties of TIG-welded joint of AA6061 and AA7075. Trans. Indian Inst. Met. 2020, 73, 1773–1788. [Google Scholar] [CrossRef]
- Charandabi, F.K.; Jafarian, H.R.; Mahdavi, S.; Javaheri, V.; Heidarzadeh, A. Modification of microstructure, hardness, and wear characteristics of an automotive-grade Al-Si alloy after friction stir processing. J. Adhes. Sci. Technol. 2021, 35, 2696–2709. [Google Scholar] [CrossRef]
- Argade, G.R.; Panigrahi, S.K.; Mishra, R.S. Effects of grain size on the corrosion resistance of wrought magnesium alloys containing neodymium. Corros. Sci. 2012, 58, 145–151. [Google Scholar] [CrossRef]
- Chu, P.-W.; Marquis, E.A. Linking the microstructure of a heat-treated we43 mg alloy with its corrosion behavior. Corros. Sci. 2015, 101, 94–104. [Google Scholar] [CrossRef]
- Yang, C.; Gupta, N.; Ding, H.; Xiang, C. Effect of microstructure on corrosion behavior of we43 magnesium alloy in as cast and heat-treated conditions. Metals 2020, 10, 1552. [Google Scholar] [CrossRef]
- Sharma, C.; Dwivedi, D.K.; Kumar, P. Heterogeneity of microstructure and mechanical properties of friction stir welded joints of Al-Zn-Mg alloy AA7039. Procedia Eng. 2013, 64, 1384–1394. [Google Scholar] [CrossRef] [Green Version]
- Ubaid, M.; Bajaj, D.; Mukhopadhyay, A.K.; Siddiquee, A.N. Friction stir welding of thick AA2519 alloy: Defect elimination, mechanical and micro-structural characterization. Met. Mater. Int. 2020, 26, 1841–1860. [Google Scholar] [CrossRef]
- Khan, N.Z.; Siddiquee, A.N.; Khan, Z.A. Friction Stir Welding: Dissimilar Aluminium Alloys; Routledge: Hoboken, NJ, USA, 2017; p. 180. [Google Scholar]
- Zolghadr, P.; Akbari, M.; Asadi, P. Formation of thermo-mechanically affected zone in friction stir welding. Mater. Res. Express 2019, 6, 086558. [Google Scholar] [CrossRef]
- Hashmi, F.A.; Mohamed Ali, H.B.; Lone, N.F.; Azma, R.; Siddiquee, A.N.; Ashraf Mir, M.; Ahmad, T.; Mir, F.A. Friction stir welds of aluminium alloy pipes: An investigation of defects and mechanical properties. Adv. Mater. Process. Technol. 2023, 9, 169–185. [Google Scholar] [CrossRef]
- Moiduddin, K.; Siddiquee, A.N.; Abidi, M.H.; Mian, S.H.; Mohammed, M.K. Friction stir welding of thick plates of 4y3gd mg alloy: An investigation of microstructure and mechanical properties. Materials 2021, 14, 6924. [Google Scholar] [CrossRef]
- Ali, N.; Lone, N.F.; Khan, T.; Qazi, A.M.; Mukhopadhyay, A.K.; Siddiqueee, A.N. A Comparative Study of Effect of Tool-Offset Position on Defect Dynamics and Formation of Intermetallic Compounds in Friction Stir Welding of Al-Ti Dissimilar Joints. J. Mater. Eng Perform 2023. [Google Scholar] [CrossRef]
- Singh, B.; Singhal, P.; Saxena, K.K. Effect of transverse speed on mechanical and microstructural properties of friction stir welded aluminium aa2024-t351. Adv. Mater. Process. Technol. 2020, 6, 519–529. [Google Scholar] [CrossRef]
- Thangarasu, A.; Murugan, N.; Dinaharan, I.; Vijay, S.J. Influence of traverse speed on microstructure and mechanical properties of aa6082-tic surface composite fabricated by friction stir processing. Procedia Mater. Sci. 2014, 5, 2115–2121. [Google Scholar] [CrossRef] [Green Version]
- Zheng, T.; Hu, Y.; Yang, S. Effect of grain size on the electrochemical behavior of pure magnesium anode. J. Magnes. Alloys 2017, 5, 404–411. [Google Scholar] [CrossRef]
- Jarosz, R.; Kiełbus, A.; Stopyra, M. Influence of sand-casting parameters on microstructure and properties of magnesium alloys. Arch. Metall. Mater. 2013, 58, 635–640. [Google Scholar]
- Asqardoust, S.; Zarei Hanzaki, A.; Abedi, H.R.; Krajnak, T.; Minárik, P. Enhancing the strength and ductility in accumulative back extruded we43 magnesium alloy through achieving bimodal grain size distribution and texture weakening. Mater. Sci. Eng. A 2017, 698, 218–229. [Google Scholar] [CrossRef]
- Loto, R.T. Potentiodynamic polarization studies of the pitting corrosion resistance and passivation behavior of p4 low carbon mold steel in chloride and acid chloride solution. Mater. Res. Express 2018, 5, 116509. [Google Scholar] [CrossRef]
- Shi, Z.; Liu, M.; Atrens, A. Measurement of the corrosion rate of magnesium alloys using tafel extrapolation. Corros. Sci. 2010, 52, 579–588. [Google Scholar] [CrossRef]
- Zhang, L.; Duan, Y.; Gao, Z.; Ma, J.; Liu, R.; Liu, S.; Tu, Z.; Liu, Y.; Bai, C.; Cui, L.; et al. Graphene enhanced anti-corrosion and biocompatibility of niti alloy. NanoImpact 2017, 7, 7–14. [Google Scholar] [CrossRef]
- Eivani, A.R.; Mehdizade, M.; Chabok, S.; Zhou, J. Applying multi-pass friction stir processing to refine the microstructure and enhance the strength, ductility and corrosion resistance of we43 magnesium alloy. J. Mater. Res. Technol. 2021, 12, 1946–1957. [Google Scholar] [CrossRef]
Experiment No. | Weld Sample | Rotational Speed (rpm) | Traverse Speed (mm/min) | Tilt Angle |
---|---|---|---|---|
1 | I | 710 | 100 | 2⁰ |
2 | II | 710 | 80 | 2⁰ |
Elements | Mg | Y | Gd |
---|---|---|---|
%wt. | 93 | 4 | 3 |
Element (%wt.) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mg | 85.5 | 76.1 | 80 | 81.1 | 96.5 | 46.1 | 91.9 | 92.5 | 79.8 | 92.7 | 92.3 | 92.6 | 92.3 | 92.4 |
Y | 6.8 | 14.4 | 9.7 | 9.7 | 1.7 | 43.5 | 4.2 | 3.5 | 16.6 | 3.0 | 3.8 | 3.9 | 3.7 | 3.2 |
Zr | 1.2 | 1.4 | 1.1 | 1.4 | 0.3 | 1.0 | 0.7 | 0.5 | 1.0 | 0.3 | 1.4 | 0.5 | 0.5 | 0.5 |
Gd | 6.5 | 8.2 | 9.1 | 7.8 | 1.5 | 9.4 | 3.2 | 3.4 | 2.7 | 3.9 | 3.4 | 3.0 | 3.5 | 3.9 |
Specimen | Ecorr (V) | Icorr (µA/cm2) | CR (mpy) | CR (mmpy) |
---|---|---|---|---|
Base alloy | −1.629 | 103 | 95.604 | 2.428 |
Weld I | −1.472 | 4.12 | 4.314 | 0.109 |
Weld II | −1.570 | 13.1 | 13.68 | 0.034 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, Y.S.; Abidi, M.H.; Malik, W.; Lone, N.F.; Aboudaif, M.K.; Mohammed, M.K. Effect of Traverse Speed Variation on Microstructural Properties and Corrosion Behavior of Friction Stir Welded WE43 Mg Alloy Joints. Materials 2023, 16, 4902. https://doi.org/10.3390/ma16144902
Khan YS, Abidi MH, Malik W, Lone NF, Aboudaif MK, Mohammed MK. Effect of Traverse Speed Variation on Microstructural Properties and Corrosion Behavior of Friction Stir Welded WE43 Mg Alloy Joints. Materials. 2023; 16(14):4902. https://doi.org/10.3390/ma16144902
Chicago/Turabian StyleKhan, Yusra Saman, Mustufa Haider Abidi, Waqar Malik, Nadeem Fayaz Lone, Mohamed K. Aboudaif, and Muneer Khan Mohammed. 2023. "Effect of Traverse Speed Variation on Microstructural Properties and Corrosion Behavior of Friction Stir Welded WE43 Mg Alloy Joints" Materials 16, no. 14: 4902. https://doi.org/10.3390/ma16144902
APA StyleKhan, Y. S., Abidi, M. H., Malik, W., Lone, N. F., Aboudaif, M. K., & Mohammed, M. K. (2023). Effect of Traverse Speed Variation on Microstructural Properties and Corrosion Behavior of Friction Stir Welded WE43 Mg Alloy Joints. Materials, 16(14), 4902. https://doi.org/10.3390/ma16144902