Influence of Morphological Characteristics of Coarse Aggregates on Skid Resistance of Asphalt Pavement
Abstract
:1. Introduction
2. Research Methods
2.1. Test Roads
2.2. Measurement Time and Positions
2.3. Measurement Methods
2.3.1. Measurement of Pavement Skid Resistance
2.3.2. Acquisition Method of Coarse Aggregates
2.3.3. Measurement of Coarse Aggregate Angularity
- (a)
- Digital image acquisition
- (b)
- Digital image processing
- (c)
- Angularity evaluation indicators
2.3.4. Measurement of Coarse Aggregate Micro-Texture
- (a)
- Measurement device
- (b)
- Micro-texture measurement method
- (c)
- Micro-texture evaluation indicators
2.4. Grey Correlation Entropy Analysis Method
- Determination of the reference sequence and comparison sequence
- Dimensionless processing of raw data
- Calculation of grey correlation coefficient
- Calculation of distribution density of grey entropy correlation coefficient
- Calculation of grey entropy correlation degree
3. Results and Discussion
3.1. Attenuation Law of Pavement Skid Resistance
3.2. Variation in Angularity of Coarse Aggregates
3.3. Variation in Micro-Texture of Coarse Aggregates
3.4. Correlation between Pavement Skid Resistance and Morphological Characteristics of Coarse Aggregates
4. Conclusions
5. Future Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kumar, A.; Tang, T.; Gupta, A.; Anupam, K. A state-of-the-art review of measurement and modelling of skid resistance: The perspective of developing nation. Case Stud. Constr. Mater. 2023, 18, e02126. [Google Scholar] [CrossRef]
- Hussein, N.; Hassan, R.; Fahey, M.T. Effect of pavement condition and geometrics at signalised intersections on casualty crashes. J. Saf. Res. 2021, 76, 276–288. [Google Scholar] [CrossRef] [PubMed]
- Najafi, S.; Flintsch, G.W.; Medina, A. Linking roadway crashes and tire–pavement friction: A case study. Int. J. Pavement Eng. 2017, 18, 119–127. [Google Scholar] [CrossRef]
- Huang, X.; Zheng, B. Research status and progress for skid resistance performance of asphalt pavements. China J. of Highway Transport 2019, 32, 32–49. [Google Scholar]
- Li, Q.J.; Zhan, Y.; Yang, G.; Wang, K.C. Pavement skid resistance as a function of pavement surface and aggregate texture properties. Int. J. Pavement Eng. 2020, 21, 1159–1169. [Google Scholar] [CrossRef]
- Edjeou, W.; Cerezo, V.; Do, M.-T.; Zahouani, H.; Ropert, C.; Augris, P. Multiscale analyse of the relation between skid resistance and pavements surfaces texture evolution with polishing. Road Mater. Pavement Des. 2023, 1–25. [Google Scholar] [CrossRef]
- Liu, X.Y.; Cao, Q.Q.; Wang, H.; Chen, J.Y.; Huang, X.M. Evaluation of vehicle braking performance on wet pavement surface using an integrated tire-vehicle modeling approach. Transp. Res. Rec. 2019, 2673, 295–307. [Google Scholar] [CrossRef]
- Chen, S.; Liu, X.; Luo, H.; Yu, J.; Chen, F.; Zhang, Y.; Ma, T.; Huang, X. A state-of-the-art review of asphalt pavement surface texture and its measurement techniques. J. Road Eng. 2022, 2, 156–180. [Google Scholar] [CrossRef]
- Ji, J.; Ren, W.; Jiang, T.; Dong, Y.; Hou, Y.; Li, H. Establishment and Analysis of the Relationship Model between Macro-Texture and Skid Resistance Performance of Asphalt Pavement. Coatings 2022, 12, 1464. [Google Scholar] [CrossRef]
- Li, P.; Yi, K.; Yu, H.; Xiong, J.; Xu, R. Effect of aggregate properties on long-term skid resistance of asphalt mixture. J. Mater. Civ. Eng. 2021, 33, 04020413. [Google Scholar] [CrossRef]
- Zong, Y.; Li, S.; Zhang, J.; Zhai, J.; Li, C.; Ji, K.; Feng, B.; Zhao, H.; Guan, B.; Xiong, R. Effect of aggregate type and polishing level on the long-term skid resistance of thin friction course. Constr. Build. Mater. 2021, 282. [Google Scholar] [CrossRef]
- El-Ashwah, A.S.; Broaddus, K.; Abdelrahman, M. Predicting the friction coefficient of high-friction surface treatment application aggregates using the aggregates’ characteristics. J. Mater. Civ. Eng. 2023, 35, 04023089. [Google Scholar] [CrossRef]
- Sun, P.; Zhang, K.; Han, S.; Xiao, Y. Aggregate geometrical features and their influence on the surface properties of asphalt pavement. Materials 2022, 15, 3222. [Google Scholar] [CrossRef] [PubMed]
- Yu, M.; Xiao, B.; You, Z.; Wu, G.; Li, X.; Ding, Y. Dynamic friction coefficient between tire and compacted asphalt mixtures using tire-pavement dynamic friction analyzer. Constr. Build. Mater. 2020, 258, 119492. [Google Scholar] [CrossRef]
- Mezgeen, R.; Franziska, S.; Silvia, I.; Lucas, A.; Boumediene, N.; Malal, K.; Christophe, C. Progress and Monitoring Opportunities of Skid Resistance in Road Transport: A Critical Review and Road Sensors. Remote Sensing 2021, 13. [Google Scholar]
- Kane, M.; Lim, M.; Do, M.T.; Edmonsond, V. A new predictive skid resistance model (PSRM) for pavement evolution due to texture polishing by traffic. Constr. Build. Mater. 2022, 342, 128052. [Google Scholar] [CrossRef]
- Ren, W.; Han, S.; He, Z.; Li, J.; Wu, S. Development and testing of a multivariable accelerated abrasion machine to characterize the polishing wear of pavement by tires. Surf. Topogr.: Metrol. Prop. 2019, 7, 035006. [Google Scholar] [CrossRef]
- Zhao, Z.; Wang, Z.; Wu, S.; Xie, J.; Yang, C.; Li, N.; Cui, P. Road performance, VOCs emission and economic benefit evaluation of asphalt mixture by incorporating steel slag and SBS/CR composite modified asphalt. Case Stud. Constr. Mater. 2023, 18, e01929. [Google Scholar] [CrossRef]
- Haritonovs, V.; Tihonovs, J. Use of unconventional aggregates in hot mix asphalt concrete. Balt. J. Road Bridge Eng. 2014, 9, 276–282. [Google Scholar] [CrossRef]
- Cui, P.; Wu, S.; Xiao, Y.; Yang, C.; Wang, F. Enhancement mechanism of skid resistance in preventive maintenance of asphalt pavement by steel slag based on micro-surfacing. Constr. Build. Mater. 2020, 239, 117870. [Google Scholar] [CrossRef]
- Li, S.; Xiong, R.; Dong, X.; Sheng, Y.; Guan, B.; Zong, Y.; Xie, C.; Zhai, J.; Li, C. Effect of chemical composition of calcined bauxite aggregates on mechanical and physical properties for high friction surface course. Constr. Build. Mater. 2021, 302. [Google Scholar] [CrossRef]
- Liu, H.; Wang, Z.; Yang, C.; Chen, S.; Yu, H.; Huang, T.; Li, X.; You, Z. Effect of coarse aggregate characteristics on skid resistance deterioration of the ultrathin wearing course. J. Mater. Civ. Eng. 2021, 33, 04021051. [Google Scholar] [CrossRef]
- Qi, L.; Liu, Y.; Liu, Z.; Zhang, C.; Chen, Z.; Lv, J.; Wan, H. Skid resistance attenuation of asphalt pavement based on multifactor accelerated wear Test. Coatings 2023, 13, 717. [Google Scholar] [CrossRef]
- Ergin, B.; Gökalp, İ.; Uz, V.E. Effect of aggregate microtexture losses on skid resistance: Laboratory-based assessment on chip seals. J. Mater. Civ. Eng. 2020, 32, 04020040. [Google Scholar] [CrossRef]
- Edjeou, W.; Cerezo, V.; Zahouani, H.; Do, M.-T. Contribution of multiscale analysis to the understanding of friction evolution of aggregates surfaces. Surf. Topogr.: Metrol. Prop. 2023, 11, 014006. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, Z.; Kollmann, J.; Oeser, M. Development of aggregate micro-texture during polishing and correlation with skid resistance. Int. J. Pavement Eng. 2020, 21, 629–641. [Google Scholar] [CrossRef]
- He, Y.; Xing, C.; Hong, B.; Tan, Q.; Wang, D.; Oeser, M. Influence of polishing value of coarse and fine aggregate on long-term skid resistance of asphalt pavement. China J. of Highway Transport 2022, 35, 215–223. [Google Scholar]
- Zhu, S.Y.; Ji, X.P.; Yuan, H.Z.; Li, H.L.; Xu, X.Q. Long-term skid resistance and prediction model of asphalt pavement by accelerated pavement testing. Constr. Build. Mater. 2023, 375, 131004. [Google Scholar] [CrossRef]
- Tan, L.; Wu, M.; Deng, D.; Deng, H.; Lu, X. Experimental study on skid-resistance and wear-resistance performance attenuation rule of coarse aggregate. J. Highway Transp. Res. Dev. 2020, 37, 20–24, 42. [Google Scholar]
- Roy, N.; Sarkar, S.; Kuna, K.K.; Ghosh, S.K. Effect of coarse aggregate mineralogy on micro-texture deterioration and polished stone value. Constr. Build. Mater. 2021, 296, 123716. [Google Scholar] [CrossRef]
- Wang, C.; Wang, H.; Oeser, M.; Mohd Hasan, M.R. Investigation on the morphological and mineralogical properties of coarse aggregates under VSI crushing operation. Int. J. Pavement Eng. 2021, 22, 1611–1624. [Google Scholar] [CrossRef]
- MTPRC. Field Test Methods of Highway Subgrade and Pavement; JTG 3450-2019: 2019; China Communications Press Co., Ltd.: Beijing, China, 2019. [Google Scholar]
- MTPRC. Standard Test Methods of Bitumen and Bituminous Mixture for Highway Engineering; JTG E20-2011: 2011; China Communications Press Co., Ltd.: Beijing, China, 2011. [Google Scholar]
- Yang, H.; Mei, Y.; Lu, X. Research on the shape features of coarse aggregate based on image and sensor. J. Qingdao Univ. Technol. 2021, 41, 55–60. [Google Scholar]
- Yang, H.; Mei, Y.; Feng, G.; Dou, P.; Zheng, Y.; Zhao, H. Intelligent numerical computation method and quantitative study on morphological characteristics of multi-scale aggregate. J. Phys. Conf. Ser. 2021, 2083, 042056. [Google Scholar]
- De Oliveira, R.; Albuquerque, D.; Cruz, T.; Yamaji, F.; Leite, F. Measurement of the nanoscale roughness by atomic force microscopy: Basic principles and applications. In Atomic Force Microscopy-Imaging, Measuring and Manipulating Surfaces at the Atomic Scale; IntechOpen: London, UK, 2012; Volume 3. [Google Scholar]
- Menezes, P.L.; Kishore; Kailas, S.V. Influence of roughness parameters and surface texture on friction during sliding of pure lead over 080 M40 steel. Int. J. Adv. Manuf. Technol. 2009, 43, 731–743. [Google Scholar] [CrossRef]
- Pawlus, P.; Reizer, R.; Wieczorowski, M. Characterization of the shape of height distribution of two-process profile. Measurement 2020, 153, 107387. [Google Scholar] [CrossRef]
- Martins, A.M.; Rodrigues, P.C.; Abrão, A.M. Influence of machining parameters and deep rolling on the fatigue life of AISI 4140 steel. Int. J. Adv. Manuf. Technol. 2022, 121, 6153–6167. [Google Scholar] [CrossRef]
- Ren, W. Study on the Abrasion Characteristic of Surface Texture and Its Effect on Noise for Asphalt Pavements. Ph.D. dissertation, Chang’an University, Xi’an, China, 2019. [Google Scholar]
- Cui, W.; Wu, K.; Cai, X.; Tang, H.; Huang, W. Optimizing gradation design for ultra-thin wearing course asphalt. Materials 2020, 13, 189. [Google Scholar] [CrossRef]
- Nevalainen, N.; Pellinen, T. The use of a thermal camera for quality assurance of asphalt pavement construction. Int. J. Pavement Eng. 2016, 17, 626–636. [Google Scholar] [CrossRef]
- Ziyadi, M.; Ozer, H.; Shakiba, M.; Al-Qadi, I.L. Vehicle excess fuel consumption due to pavement deflection. Road Mater. Pavement Des. 2023, 24, 609–630. [Google Scholar] [CrossRef]
Road Name | SD | SN | LC | YY | XY | SP |
---|---|---|---|---|---|---|
Road type | New road | Major repair | Major repair | Upgrading | Major repair | Upgrading |
Road class | Trunk | Secondary | Secondary | Trunk | Secondary | Trunk |
Sample length/km | 13.00 | 2.00 | 9.70 | 1.65 | 5.00 | 6.32 |
Number of lanes | 6 | 4 | 2 | 4 | 2 | 8 |
Opening time | August 2019 | Octobr 2019 | August 2019 | August 2019 | Octobr 2019 | August 2019 |
Annual average daily traffic volume/vehicle | 27,389 | 8500 | 495 | 6350 | 5630 | 11,663 |
Road Name | SD | SN | LC | YY | XY | SP |
---|---|---|---|---|---|---|
Mixture type in the surface layer | UTWC-10 | AC-16C | WAC-16C | AC-13 | RAC-13 | RAC-13C |
Asphalt type | Modified | 70# | 90# | 70# | 70# | 70# |
Coarse aggregate type | Basalt | Limestone | Limestone | Limestone | Limestone | Limestone |
Nominal maximum aggregate size/mm | 9.5 | 16 | 16 | 13.2 | 13.2 | 13.2 |
Coarse aggregate ratio/% | 70 | 54.5 | 55.2 | 55.8 | 49.7 | 47.3 |
Coarse aggregate crushing value/% | 13.2 | 15.1 | 13.3 | 16.3 | 18.6 | 17.5 |
Coarse aggregate Los Angeles wear value/% | 14.3 | 18.5 | 14.1 | 14.1 | 18.2 | 16.4 |
Asphalt-aggregate ratio/% | 4.8 | 4.6 | 4.5 | 4.8 | 4.8 | 4.8 |
Voids/% | 13.8 | 4.8 | 5.4 | 4.5 | 4.6 | 4.3 |
Morphological Indicators of Coarse Aggregates | Ra | Rp | Rq | Rt | Rv | P | AS | R |
---|---|---|---|---|---|---|---|---|
Correlation degree | 0.715 | 0.705 | 0.728 | 0.747 | 0.752 | 0.668 | 0.671 | 0.731 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, Y.; Wang, Z.; Ren, W.; Jiang, T.; Hou, Y.; Zhang, Y. Influence of Morphological Characteristics of Coarse Aggregates on Skid Resistance of Asphalt Pavement. Materials 2023, 16, 4926. https://doi.org/10.3390/ma16144926
Dong Y, Wang Z, Ren W, Jiang T, Hou Y, Zhang Y. Influence of Morphological Characteristics of Coarse Aggregates on Skid Resistance of Asphalt Pavement. Materials. 2023; 16(14):4926. https://doi.org/10.3390/ma16144926
Chicago/Turabian StyleDong, Yuanshuai, Zihao Wang, Wanyan Ren, Tianhao Jiang, Yun Hou, and Yanhong Zhang. 2023. "Influence of Morphological Characteristics of Coarse Aggregates on Skid Resistance of Asphalt Pavement" Materials 16, no. 14: 4926. https://doi.org/10.3390/ma16144926
APA StyleDong, Y., Wang, Z., Ren, W., Jiang, T., Hou, Y., & Zhang, Y. (2023). Influence of Morphological Characteristics of Coarse Aggregates on Skid Resistance of Asphalt Pavement. Materials, 16(14), 4926. https://doi.org/10.3390/ma16144926