Thermodynamic and Kinetic Aspects of Gold Adsorption in Micrometric Activated Carbon and the Impact of Their Loss in Adsorption, Desorption, and Reactivation Plants
Abstract
:1. Introduction
- Extraction is enhanced in the presence of electrolytes such as CaCl2 and KCl;
- Adsorption kinetics and equilibrium loading increase as the pH decreases;
- Gold adsorption increases the pH of the solution;
- Neutral cyanide complexes, such as Hg(CN)2, are strongly adsorbed regardless of the ionic strength of the solution;
- Adsorption is a reversible process, with a higher stripping rate for slightly different conditions;
- There is evidence that adsorption is dependent on the reduction potential of the system;
- Under most conditions, the molar ratio of loaded gold to nitrogen is 0.5:1.0, which is consistent with the presence of Au(CN)2;
- Adsorption decreases with increasing temperatures;
- The adsorption mechanism can be represented by the following equation:
2. Materials and Methods
2.1. Reagents and Materials
2.2. Laboratory Equipment
2.3. Analytical Procedures
2.3.1. Atomic Absorption Spectroscopy
2.3.2. Fire Assay
2.3.3. SEM
2.4. Adsorption Test for Thermodynamic and Kinetic Analyses
2.5. Industrial Monitoring and Sampling of Escaping Fine AC Particles
2.6. Thermodynamic Analysis
2.7. Thermodynamic Models
2.7.1. Langmuir Isotherm
2.7.2. Temkin Isotherm
2.7.3. Freundlich Isotherm
2.8. Kinetic Analysis
2.8.1. PFO Model
2.8.2. PSO Model
3. Results
3.1. Gold Adsorption in AC in Fine Particles
- AC separation from rich (Pregnant Leach Solution-PLS) or barren (After AC Adsorption Process) solutions becomes complicated, particularly when dealing with the presence of carbon in extremely small particle sizes (generally, carbon screening can be conducted from 0.7 mm to 0.8 mm in barren solutions);
- The fine carbon generated by attrition is susceptible to being lost because of its mass loss and the high exposure of its surface area. Further, the size reduction usually causes the AC particles to leave the ADR column circuit rapidly;
- Small carbon has a shorter fluidization rate than regular-sized carbon, which affects the development of the process under the design characteristics of the equipment (e.g., supernatant carbon between circuit columns).
3.2. Thermodynamic Analysis of Gold Adsorption in AC Langmuir, Temkin, and Freundlich Isotherms
3.3. Kinetic Analysis of Gold Adsorption in AC Using PFO and PSO
3.4. Industrial Monitoring and Sampling of Escaping Fine AC Particles
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cevallos Toledo, R.B.; Aragón-Tobar, C.F.; Gámez, S.; de la Torre, E. Reactivation process of activated carbons: Effect on the mechanical and adsorptive properties. Molecules 2020, 25, 1681. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martínez-Mendoza, K.L.; Barraza Burgos, J.M.; Marriaga-Cabrales, N.; Machuca-Martinez, F.; Barajas, M.; Romero, M. Production and characterization of activated carbon from coal for gold adsorption in cyanide solutions. Ing. Inv. 2020, 40, 34–44. [Google Scholar] [CrossRef]
- Cao, P.; Zhang, S.; Zheng, Y. Characterization and gold extraction of gold-bearing dust from carbon-bearing gold concentrates. Miner. Process. Extr. Metall. Rev. 2022, 43, 188–200. [Google Scholar] [CrossRef]
- Bryson, A.W. Gold adsorption by activated carbon and resin. Miner. Process. Extr. Metall. Rev. 1995, 15, 145–151. [Google Scholar] [CrossRef]
- Yannopoulos, J.C. The Extractive Metallurgy of Gold; Springer: Berlin, Germany, 2012; pp. 141–157. [Google Scholar]
- Celep, O.; Bas, A.D.; Yazici, E.Y.; Alp, İ.; Deveci, H. Improvement of silver extraction by ultrafine grinding prior to cyanide leaching of the plant tailings of a refractory silver ore. Miner. Process. Extr. Metall. Rev. 2015, 36, 227–236. [Google Scholar] [CrossRef]
- Marsh, H.; Rodríguez-Reinoso, F. Activated Carbon; Elsevier: Amsterdam, The Netherlands, 2006; pp. 395–397. [Google Scholar]
- Januszewicz, K.; Kazimierski, P.; Klein, M.; Kardaś, D.; Łuczak, J. Activated carbon produced by pyrolysis of waste wood and straw for potential wastewater adsorption. Materials 2020, 13, 2047. [Google Scholar] [CrossRef]
- Olvera, O.G.; Domanski, D.F.R. Effect of activated carbon on the thiosulfate leaching of gold. Hydrometallurgy 2019, 188, 47–53. [Google Scholar] [CrossRef]
- Khosravi, R.; Azizi, A.; Ghaedrahmati, R.; Gupta, V.K.; Agarwal, S. Adsorption of gold from cyanide leaching solution onto activated carbon originating from coconut shell—Optimization, kinetics and equilibrium studies. J. Ind. Eng. Chem. 2017, 54, 464–471. [Google Scholar] [CrossRef]
- Fleming, C.A.; Mezei, A.; Bourricaudy, E.; Canizares, M.; Ashbury, M. Factors influencing the rate of gold cyanide leaching and adsorption on activated carbon, and their impact on the design of CIL and CIP circuits. Miner. Eng. 2011, 24, 484–494. [Google Scholar] [CrossRef]
- Marsden, J.O.; House, C.I. The Chemistry of Gold Extraction, 2nd ed.; Society for Mining, Metallurgy and Exploration: Englewood, CO, USA, 2006; pp. 297–333. [Google Scholar]
- Rees, K.L.; van Deventer, J.S.J. Preg-robbing phenomena in the cyanidation of sulphide gold ores. Hydrometallurgy 2000, 58, 61–80. [Google Scholar] [CrossRef]
- Tremolada, J.; Dzioba, R.; Bernardo-Sánchez, A.; Menéndez-Aguado, J.M. The preg-Robbing of gold and silver by clays during cyanidation under agitation and heap leaching conditions. Int. J. Miner. Process. 2010, 94, 67–71. [Google Scholar] [CrossRef]
- Hill, E.M.; Lin, K. Method of Recovering Gold from the Fine Carbon Residue from a Coarse Carbon Gold Recovery Process. U.S. Patent Application No. US6228334B1, 8 May 2001. Available online: https://patents.Google.com/patent/US6228334B1/en (accessed on 30 May 2023).
- Ramsay, E. Process for the Recovery of Precious Metals from Fine Carbon. U.S. Patent Application No. US20030039605A1, 27 February 2003. Available online: https://patents.Google.com/patent/US20030039605A1/en (accessed on 30 May 2023).
- Arzumanyan, R.; Matosyan, V. Extraction of Gold from Fine Carbon Residue. U.S. Patent Application No. US009062358B2, 13 November 2015. Available online: https://patents.Google.com/patent/US9062358B2/en (accessed on 30 May 2023).
- Motilal, T. Precious Metal Recovery from Carbon Fines. International Patent Application No. WO2021127711A1, 24 June 2021. Available online: https://patents.google.com/patent/WO2021127711A1/en (accessed on 30 May 2023).
- Agilent Technologies Australia [M] Pty Ltd. Agilent 55B AA Spectrometer User’s Guide, 14th ed.; Agilent Technologies Australia [M] Pty Ltd.: Mulgrave, Australia, 2021. [Google Scholar]
- Tiburcio Munive, G. Ensayes al Fuego para oro y Plata, 1st ed.; Editorial Académica Española: London, UK, 2020. [Google Scholar]
- Rood, R. (ROOD Text productions) World B.V. Phenom. Phenom User Manual: Phenom, 1st ed. ProX/Pro: Pure. 2013. Available online: https://www.manualslib.com/manual/1401494/Phenom-Prox.html#manual (accessed on 30 May 2023).
- Díaz Galaviz, H.; Aguayo Salinas, S. Fundamentos de la Reactivación de Carbón, 1st ed.; Great Western De México: Mexico City, Mexico, 1999. [Google Scholar]
- Karnib, M.; Kabbani, A.; Holail, H.; Olama, Z.A. Heavy metals removal using activated carbon, silica and silica activated carbon composite. Energy Procedia 2014, 50, 113–120. [Google Scholar] [CrossRef] [Green Version]
- Mariana, M.; Khalil, H.P.S.A.; Mistar, E.M.; Yahya, E.B.; Alfatah, T.; Danish, M.; Amayreh, M.Y. Recent advances in activated carbon modification techniques for enhanced heavy metal adsorption. J. Water Process Eng. 2021, 43, 102221. [Google Scholar] [CrossRef]
- Sultana, M.; Rownok, M.H.; Sabrin, M.; Rahaman, M.H.; Alam, S.M.N. A review on experimental chemically modified activated carbon to enhance dye and heavy metals adsorption. Clean. Eng. Technol. 2022, 6, 100382. [Google Scholar] [CrossRef]
- Chen, T.; Da, T.; Ma, Y. Reasonable calculation of the thermodynamic parameters from adsorption equilibrium constant. J. Mol. Liq. 2021, 322, 114980. [Google Scholar] [CrossRef]
- Lima, E.C.; Hosseini-Bandegharaei, A.; Moreno-Piraján, J.C.; Anastopoulos, I. A critical review of the estimation of the thermodynamic parameters on adsorption equilibria. Wrong use of equilibrium constant in the Van’t Hoof equation for calculation of thermodynamic parameters of adsorption. J. Mol. Liq. 2019, 273, 425–434. [Google Scholar] [CrossRef]
- Lyubchik, S.B.; Lyubchik, A.; Lygina, O.; Lyubchik, S.; Fonseca, I. Comparison of the Thermodynamic Parameters Estimation for the Adsorption Process of the Metals from Liquid Phase on Activated Carbons; IntechOpen Limited: London, UK, 2011. [Google Scholar] [CrossRef] [Green Version]
- Raghav, S.; Kumar, D. Adsorption equilibrium, kinetics, and thermodynamic studies of fluoride adsorbed by tetrametallic oxide adsorbent. J. Chem. Eng. Data 2018, 63, 1682–1697. [Google Scholar] [CrossRef]
- Chou, W.L.; Wang, C.T.; Chang, W.C.; Chang, S.Y. Adsorption treatment of oxide chemical mechanical polishing wastewater from a semiconductor manufacturing plant by electrocoagulation. J. Hazard. Mater. 2010, 180, 217–224. [Google Scholar] [CrossRef]
- Sandoval-Ibarra, F.D.; López-Cervantes, J.L.; Gracia-Fadrique, J. Ecuación de Langmuir en líquidos simples y tensoactivos. Educ. Quim. 2015, 26, 307–313. [Google Scholar] [CrossRef] [Green Version]
- Azizian, S.; Eris, S.; Wilson, L.D. Re-evaluation of the century-old langmuir isotherm for modeling adsorption phenomena in solution. Chem. Phys. 2018, 513, 99–104. [Google Scholar] [CrossRef]
- Alafnan, S.; Awotunde, A.A.; Glatz, G.; Adjei, S.B.; Alrumaih, I.; Gowida, A. Langmuir adsorption isotherm in unconventional resources: Applicability and limitations. J. Pet. Sci. Eng. 2021, 207, 109172. [Google Scholar] [CrossRef]
- Guo, X.; Wang, J. Comparison of linearization methods for modeling the langmuir adsorption isotherm. J. Mol. Liq. 2019, 296, 111850. [Google Scholar] [CrossRef]
- Tran, H.N. Improper estimation of thermodynamic parameters in adsorption studies with distribution coefficient KD (qe/Ce) or Freundlich constant (KF): Considerations from the derivation of dimensionless thermodynamic equilibrium constant and suggestions. Adsorpt. Sci. Technol. 2022, 2022, 5553212. [Google Scholar] [CrossRef]
- Ganguly, S.; Grappe, H.A. Adsorption Properties of Activated Carbon Fibers. In Activated Carbon Fiber and Textiles; Elsevier EBooks: Amsterdam, The Netherlands, 2017; pp. 143–165. [Google Scholar] [CrossRef]
- Ezzati, R. Derivation of pseudo-first-order, pseudo-second-order and modified pseudo-first-order rate equations from langmuir and Freundlich isotherms for adsorption. Chem. Eng. J. 2020, 392, 123705. [Google Scholar] [CrossRef]
- Revellame, E.D.; Fortela, D.L.; Sharp, W.; Hernandez, R.; Zappi, M.E. Adsorption kinetic modeling using pseudo-first-order and pseudo-second order rate laws: A review. Clean. Eng. Technol. 2020, 1, 100032. [Google Scholar] [CrossRef]
- Simonin, J. On the comparison of pseudo-first order and pseudo-second order rate laws in the modeling of adsorption kinetics. Chem. Eng. J. 2016, 300, 254–263. [Google Scholar] [CrossRef] [Green Version]
- Ayub, A.; Raza, Z.A.; Majeed, M.I.; Tariq, M.R.; Irfan, A. Development of sustainable magnetic chitosan biosorbent beads for kinetic remediation of arsenic contaminated water. Int. J. Biol. Macromol. 2020, 163, 603–617. [Google Scholar] [CrossRef]
- Moussout, H.; Ahlafi, H.; Aazza, M.; Maghat, H. Critical of linear and nonlinear equations of pseudo-first-order and pseudo-second-order kinetic models. Karbala Int. J. Mod. Sci. 2018, 4, 244–254. [Google Scholar] [CrossRef]
- Kundu, S.; Gupta, A. Adsorptive removal of As(III) from aqueous solution using iron oxide coated cement (IOCC): Evaluation of kinetic, equilibrium and thermodynamic models. Sep. Purif. Technol. 2006, 51, 165–172. [Google Scholar] [CrossRef]
- Aitlaalim, A.; Boudalia, M.; Ouanji, F.; Echihi, S.; Guenbour, A.; Belleaouchou, A.; Tabyaoui, M.; Kacimi, M.E.; Zarrouk, A. Esential oil of brachychiton as eco-friendly green inhibitor for the corrosion control of mild steel in hydrochloric acid medium. Pharm. Chem. 2016, 8, 155–165. [Google Scholar]
- Bergna, D.; Varila, T.; Romar, H.; Lassi, U. Comparison of the properties of activated carbons produced in one-stage and two-stage processes. C 2018, 4, 41. [Google Scholar] [CrossRef] [Green Version]
- Müller, E.A.; Gubbins, K.E. Molecular simulation study of hydrophilic and hydrophobic behavior of activated carbon surfaces. Carbon 1998, 36, 1433–1438. [Google Scholar] [CrossRef]
ID | Particle Size (μm) | Activated Carbon (mg) | Gold on Solution (mg/L) | Volume (L) |
---|---|---|---|---|
106-1 | 106 | 10 | 10 | 0.5 |
106-2 | 50 | |||
106-3 | 125 | |||
106-4 | 250 | |||
75-1 | 75 | 10 | 10 | 0.5 |
75-2 | 50 | |||
75-3 | 125 | |||
75-4 | 250 | |||
53-1 | 53 | 10 | 10 | 0.5 |
53-2 | 50 | |||
53-3 | 125 | |||
53-4 | 250 | |||
45-1 | 45 | 10 | 10 | 0.5 |
45-2 | 50 | |||
45-3 | 125 | |||
45-4 | 250 | |||
38-1 | 38 | 10 | 10 | 0.5 |
38-2 | 50 | |||
38-3 | 125 | |||
38-4 | 250 |
Particle Size μm | Langmuir Parameters | |||||
b | m | qmax (mg/g) | KL | RL | R2 | |
106 | 0.0228 | 0.0049 | 43.8596 | 4.6531 | 0.0210 | 0.8175 |
75 | 0.0191 | 0.0050 | 52.3560 | 3.8200 | 0.0255 | 0.8706 |
53 | 0.0253 | 0.0064 | 39.5257 | 3.9531 | 0.0247 | 0.9737 |
45 | 0.0205 | 0.0063 | 48.7805 | 3.2540 | 0.0298 | 0.9499 |
38 | 0.0205 | 0.0065 | 48.7805 | 3.1538 | 0.0307 | 0.9679 |
Particle Size μm | Temkin Parameters | |||||
b | m | BT (J/mol) | KT (L/mg) | R2 | ||
106 | 32.077 | 9.2522 | 9.2522 | 32.039 | 0.709 | |
75 | 38.168 | 12.816 | 12.816 | 19.651 | 0.742 | |
53 | 28.396 | 5.6752 | 5.6752 | 148.937 | 0.885 | |
45 | 33.211 | 9.4598 | 9.4598 | 33.473 | 0.934 | |
38 | 32.905 | 8.9616 | 8.9616 | 39.322 | 0.971 | |
Particle Size μm | Freundlich Parameters | |||||
b | m | 1/n | KF | R2 | ||
106 | 1.4645 | 0.2642 | 0.2642 | 29.1407 | 0.8599 | |
75 | 1.5225 | 0.3173 | 0.3173 | 33.3043 | 0.9050 | |
53 | 1.4314 | 0.1993 | 0.1993 | 27.0023 | 0.9054 | |
45 | 1.4845 | 0.2741 | 0.2741 | 30.5141 | 0.9797 | |
38 | 1.4829 | 0.2657 | 0.2657 | 30.4018 | 0.9843 |
Particle Size | Activated Carbon Mass | Ci | Ce | 1/Ce | Log Ce | Ln Ce | qe | 1/qe | Log qe |
---|---|---|---|---|---|---|---|---|---|
μm | g | mg/L | mg/L | ||||||
106 | 0.010 | 10 | 8.698 | 0.115 | 0.939 | 2.163 | 65.100 | 0.015 | 1.814 |
0.050 | 5.903 | 0.169 | 0.771 | 1.775 | 40.970 | 0.024 | 1.612 | ||
0.125 | 2.345 | 0.426 | 0.370 | 0.852 | 30.620 | 0.033 | 1.486 | ||
0.250 | 0.172 | 5.814 | −0.764 | −1.760 | 19.656 | 0.051 | 1.293 | ||
75 | 0.010 | 10 | 8.363 | 0.120 | 0.922 | 2.124 | 81.850 | 0.012 | 1.913 |
0.050 | 5.315 | 0.188 | 0.726 | 1.671 | 46.850 | 0.021 | 1.671 | ||
0.125 | 1.483 | 0.674 | 0.171 | 0.394 | 34.068 | 0.029 | 1.532 | ||
0.250 | 0.155 | 6.452 | −0.810 | −1.864 | 19.690 | 0.051 | 1.294 | ||
53 | 0.010 | 10 | 9.258 | 0.108 | 0.967 | 2.225 | 37.100 | 0.027 | 1.569 |
0.050 | 5.766 | 0.173 | 0.761 | 1.752 | 42.340 | 0.024 | 1.627 | ||
0.125 | 1.837 | 0.544 | 0.264 | 0.608 | 32.652 | 0.031 | 1.514 | ||
0.250 | 0.244 | 4.098 | −0.613 | −1.411 | 19.512 | 0.051 | 1.290 | ||
45 | 0.010 | 10 | 8.822 | 0.113 | 0.946 | 2.177 | 58.900 | 0.017 | 1.770 |
0.050 | 5.544 | 0.180 | 0.744 | 1.713 | 44.560 | 0.022 | 1.649 | ||
0.125 | 1.369 | 0.730 | 0.136 | 0.314 | 34.524 | 0.029 | 1.538 | ||
0.250 | 0.204 | 4.902 | −0.690 | −1.590 | 19.592 | 0.051 | 1.292 | ||
38 | 0.010 | 10 | 8.890 | 0.112 | 0.949 | 2.185 | 55.500 | 0.018 | 1.744 |
0.050 | 5.505 | 0.182 | 0.741 | 1.706 | 44.950 | 0.022 | 1.653 | ||
0.125 | 1.294 | 0.773 | 0.112 | 0.258 | 34.824 | 0.029 | 1.542 | ||
0.250 | 0.211 | 4.739 | −0.676 | −1.556 | 19.578 | 0.051 | 1.292 |
kcal/mol | |
ΔG | −2.022 |
ΔH | −16.710 |
kcal/molK | |
ΔS | −0.049 |
Test ID | Parameters | ||||
---|---|---|---|---|---|
b | m | qe (mg/g) | K1 | R2 | |
106-1 | 1.7152 | −0.0354 | 5.5578 | −0.0003 | 0.9017 |
106-2 | 1.1155 | −0.0433 | 3.0511 | −0.0004 | 0.9846 |
106-3 | 0.7399 | −0.0424 | 2.0957 | −0.0004 | 0.9841 |
106-4 | 0.0136 | −0.0617 | 1.0137 | −0.0005 | 0.9849 |
75-1 | 0.5278 | 0.0300 | 1.6952 | 0.0003 | 0.9074 |
75-2 | 0.2819 | −0.0687 | 1.3256 | −0.0006 | 0.9547 |
75-3 | 0.3588 | −0.0479 | 1.4316 | −0.0004 | 0.9239 |
75-4 | 0.2776 | −0.1226 | 1.3200 | −0.0010 | 0.9967 |
53-1 | 0.6175 | −0.0318 | 1.8543 | −0.0003 | 0.8695 |
53-2 | −0.8377 | −0.0262 | 0.4327 | −0.0002 | 0.7043 |
53-3 | −0.4717 | −0.0625 | 0.6239 | −0.0005 | 0.9674 |
53-4 | −2.6544 | −0.0376 | 0.0703 | −0.0003 | 0.7790 |
45-1 | 0.5532 | −0.3230 | 1.7388 | −0.0027 | 0.7484 |
45-2 | −1.3866 | −0.0212 | 0.2499 | −0.0002 | 0.4183 |
45-3 | −0.5542 | −0.0719 | 0.5745 | −0.0006 | 0.8980 |
45-4 | −1.7486 | −0.1471 | 0.1740 | −0.0012 | 0.9478 |
38-1 | −0.0658 | −0.0201 | 0.9363 | −0.0002 | 0.3851 |
38-2 | −1.1021 | −0.1505 | 0.3322 | −0.0013 | 0.7090 |
38-3 | −1.9300 | −0.0159 | 0.1451 | −0.0001 | 0.3002 |
38-4 | −2.7675 | −0.0441 | 0.0628 | −0.0004 | 0.7318 |
Test ID | Parameters | |||||
---|---|---|---|---|---|---|
b | m | qe (mg/g) | qe2 (mg/g) | K2 | R2 | |
106-1 | 2.0474 | 0.1402 | 7.1327 | 50.8749 | 0.0096 | 0.9760 |
106-2 | 2.1641 | 0.2255 | 4.4346 | 19.6656 | 0.0235 | 0.9904 |
106-3 | 2.3488 | 0.3078 | 3.2489 | 10.5551 | 0.0403 | 0.9978 |
106-4 | 1.6362 | 0.4926 | 2.0300 | 4.1211 | 0.1483 | 0.9998 |
75-1 | 0.1928 | 0.1217 | 8.2169 | 67.5179 | 0.0768 | 0.9997 |
75-2 | 0.4896 | 0.2108 | 4.7438 | 22.5040 | 0.0908 | 0.9996 |
75-3 | 0.8691 | 0.2863 | 3.4928 | 12.1999 | 0.0943 | 0.9991 |
75-4 | 0.5303 | 0.5025 | 1.9900 | 3.9603 | 0.4762 | 0.9999 |
53-1 | 1.5994 | 0.2608 | 3.8344 | 14.7023 | 0.0425 | 0.9956 |
53-2 | 0.1746 | 0.2366 | 4.2265 | 17.8637 | 0.3206 | 0.9999 |
53-3 | 0.2939 | 0.3038 | 3.2916 | 10.8349 | 0.3140 | 0.9999 |
53-4 | 0.1045 | 0.5122 | 1.9524 | 3.8117 | 2.5105 | 1.0000 |
45-1 | 0.0164 | 0.1719 | 5.8173 | 33.8414 | 1.8018 | 0.9984 |
45-2 | 0.1135 | 0.2251 | 4.4425 | 19.7355 | 0.4464 | 0.9997 |
45-3 | 0.1906 | 0.2881 | 3.4710 | 12.0480 | 0.4355 | 1.0000 |
45-4 | 0.0701 | 0.5096 | 1.9623 | 3.8507 | 3.7046 | 1.0000 |
38-1 | 0.0491 | 0.1803 | 5.5463 | 30.7616 | 0.6621 | 0.9990 |
38-2 | 0.0226 | 0.2212 | 4.5208 | 20.4376 | 2.1650 | 0.9998 |
38-3 | 0.0792 | 0.2897 | 3.4518 | 11.9152 | 1.0597 | 0.9996 |
38-4 | 0.0847 | 0.5103 | 1.9596 | 3.8402 | 3.0745 | 1.0000 |
ID | Solution | AC Mass | Solution | AC on Solution |
---|---|---|---|---|
(g) | (g) | (mL) | (g/L) | |
1 | 887.25 | 0.0077 | 883.41 | 0.008716 |
2 | 879.80 | 0.0012 | 876.00 | 0.001370 |
2 RPT | 891.36 | 0.0024 | 887.51 | 0.002704 |
3 | 894.09 | 0.0051 | 890.23 | 0.005729 |
3 RPT | 887.66 | 0.0154 | 883.82 | 0.017424 |
4 | 901.58 | 0.0208 | 897.69 | 0.023171 |
4 RPT | 869.93 | 0.0173 | 866.17 | 0.019973 |
5 | 873.98 | 0.0047 | 870.20 | 0.005401 |
6 | 876.40 | 0.0147 | 872.61 | 0.016846 |
6 RPT | 844.19 | 0.0267 | 840.54 | 0.031765 |
7 | 847.53 | 0.0338 | 843.87 | 0.040054 |
8 | 884.74 | 0.0250 | 880.92 | 0.028380 |
8 RPT | 854.34 | 0.0616 | 850.65 | 0.072415 |
9 | 880.69 | 0.0226 | 876.89 | 0.025773 |
9 RPT | 853.78 | 0.0260 | 850.09 | 0.030585 |
10 | 869.72 | 0.0233 | 865.96 | 0.026906 |
11 | 852.50 | 0.0243 | 848.82 | 0.028628 |
12 | 886.68 | 0.0225 | 882.85 | 0.025486 |
12 RPT | 864.64 | 0.0273 | 860.90 | 0.031711 |
13 | 890.70 | 0.0282 | 886.85 | 0.031798 |
14 | 877.61 | 0.0257 | 873.82 | 0.029411 |
15 | 865.24 | 0.1064 | 861.50 | 0.123506 |
15 RPT | 884.22 | 0.1054 | 880.40 | 0.119719 |
16 | 889.00 | 0.0102 | 885.16 | 0.011523 |
17 | 883.62 | 0.0024 | 879.80 | 0.002728 |
18 | 919.10 | 0.0052 | 915.13 | 0.005682 |
18 RPT | 902.46 | 0.0001 | 898.56 | 0.000111 |
19 | 926.68 | 0.0035 | 922.68 | 0.003793 |
20 | 871.09 | 0.0048 | 867.33 | 0.005534 |
21 | 910.70 | 0.0013 | 906.77 | 0.001434 |
21 RPT | 879.24 | 0.0026 | 875.44 | 0.002970 |
22 | 856.50 | 0.0021 | 852.80 | 0.002462 |
23 | 859.84 | 0.0022 | 856.13 | 0.002570 |
24 | 882.99 | 0.0030 | 879.18 | 0.003412 |
24 RPT | 826.65 | 0.0017 | 823.08 | 0.002065 |
24 RPT | 862.25 | 0.0029 | 858.53 | 0.003378 |
Test Number | ID | Mass (g) | Gold (g/T) |
---|---|---|---|
1 | 4 | 0.021 | 0.000 |
2 | 6-2 | 0.027 | 74.532 |
3 | 8-2 | 0.062 | 25.325 |
4 | 9-2 | 0.026 | 0.000 |
5 | 12-2 | 0.027 | 31.136 |
6 | 15-2 | 0.105 | 56.926 |
7 | 18 | 0.005 | 23.077 |
8 | 21-2 | 0.003 | 0.000 |
9 | 24-1 | 0.003 | 0.000 |
MEAN | 26.374 |
Molimentales del Noroeste SA de CV (2022) | |||||
---|---|---|---|---|---|
Avarege Flow on ADR Plant | AC Fine Particle Loss | Gold on AC Fine Particle | Gold Loss | Gold Loss | USD (Oz of Au $2008.02) |
m3/h | T/Year | g/T | g/Year | oz/Year | Dollars |
960 | 185.74 | 26.37 | 4898.79 | 157.50 | $316,263.66 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martínez-Peñuñuri, R.; Parga-Torres, J.R.; Valenzuela-García, J.L.; Díaz-Galaviz, H.J.; González-Zamarripa, G.; García-Alegría, A.M. Thermodynamic and Kinetic Aspects of Gold Adsorption in Micrometric Activated Carbon and the Impact of Their Loss in Adsorption, Desorption, and Reactivation Plants. Materials 2023, 16, 4961. https://doi.org/10.3390/ma16144961
Martínez-Peñuñuri R, Parga-Torres JR, Valenzuela-García JL, Díaz-Galaviz HJ, González-Zamarripa G, García-Alegría AM. Thermodynamic and Kinetic Aspects of Gold Adsorption in Micrometric Activated Carbon and the Impact of Their Loss in Adsorption, Desorption, and Reactivation Plants. Materials. 2023; 16(14):4961. https://doi.org/10.3390/ma16144961
Chicago/Turabian StyleMartínez-Peñuñuri, Rodrigo, Jose R. Parga-Torres, Jesus L. Valenzuela-García, Héctor J. Díaz-Galaviz, Gregorio González-Zamarripa, and Alejandro M. García-Alegría. 2023. "Thermodynamic and Kinetic Aspects of Gold Adsorption in Micrometric Activated Carbon and the Impact of Their Loss in Adsorption, Desorption, and Reactivation Plants" Materials 16, no. 14: 4961. https://doi.org/10.3390/ma16144961
APA StyleMartínez-Peñuñuri, R., Parga-Torres, J. R., Valenzuela-García, J. L., Díaz-Galaviz, H. J., González-Zamarripa, G., & García-Alegría, A. M. (2023). Thermodynamic and Kinetic Aspects of Gold Adsorption in Micrometric Activated Carbon and the Impact of Their Loss in Adsorption, Desorption, and Reactivation Plants. Materials, 16(14), 4961. https://doi.org/10.3390/ma16144961