Investigation of the Bimodal Leaching Response of RAM Chip Gold Fingers in Ammonia Thiosulfate Solution
Abstract
:1. Introduction
- The effects of a pretreatment to eliminate the thiosulfate consumption by the pre-existing Cu;
- Effects of control on the oxidation state (both the initial Cu(II) concentration and the aeration to maintain the Cu(II) concentration);
- Evaluation of the impact of other leachable metals (i.e., Ni and Cu) on Au dissolution;
- Investigation of other processing factors on Au dissolution, accessed by inhibiting the negative impact by co-extracted metals.
2. Materials and Methods
2.1. Materials and Pretreatment
2.2. Leaching Experiment
- A three-level, two-factor design of experiments to evaluate the effects of copper concentration and aeration rate on leaching (comprising Experiment 2–10);
- Two experiments consisting of a three-level single-factor design testing changes in the concentrations of thiosulfate and ammonia, respectively (Part A, with changing thiosulfate Experiment 9, 13, 14; Part B, with changing ammonia Experiment 11, 9, 12; and Part C, which regresses 9, and 11–14);
- A three-level single-factor design to evaluate particle top size (comprising Experiment 15, 9, 16);
- A four-level single-factor design to evaluate the effects of temperature (comprising Experiment 9, and 17–19);
- A composite regression analysis including aeration, copper concentration, thiosulfate concentration, and ammonia concentration (comprising Experiment 2–4, 8–14).
2.3. Analytical and Characterization Methods
2.3.1. Solid Assay
2.3.2. ICP-OES Analysis
2.3.3. SEM-EDS Characterization of Feed Materials
3. Results and Discussion
3.1. Effect of Decopperization
3.2. SEM Characterization of Untreated Au Fingers
3.3. Mechanistic Exploration of Time-Dependent Au Thiosulfate Leaching Results
3.3.1. Investigation on the Aeration/Oxidation in Au Thiosulfate Leaching System
3.3.2. Investigation on Solution Eh and pH in Au Thiosulfate Leaching System
3.4. Presentation and Analysis of Leaching Results
3.4.1. Effect of Cu(II) Concentration and Aeration
3.4.2. Effect of Ammonium Thiosulfate to Ammonium Hydroxide Concentrations (AT/AH Ratios and Concentrations)
3.4.3. Effect of Particle Size and Temperature
3.4.4. Combined Regression Model Excluding Particle Size, Temperature, and 60 mL/min Aeration
3.5. Concerns and Potential Issues
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lu, Y.; Xu, Z. Precious Metals Recovery from Waste Printed Circuit Boards: A Review for Current Status and Perspective. Resour. Conserv. Recycl. 2016, 113, 28–39. [Google Scholar] [CrossRef]
- Forti, V.; Baldé, C.P.; Kuehr, R.; Bel, G. The Global E-Waste Monitor 2020: Quantities, Flows, and the Circular Economy Potential; United Nations University/United Nations Institute for Training and Research: Geneva, Switzerland, 2020; ISBN 9789280891140. [Google Scholar]
- Behnamfard, A.; Salarirad, M.M.; Veglio, F. Process Development for Recovery of Copper and Precious Metals from Waste Printed Circuit Boards with Emphasize on Palladium and Gold Leaching and Precipitation. Waste Manag. 2013, 33, 2354–2363. [Google Scholar] [CrossRef] [PubMed]
- Syed, S. Recovery of Gold from Secondary Sources-A Review. Hydrometallurgy 2012, 115–116, 30–51. [Google Scholar] [CrossRef]
- Golev, A.; Corder, G.D. Quantifying Metal Values in E-Waste in Australia: The Value Chain Perspective. Miner. Eng. 2017, 107, 81–87. [Google Scholar] [CrossRef]
- Cao, P.; Zhang, S.; Zheng, Y. Characterization and Gold Extraction of Gold-Bearing Dust from Carbon-Bearing Gold Concentrates. Miner. Process. Extr. Metall. Rev. 2022, 43, 188–200. [Google Scholar] [CrossRef]
- Rinne, M.; Elomaa, H.; Seisko, S.; Lundstrom, M. Direct Cupric Chloride Leaching of Gold from Refractory Sulfide Ore: Process Simulation and Life Cycle Assessment. Miner. Process. Extr. Metall. Rev. 2022, 43, 598–609. [Google Scholar] [CrossRef]
- Sethurajan, M.; van Hullebusch, E.D.; Fontana, D.; Akcil, A.; Deveci, H.; Batinic, B.; Leal, J.P.; Gasche, T.A.; Ali Kucuker, M.; Kuchta, K.; et al. Recent Advances on Hydrometallurgical Recovery of Critical and Precious Elements from End of Life Electronic Wastes—A Review. Crit Rev. Env. Sci. Technol. 2019, 49, 212–275. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Miller, J.D. A Review of Gold Leaching in Acid Thiourea Solutions. Miner. Process. Extr. Metall. Rev. 2006, 27, 177–214. [Google Scholar] [CrossRef]
- Eksteen, J.J.; Oraby, E.A. The Leaching and Adsorption of Gold Using Low Concentration Amino Acids and Hydrogen Peroxide: Effect of Catalytic Ions, Sulphide Minerals and Amino Acid Type. Miner. Eng. 2015, 70, 36–42. [Google Scholar] [CrossRef]
- Oraby, E.A.; Browner, R.E.; Nikraz, H.R. Effect of Silver in Thiosulfate Leaching of Gold-Silver Alloys in the Presence of Copper and Ammonia Relative to Pure Gold and Silver. Miner. Process. Extr. Metall. Rev. 2014, 35, 136–147. [Google Scholar] [CrossRef]
- Tanısalı, E.; Özer, M.; Burat, F. Precious Metals Recovery from Waste Printed Circuit Boards by Gravity Separation and Leaching. Miner. Process. Extr. Metall. Rev. 2020, 42, 24–37. [Google Scholar] [CrossRef]
- Ilankoon, N.D.; Aldrich, C.; Oraby, E.A.; Eksteen, J.J. Extraction of Gold and Copper from a Gold Ore Thiosulfate Leachate by Use of Functionalized Magnetic Nanoparticles. Miner. Process. Extr. Metall. Rev. 2020, 41, 311–322. [Google Scholar] [CrossRef]
- Arslan, F.; Sayiner, B. Extraction of Gold and Silver from Turkish Gold Ore by Ammoniacal Thiosulphate Leaching. Miner. Process. Extr. Metall. Rev. 2008, 29, 68–82. [Google Scholar] [CrossRef]
- Wang, J.; Xie, F.; Pan, Y.; Wang, W. Leaching of Gold with Copper-Citrate-Thiosulfate Solutions. Miner. Process. Extr. Metall. Rev. 2022, 43, 916–925. [Google Scholar] [CrossRef]
- Zhang, X.M.; Senanayake, G. A Review of Ammoniacal Thiosulfate Leaching of Gold: An Update Useful for Further Research in Non-Cyanide Gold Lixiviants. Miner. Process. Extr. Metall. Rev. 2016, 37, 385–411. [Google Scholar] [CrossRef]
- Xiao, Y.; Yang, Y.; Van Den Berg, J.; Sietsma, J.; Agterhuis, H.; Visser, G.; Bol, D. Hydrometallurgical Recovery of Copper from Complex Mixtures of End-of-Life Shredded ICT Products. Hydrometallurgy 2013, 140, 128–134. [Google Scholar] [CrossRef]
- Koyama, K.; Tanaka, M.; Lee, J.C. Copper Leaching Behavior from Waste Printed Circuit Board in Ammoniacal Alkaline Solution. Mater. Trans. 2006, 47, 1788–1792. [Google Scholar] [CrossRef] [Green Version]
- Shi, S.-X.; Jiang, S.-Q.; Nie, C.-C.; Li, B.; Chang, H.-H.; Zhu, X.-N. Kinetic Characteristics and Mechanism of Copper Leaching from Waste Printed Circuit Boards by Environmental Friendly Leaching System. Process. Saf. Environ. Prot. 2022, 166, 123–132. [Google Scholar] [CrossRef]
- Sun, Z.; Cao, H.; Venkatesan, P.; Jin, W.; Xiao, Y.; Sietsma, J.; Yang, Y. Electrochemistry during Efficient Copper Recovery from Complex Electronic Waste Using Ammonia Based Solutions. Front. Chem. Sci. Eng. 2017, 11, 308–316. [Google Scholar] [CrossRef]
- Oishi, T.; Koyama, K.; Konishi, H.; Tanaka, M.; Lee, J.C. Influence of Ammonium Salt on Electrowinning of Copper from Ammoniacal Alkaline Solutions. Electrochim. Acta 2007, 53, 127–132. [Google Scholar] [CrossRef]
- Oishi, T.; Koyama, K.; Alam, S.; Tanaka, M.; Lee, J.C. Recovery of High Purity Copper Cathode from Printed Circuit Boards Using Ammoniacal Sulfate or Chloride Solutions. Hydrometallurgy 2007, 89, 82–88. [Google Scholar] [CrossRef]
- Oishi, T.; Yaguchi, M.; Koyama, K.; Tanaka, M.; Lee, J.C. Hydrometallurgical Process for the Recycling of Copper Using Anodic Oxidation of Cuprous Ammine Complexes and Flow-through Electrolysis. Electrochim. Acta 2008, 53, 2585–2592. [Google Scholar] [CrossRef]
- Alam, M.S.; Tanaka, M.; Koyama, K.; Oishi, T.; Lee, J.C. Electrolyte Purification in Energy-Saving Monovalent Copper Electrowinning Processes. Hydrometallurgy 2007, 87, 36–44. [Google Scholar] [CrossRef]
- Nie, Y.; Yang, L.; Wang, Q.; Shi, C.; Zi, F.; Yu, H. Connection between Gold Dissolution in Thiosulfate Leaching and Cu(II) Complexes during the Cathodic Process. Electrochim. Acta 2019, 328, 135079. [Google Scholar] [CrossRef]
- Xu, B.; Kong, W.; Li, Q.; Yang, Y.; Jiang, T.; Liu, X. A Review of Thiosulfate Leaching of Gold: Focus on Thiosulfate Consumption and Gold Recovery from Pregnant Solution. Metals 2017, 7, 222. [Google Scholar] [CrossRef]
- Senanayake, G. Analysis of Reaction Kinetics, Speciation and Mechanism of Gold Leaching and Thiosulfate Oxidation by Ammoniacal Copper(II) Solutions. Hydrometallurgy 2004, 75, 55–75. [Google Scholar] [CrossRef]
- Senanayake, G. The Role of Ligands and Oxidants in Thiosulfate Leaching of Gold. Gold Bull. 2005, 38, 170–179. [Google Scholar] [CrossRef] [Green Version]
- Senanayake, G. Catalytic Role of Ammonia in the Anodic Oxidation of Gold in Copper-Free Thiosulfate Solutions. Hydrometallurgy 2005, 77, 287–293. [Google Scholar] [CrossRef]
- Hiskey, J.B.; Lee, J. Kinetics of Gold Cementation on Copper in Ammoniacal Thiosulfate Solutions. Hydrometallurgy 2003, 69, 45–56. [Google Scholar] [CrossRef]
- Lee, J.; Hiskey, J.B. Electrochemical Study of Gold Cementation onto Copper in Thiosulfate Solution. In Hydrometallurgy 2008, Proceedings of Sixth International Symposium; Society for Mining, Metallurgy, and Exploration: Englewood, CO, USA, 2008; pp. 811–816. [Google Scholar]
- Arima, H.; Fujita, T.; Yen, W.T. Gold Cementation from Ammonium Thiosulfate Solution by Zinc, Copper and Aluminium Powders. Mater. Trans. 2002, 43, 485–493. [Google Scholar] [CrossRef] [Green Version]
- Guerra, E.; Dreisinger, D.B. A Study of the Factors Affecting Copper Cementation of Gold from Ammoniacal Thiosulphate Solution. Hydrometallurgy 1999, 51, 155–172. [Google Scholar] [CrossRef] [Green Version]
- Jeon, S.; Tabelin, C.B.; Takahashi, H.; Park, I.; Ito, M.; Hiroyoshi, N. Interference of Coexisting Copper and Aluminum on the Ammonium Thiosulfate Leaching of Gold from Printed Circuit Boards of Waste Mobile Phones. Waste Manag. 2018, 81, 148–156. [Google Scholar] [CrossRef] [PubMed]
- Jeon, S.; Bright, S.; Park, I.; Tabelin, C.B.; Ito, M.; Hiroyoshi, N. The Effects of Coexisting Copper, Iron, Cobalt, Nickel and Zinc Ions on Gold Recovery by Enhanced Cementation via Galvanic Interactions between Zero-Valent Aluminum and Activated Carbon in Ammonium Thiosulfate Systems. Metals 2021, 11, 1352. [Google Scholar] [CrossRef]
- Oh, C.J.; Lee, S.O.; Yang, H.S.; Ha, T.J.; Kim, M.J. Selective Leaching of Valuable Metals from Waste Printed Circuit Boards. J. Air Waste Manag. Assoc. 2003, 53, 897–902. [Google Scholar] [CrossRef] [PubMed]
- Ficeriová, J.; Baláž, P.; Gock, E. Leaching of Gold, Silver and Accompanying Metals from Circuit Boards (PCBs) Waste. Acta Montan. Slovaca 2011, 16, 128–131. [Google Scholar]
- Camelino, S.; Rao, J.; Padilla, R.L.; Lucci, R. Initial Studies about Gold Leaching from Printed Circuit Boards (PCB’s) of Waste Cell Phones. Procedia Mater. Sci. 2015, 9, 105–112. [Google Scholar] [CrossRef]
- Ha, V.H.; Lee, J.-C.; Jeong, J.; Hai, H.T.; Jha, M.K. Thiosulfate Leaching of Gold from Waste Mobile Phones. J. Hazard. Mater. 2010, 178, 1115–1119. [Google Scholar] [CrossRef]
- Tripathi, A.; Kumar, M.; Sau, D.C.; Agrawal, A.; Chakravarty, S.; Mankhand, T.R. Leaching of Gold from the Waste Mobile Phone Printed Circuit Boards (PCBs) with Ammonium Thiosulphate. Int. J. Metall. Eng. 2012, 1, 17–21. [Google Scholar] [CrossRef]
- Petter, P.M.H.; Veit, H.M.; Bernardes, A.M. Evaluation of Gold and Silver Leaching from Printed Circuit Board of Cellphones. Waste Manag. 2014, 34, 475–482. [Google Scholar] [CrossRef]
- Ha, V.H.; Lee, J.C.; Huynh, T.H.; Jeong, J.; Pandey, B.D. Optimizing the Thiosulfate Leaching of Gold from Printed Circuit Boards of Discarded Mobile Phone. Hydrometallurgy 2014, 149, 118–126. [Google Scholar] [CrossRef]
- Kasper, A.C.; Veit, H.M. Gold Recovery from Printed Circuit Boards of Mobile Phones Scraps Using a Leaching Solution Alternative to Cyanide. Braz. J. Chem. Eng. 2018, 35, 931–942. [Google Scholar] [CrossRef] [Green Version]
- Murali, A.; Zhang, Z.; Shine, A.E.; Free, M.L.; Sarswat, P.K. E-Wastes Derived Sustainable Cu Recovery Using Solvent Extraction and Electrowinning Followed by Thiosulfate-Based Gold and Silver Extraction. J. Hazard. Mater. Adv. 2022, 8, 100196. [Google Scholar] [CrossRef]
- Feng, D.; van Deventer, J.S.J. The Role of Oxygen in Thiosulphate Leaching of Gold. Hydrometallurgy 2007, 85, 193–202. [Google Scholar] [CrossRef]
- Breuer, P.L.; Jeffrey, M.I. An Electrochemical Study of Gold Leaching in Thiosulfate Solutions Containing Copper and Ammonia. Hydrometallurgy 2002, 65, 145–157. [Google Scholar] [CrossRef]
- Breuer, P.L.; Jeffrey, M.I. The Reduction of Copper(II) and the Oxidation of Thiosulfate and Oxysulfur Anions in Gold Leaching Solutions. Hydrometallurgy 2003, 70, 163–173. [Google Scholar] [CrossRef]
- Molleman, E.; Dreisinger, D. The Treatment of Copper-Gold Ores by Ammonium Thiosulfate Leaching. Hydrometallurgy 2002, 66, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Jeffrey, M.I.; Watling, K.; Hope, G.A.; Woods, R. Identification of Surface Species That Inhibit and Passivate Thiosulfate Leaching of Gold. Min. Eng. 2008, 21, 443–452. [Google Scholar] [CrossRef]
- Aylmore, M.G.; Muir, D.M. Thiosulfate Leaching of Gold—A Review. Min. Eng. 2001, 14, 135–174. [Google Scholar] [CrossRef]
Source of WPCBs | Lixiviant and Oxidizer | Pretreatment | Leaching Conditions | Au Recovery % | References |
---|---|---|---|---|---|
Various Waste Computers | (NH4)2S2O3 + CuSO4 + NH4OH | Physical separation, H2SO4 + H2O2 | 0.2 M (NH4)2S2O3, 0.4 M NH4OH, 0.02 M CuSO4. | 95.0 | [36] |
Waste Mobile Phones | Cu(II)–NH3–S2O3 solution | N/A | 0.1–0.14 M S2O3, 0.2–0.3 M NH3, 15–20 mM Cu2+, pH from 10–10.5. | 98.0 | [39] |
General Type | (NH4)2S2O3 + CuSO4·5H2O + NH3 | H2SO4 + H2O2 | 0.5 M (NH4)2S2O3, 1 M NH3, 0.2 M CuSO4·5H2O, pH at 9.0. | 98.0 | [37] |
Waste Mobile Phones | (NH4)2S2O3 + CuSO4 | N/A | 0.1 M (NH4)2S2O3, 40 mM CuSO4, pH from 10–10.5. | 56.7 | [40] |
Waste Cell Phones | Na2S2O3 + NH4OH, with CuSO4 or H2O2 | N/A | 0.1 M Na2S2O3, 0.2 M NH4OH, 15–30 mM Cu(II), addition of H2O2, pH at 10–11. | 15.0 | [41] |
(NH4)2S2O3 + NH4OH, with CuSO4 or H2O2 | N/A | 0.1 M (NH4)2S2O3, 0.2 M NH4OH, 15–50 mM Cu(II), addition of H2O2, pH at 9–10. | 2.0 | ||
Discarded Mobile Phone | Cu(II)-NH3-Na2S2O3 solution, under N2 bubbling | N/A | 0.1–0.14 M S2O3, 0.2–0.3 M NH3, 15–20 mM Cu(II). | 91.0 | [42] |
Waste Cell Phones | (NH4)2S2O3 + NH4OH +Cu2+ | H2SO4 + H2O2 | 0.08–0.12 M S2O3, 0.1–0.2 M NH4OH, 15 mM of Cu2+, pH at 10.5. | 70.0 | [38] |
Waste Mobile Phones | Na2S2O3 + NH4OH + Cu2+ | N/A | 0.12 M Na2S2O3 + 0.2 M NH4OH + 20 mM Cu2+, pH at 10. | 70.0 | [43] |
(NH4)2S2O3 + NH4OH + Cu2+ | N/A | 0.12 M (NH4)2S2O3 + 0.2 M NH4OH + 20 mM Cu2+, pH at 10. | 75.0 | ||
Grinded E-waste Scrap | Na2S2O3/(NH4)2S2O3 + NH3 + Cu2+ | Bioleaching | 0.111 M S2O32− + 0.32 M NH3 + 30 mM Cu2+ | 87.0 | [44] |
Waste RAM Chips | (NH4)2S2O3+ NH4OH +Cu2+ with aeration | (NH4)2SO4 + NH4OH + Cu2+ | 0.25–0.75M (NH4)2S2O3, 0.5–1 M NH4OH, 0–75 mM Cu2+, 0–120 mL/min aeration, pH from 10–10.5. | >98.0 | This study |
Pulp Density | Particle Top Size | c[Cu2+] | c[S2O32−] | c[NH3] | Temperature | Aeration (21%O2) |
---|---|---|---|---|---|---|
g/L | mm | mM | M | M | °C | mL/min |
10 | 3.4, 2.0, 1.2 | 25, 50, 75 | 0.25, 0.50, 0.75 | 0.50, 0.75, 1.00 | 25, 35, 45, 55 | 0 (Ar), 60, 120 |
Experiment ID | Pretreatment | Particle Top Size | Temperature | c[Cu2+] | Aeration (21% O2) | c[S2O32−] | c[NH3] | c[S2O32−]/c[NH3] |
---|---|---|---|---|---|---|---|---|
mm | °C | mM | mL/min | M | M | |||
1 | No | 2 | 25 | 75 | 120 | 0.5 | 0.5 | 1 |
2 | Yes | 2 | 25 | 25 | 0 (120 Ar) | 0.5 | 0.5 | 1 |
3 | Yes | 2 | 25 | 50 | 0 (120 Ar) | 0.5 | 0.5 | 1 |
4 | Yes | 2 | 25 | 75 | 0 (120 Ar) | 0.5 | 0.5 | 1 |
5 | Yes | 2 | 25 | 25 | 60 | 0.5 | 0.5 | 1 |
6 | Yes | 2 | 25 | 50 | 60 | 0.5 | 0.5 | 1 |
7 | Yes | 2 | 25 | 75 | 60 | 0.5 | 0.5 | 1 |
8 | Yes | 2 | 25 | 25 | 120 | 0.5 | 0.5 | 1 |
9 | Yes | 2 | 25 | 50 | 120 | 0.5 | 0.5 | 1 |
10 | Yes | 2 | 25 | 75 | 120 | 0.5 | 0.5 | 1 |
11 | Yes | 2 | 25 | 50 | 120 | 0.25 | 0.5 | 0.5 |
12 | Yes | 2 | 25 | 50 | 120 | 0.75 | 0.5 | 1.5 |
13 | Yes | 2 | 25 | 50 | 120 | 0.5 | 0.75 | 0.67 |
14 | Yes | 2 | 25 | 50 | 120 | 0.5 | 1 | 0.5 |
15 | Yes | 3.4 | 25 | 50 | 120 | 0.5 | 0.5 | 1 |
16 | Yes | 1.2 | 25 | 50 | 120 | 0.5 | 0.5 | 1 |
17 | Yes | 2 | 35 | 50 | 120 | 0.5 | 0.5 | 1 |
18 | Yes | 2 | 45 | 50 | 120 | 0.5 | 0.5 | 1 |
19 | Yes | 2 | 55 | 50 | 120 | 0.5 | 0.5 | 1 |
Feed Materials | Ag | Al | Au | Co | Cu | Fe | Mg | Ni | Zn |
---|---|---|---|---|---|---|---|---|---|
ppm | ppm | ppm | ppm | ppm | ppm | ppm | ppm | ppm | |
Original AF | 93 | 26,331 | 6434 | 37 | 290,447 | 366 | 930 | 18,092 | 66 |
Decopperized AF | 91 | 30,197 | 7713 | 41 | 28,984 | 697 | 926 | 19,163 | 66 |
Experiment ID | Time To Au Drop (min) | Geometric Mean (min) | Time Weight Factor | Max Au % Recovery at Drop | Leaching Proclivity |
---|---|---|---|---|---|
1 | 0–15 | 7.5 | 32.0 | 0.0 | 0.0 |
2 | 60–120 | 90 | 2.7 | 102.6 | 273.5 |
3 | 60–120 | 90 | 2.7 | 71.3 | 190.1 |
4 | 180–240 | 210 | 1.1 | 60.4 | 69.0 |
5 | 120–180 | 150 | 1.6 | 100.0 | 160.0 |
6 | >240 | 240 | 1.0 | 84.5 | 84.5 |
7 | >240 | 240 | 1.0 | 80.3 | 80.3 |
8 | 120–180 | 150 | 1.6 | 94.7 | 151.5 |
9 | >240 | 240 | 1.0 | 88.7 | 88.7 |
10 | >240 | 240 | 1.0 | 79.8 | 79.8 |
11 | >240 | 240 | 1.0 | 88.9 | 88.9 |
12 | 15–30 | 22.5 | 10.7 | 44.9 | 478.8 |
13 | >240 | 240 | 1.0 | 97.9 | 97.9 |
14 | 180–240 | 210 | 1.1 | 101.7 | 116.3 |
15 | 180–240 | 210 | 1.1 | 86.9 | 99.3 |
16 | 180–240 | 210 | 1.1 | 81.0 | 92.5 |
17 | 15–30 | 22.5 | 10.7 | 49.4 | 526.8 |
18 | 0–15 | 7.5 | 32.0 | 0.0 | 0.0 |
19 | 0–15 | 7.5 | 32.0 | 0.0 | 0.0 |
Term | p-Value |
---|---|
Constant | 0.009 |
c[Cu2+] | 0.099 |
Aeration | 0.946 |
c[Cu2+] × Aeration | 0.891 |
Term | p-Value |
---|---|
Constant | 0.003 |
c[Cu2+] | 0.018 |
Aeration | 0.045 |
c[Cu2+] × Aeration | 0.073 |
Term | p-Value |
---|---|
Constant | 0.027 |
Cu Concentration | 0.177 |
Air Gas Flow | 0.697 |
AT Conc | 0.022 |
AH Conc | 0.597 |
Cu Concentration × Air Gas Flow | 0.490 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, P.; Ali, Z.A.; Werner, J. Investigation of the Bimodal Leaching Response of RAM Chip Gold Fingers in Ammonia Thiosulfate Solution. Materials 2023, 16, 4940. https://doi.org/10.3390/ma16144940
Lin P, Ali ZA, Werner J. Investigation of the Bimodal Leaching Response of RAM Chip Gold Fingers in Ammonia Thiosulfate Solution. Materials. 2023; 16(14):4940. https://doi.org/10.3390/ma16144940
Chicago/Turabian StyleLin, Peijia, Zulqarnain Ahmad Ali, and Joshua Werner. 2023. "Investigation of the Bimodal Leaching Response of RAM Chip Gold Fingers in Ammonia Thiosulfate Solution" Materials 16, no. 14: 4940. https://doi.org/10.3390/ma16144940
APA StyleLin, P., Ali, Z. A., & Werner, J. (2023). Investigation of the Bimodal Leaching Response of RAM Chip Gold Fingers in Ammonia Thiosulfate Solution. Materials, 16(14), 4940. https://doi.org/10.3390/ma16144940