Reversible Thermochromic Microcapsules and Their Applications in Anticounterfeiting
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of RTPUU Microcapsules
2.3. Orthogonal Experimental Design
2.4. Characterizations
2.4.1. Determination of the Actual Core Content and Encapsulation Efficiency
2.4.2. Particle Size Distribution (PSD) Analysis
2.4.3. SEM Analysis
2.4.4. Optical Microscopy (OM) Analysis
2.4.5. Dispersibility Test
2.4.6. Discoloration Temperature Estimation
2.4.7. Determination of Color Density and Color Residue
2.4.8. FT-IR Analysis
2.4.9. DSC Analysis
2.4.10. TGA Analysis
2.4.11. UV-Accelerated Aging Test
2.4.12. Test on Solvent and Acid–Base Resistances
3. Results and Discussion
3.1. Orthogonal Experimental Analysis and Single-Factor Experiment Results
3.2. Impact of Shear Rate during Emulsification
3.2.1. PSD of the RTPUU Microcapsules
3.2.2. Surface Morphology of the RTPUU Microcapsules
3.2.3. Dispersibility of the RTPUU Microcapsule Powder
3.2.4. Reversible Thermochromic Properties of the RTPUU Microcapsules
3.3. Polymerization Process for the Formation of the RTPUU Microcapsules
3.3.1. Interfacial Polymerization Encapsulation Process
3.3.2. FT-IR Analysis of the RTPUU Microcapsules
3.4. Phase-Change Characteristics of the RTPUU Microcapsules
3.5. Thermal Stability of the RTPUU Microcapsules
3.6. UV-Aging Resistance of the RTPUU Microcapsules
3.7. Solvent and Acid–Base Resistances of the RTPUU Microcapsules
3.8. Real-Time Application of the RTPUU Microcapsules
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, H.; Luo, J.; Yang, Y.; Zhao, L.; Song, G.; Tang, G. Fabrication and characterization of microcapsulated phase change materials with an additional function of thermochromic performance. Sol. Energy 2016, 139, 591–598. [Google Scholar] [CrossRef]
- Chen, J.; Wen, H.; Zhang, G.; Lei, F.; Feng, Q.; Liu, Y.; Cao, X.; Dong, H. Multifunctional conductive hydrogel/thermochromic elastomer hybrid fibers with a core-shell segmental configuration for wearable strain and temperature sensors. ACS Appl. Mater. Interfaces 2020, 12, 7565–7574. [Google Scholar] [CrossRef]
- Yuan, A.; Zhao, S.; Liu, T.; Zhao, Y.; Jiang, L.; Lei, J. Temperature-responsive thermochromic phase change materials with tunable photothermal conversion efficiency toward solar energy storage. Adv. Mater. Technol. 2022, 7, 2200226. [Google Scholar] [CrossRef]
- Yao, J.; Kaberniuk, A.A.; Li, L.; Shcherbakova, D.M.; Zhang, R.; Wang, L.; Li, G.; Verkhusha, V.V.; Wang, L.V. Multiscale photoacoustic tomography using reversibly switchable bacterial phytochrome as a near-infrared photochromic probe. Nat. Methods 2016, 13, 67–73. [Google Scholar] [CrossRef]
- Zhang, W.; Ji, X.; Zeng, C.; Chen, K.; Yin, Y.; Wang, C. A new approach for the preparation of durable and reversible color changing polyester fabrics using thermochromic leuco dye-loaded silica nanocapsules. J. Mater. Chem. C 2017, 5, 8169–8178. [Google Scholar] [CrossRef]
- Zhu, X.; Liu, Y.; Li, Z.; Wang, W. Thermochromic microcapsules with highly transparent shells obtained through in-situ polymerization of urea formaldehyde around thermochromic cores for smart wood coatings. Sci. Rep. 2018, 8, 4015. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Liu, H.; Niu, J.; Wang, X.; Wu, D. Development of reversible and durable thermochromic phase-change microcapsules for real-time indication of thermal energy storage and management. Appl. Energy 2020, 264, 114729. [Google Scholar] [CrossRef]
- Kulčar, R.; Friškovec, M.; Hauptman, N.; Vesel, A.; Gunde, M.K. Colorimetric properties of reversible thermochromic printing inks. Dye. Pigment. 2010, 86, 271–277. [Google Scholar] [CrossRef]
- Panák, O.; Držková, M.; Kaplanová, M. Insight into the evaluation of colour changes of leuco dye based thermochromic systems as a function of temperature. Dye. Pigment. 2015, 120, 279–287. [Google Scholar] [CrossRef]
- Seeboth, A.; Ruhmann, R.; Muhling, O. Thermotropic and thermochromic polymer based materials for adaptive solar control. Materials 2010, 3, 5143–5168. [Google Scholar] [CrossRef]
- Panák, O.; Držková, M.; Kaplanová, M.; Novak, U.; Klanjšek Gunde, M. The relation between colour and structural changes in thermochromic systems comprising crystal violet lactone, bisphenol A, and tetradecanol. Dye. Pigment. 2017, 136, 382–389. [Google Scholar] [CrossRef] [Green Version]
- Raditoiu, A.; Raditoiu, V.; Nicolae, C.A.; Raduly, M.F.; Amariutei, V.; Wagner, L.E. Optical and structural dynamical behavior of crystal violet lactone—Phenolphthalein binary thermochromic systems. Dye. Pigment. 2016, 134, 69–76. [Google Scholar] [CrossRef]
- Pan, L.; Tao, Q.; Zhang, S.; Wang, S.; Zhang, J.; Wang, S.; Wang, Z.; Zhang, Z. Preparation, characterization and thermal properties of micro-encapsulated phase change materials. Sol. Energ. Mat. Sol. C. 2012, 98, 66–70. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Y.; Xia, T.; Zhao, W.; Yang, W. Effects of fabricated technology on particle size distribution and thermal properties of stearic–eicosanoic acid/polymethylmethacrylate nanocapsules. Sol. Energy Mater. Sol. Cells 2014, 120, 481–490. [Google Scholar] [CrossRef]
- Tahan Latibari, S.; Mehrali, M.; Mehrali, M.; Indra Mahlia, T.M.; Cornelis Metselaar, H.S. Synthesis, characterization and thermal properties of nanoencapsulated phase change materials via sol–gel method. Energy 2013, 61, 664–672. [Google Scholar] [CrossRef]
- Trojanowska, A.; Nogalska, A.; Valls, R.G.; Giamberini, M.; Tylkowski, B. Technological solutions for encapsulation. Phys. Sci. Rev. 2017, 2, 20170020. [Google Scholar]
- Šumiga, B.; Knez, E.; Vrtačnik, M.; Savec, V.F.; Starešinič, M.; Boh, B. Production of melamine-formaldehyde PCM microcapsules with ammonia scavenger used for residual formaldehyde reduction. Acta Chim. Slov. 2011, 58, 14–25. [Google Scholar] [PubMed]
- Mai, C.N.; Ha, T.T.; Oanh, N.K. Synthesis of polyurethane/polyurea microcapsules carrying diisocyanate in self-healing epoxy coating. Vietnam J. Chem. 2022, 60, 257–265. [Google Scholar]
- Zhao, W.; Yan, X. Preparation of thermochromic microcapsules of bisphenol A and crystal violet lactone and their effect on coating properties. Polymers 2022, 14, 1393. [Google Scholar] [CrossRef]
- Javidi, M.; Fathi Fathabadi, H.; Jenabali Jahromi, S.A.; Khorram, M. Investigating the interfacial synthesis of polyurethane microcapsules and optimization of the process using response surface method. Mater. Res. Express 2019, 6, 105302. [Google Scholar] [CrossRef]
- Wen, J.; Gao, X.; Zhang, Q.; Sahito, B.; Si, H.; Li, G.; Ding, Q.; Wu, W.; Nepovimova, E.; Jiang, S.; et al. Optimization of tilmicosin-loaded nanostructured lipid carriers using orthogonal design for overcoming oral administration obstacle. Pharmaceutics 2021, 13, 13030303. [Google Scholar] [CrossRef]
- Jiang, H.; Zhou, D.; Fu, F. Colorimetric and thermochromic properties of reversible thermochromic wood. Wood Res. 2017, 62, 57–66. [Google Scholar]
- ISO 9845-1:2022; Solar Energy—Reference Solar Spectral Irradiance at the Ground at Different Receiving Conditions—Part 1: Direct Normal and Hemispherical Solar Irradiance for Air Mass 1,5. ISO: Geneva, Switzerland, 2022.
- Pöhlmann, M. Towards a Rational Design of Microcapsules—Mechanical Properties of the Shell. Ph.D. Thesis, University of Bayreuth, Bayreuth, Germany, 2013. [Google Scholar]
- Zhang, C.; Ren, Z.; Yin, Z.; Qian, H.; Ma, D. Amide II and amide III bands in polyurethane model soft and hard segments. Polym. Bull. 2007, 60, 97–101. [Google Scholar] [CrossRef]
- Van Miltenburg, J.C.; Oonk, H.A.J.; Ventola, L. Heat capacities and derived thermodynamic functions of 1-octadecanol, 1-nonadecanol, 1-eicosanol, and 1-docosanol between 10 K and 370 K. J. Chem. Eng. Data 2001, 46, 90–97. [Google Scholar] [CrossRef]
- Panák, O.; Držková, M.; Svoboda, R.; Klanjšek Gunde, M. Combined colorimetric and thermal analyses of reversible thermochromic composites using crystal violet lactone as a colour former. J. Therm. Anal. Calorim. 2017, 127, 633–640. [Google Scholar] [CrossRef] [Green Version]
- Özkayalar, S.; Adıgüzel, E.; Alay Aksoy, S.; Alkan, C. Reversible color-changing and thermal-energy storing nanocapsules of three-component thermochromic dyes. Mater. Chem. Phys. 2020, 252, 123162. [Google Scholar] [CrossRef]
- Zhang, X.X.; Fan, Y.F.; Tao, X.M.; Yick, K.L. Crystallization and prevention of supercooling of microencapsulated n-alkanes. J. Colloid Interface Sci. 2005, 281, 299–306. [Google Scholar] [CrossRef]
- Adachi, T.; Daudah, D.; Tanaka, G. Effects of supercooling degree and specimen size on supercooling duration of erythritol. ISIJ Int. 2014, 54, 2790–2795. [Google Scholar] [CrossRef] [Green Version]
- Ma, Y.; Zong, J.; Li, W.; Chen, L.; Tang, X.; Han, N.; Wang, J.; Zhang, X. Synthesis and characterization of thermal energy storage microencapsulated n-dodecanol with acrylic polymer shell. Energy 2015, 87, 86–94. [Google Scholar] [CrossRef]
- Geng, X.; Li, W.; Wang, Y.; Lu, J.; Wang, J.; Wang, N.; Li, J.; Zhang, X. Reversible thermochromic microencapsulated phase change materials for thermal energy storage application in thermal protective clothing. Appl. Energy 2018, 217, 281–294. [Google Scholar] [CrossRef]
- Zhang, X.X.; Tao, X.M.; Yick, K.L.; Wang, X.C. Structure and thermal stability of microencapsulated phase-change materials. Colloid Polym. Sci 2004, 282, 330–336. [Google Scholar] [CrossRef]
- Jiang, T.; Qi, Y.; Wu, Y.; Zhang, J. Application of antioxidant and ultraviolet absorber into HDPE: Enhanced resistance to UV irradiation. e-Polymers 2019, 19, 499–510. [Google Scholar] [CrossRef]
Level | N3300-to-L75 Shell Material Mass Ratio | Core-to-Shell Material Mass Ratio | Emulsifier Concentration (%) | Shear Rate (rpm) |
---|---|---|---|---|
1 | 1:3.5 | 11:4 | 3.5 | 1500 |
2 | 1:4 | 11:4.5 | 4 | 3500 |
3 | 1:5 | 11:5 | 5 | 4500 |
Level | N3300-to-L75 Shell Material Mass Ratio | Core-to-Shell Material Mass Ratio | Emulsifier Concentration (%) | Shear Rate (rpm) |
---|---|---|---|---|
1 | 1:3.5 | 11:4 | 3.5 | 1500 |
2 | 1:3.5 | 11:4.5 | 4 | 3500 |
3 | 1:3.5 | 11:5 | 5 | 4500 |
4 | 1:4 | 11:4 | 4 | 4500 |
5 | 1:4 | 11:4.5 | 5 | 1500 |
6 | 1:4 | 11:5 | 3.5 | 3500 |
7 | 1:5 | 11:4 | 5 | 3500 |
8 | 1:5 | 11:4.5 | 3.5 | 4500 |
9 | 1:5 | 11:5 | 4 | 1500 |
Exp. No. | N3300-to-L75 Shell Material Mass Ratio | Core-to-Shell Material Mass Ratio | Emulsifier Concentration (%) | Shear Rate (rpm) | Ea 1 (%) |
---|---|---|---|---|---|
1 | 1:3.5 | 11:4 | 3.5 | 1500 | 75.36 ± 1.04 |
2 | 1:3.5 | 11:4.5 | 4 | 3500 | 84.46 ± 0.97 |
3 | 1:3.5 | 11:5 | 5 | 4500 | 75.18 ± 0.99 |
4 | 1:4 | 11:4 | 4 | 4500 | 74.70 ± 0.61 |
5 | 1:4 | 11:4.5 | 5 | 1500 | 76.86 ± 1.03 |
6 | 1:4 | 11:5 | 3.5 | 3500 | 86.54 ± 1.32 |
7 | 1:5 | 11:4 | 5 | 3500 | 83.42 ± 1.14 |
8 | 1:5 | 11:4.5 | 3.5 | 4500 | 74.87 ± 0.81 |
9 | 1:5 | 11:5 | 4 | 1500 | 74.96 ± 0.93 |
Mean (1) 2 | 78.333 | 77.827 | 78.923 | 75.727 | - |
Mean (2) | 79.367 | 78.730 | 78.040 | 84.807 | - |
Mean (3) | 77.750 | 78.893 | 78.487 | 74.917 | - |
Range 3 | 1.617 | 1.066 | 0.883 | 9.890 | - |
Factor | Sum of Squares | Degree of Freedom | F-Ratio | Critical F-Value | Significance (α = 0.10) |
---|---|---|---|---|---|
N3300-to-L75 shell material mass ratio | 4.022 | 2 | 0.086 | 3.113 | - |
Core-to-shell material mass ratio | 1.980 | 2 | 0.042 | 3.113 | - |
Emulsifier concentration (%) | 1.170 | 2 | 0.025 | 3.113 | - |
Shear rate (rpm) | 180.915 | 2 | 3.847 | 3.113 | * |
Error value | 188.090 | 8 | - | - | - |
Exp. No. | Shear Rate (rpm) | Shell Materials | Core Materials | Emulsifier Concentration (%) | Ca (%) | Ea (%) | |
---|---|---|---|---|---|---|---|
N3300 (g) | L75 (g) | CVL: 8 g + BPAF: 20 g + Me-st: 80 g + B225: 2 g | |||||
10 | 2000 | 10 | 40 | 110 | 3.5 | 63.10 ± 0.42 | 90.78 ± 1.23 |
11 | 2500 | 10 | 40 | 110 | 3.5 | 65.11 ± 0.26 | 93.59 ± 1.53 |
12 | 3000 | 10 | 40 | 110 | 3.5 | 61.65 ± 0.15 | 88.62 ± 1.31 |
13 | 4000 | 10 | 40 | 110 | 3.5 | 59.16 ± 0.28 | 85.03 ± 1.14 |
Shear Rate (rpm) | Suction Filtration Time (Min) | Particles Passing Rate through a 400-Mesh Sieve (% of Mass) | Fineness Values of the Ink (μm) |
---|---|---|---|
2000 | ≤20 | ≤97% | 22.5 |
2500 | ≤26 | ≤95% | 12.5 |
3000 | ≤38 | ≤90% | 15.0 |
Shear Rate (rpm) | Color Change | Discoloration Temperature (°C) | ||||||
---|---|---|---|---|---|---|---|---|
T1 | T2 | T3 | T4 | TC | TD | ΔT | ||
2000 | Blue ⇌ colorless | 18.50 | 28.50 | 27.50 | 36.00 | 23.50 | 31.75 | 8.25 |
2500 | Blue ⇌ colorless | 18.30 | 27.80 | 25.20 | 33.80 | 23.05 | 29.50 | 6.45 |
3000 | Blue ⇌ colorless | 18.00 | 28.20 | 26.50 | 35.50 | 23.10 | 31.00 | 7.90 |
Sample | State | L* | A* | B* | dL* | Da* | Db* | ΔEC | ΔED |
---|---|---|---|---|---|---|---|---|---|
Matte art paper | Benchmark sample | 92.71 | −1.12 | 0.35 | 0 | 0 | 0 | - | - |
2000 rpm | Colored (blue) | 43.96 | 24.08 | −65.14 | −48.75 | 25.19 | −65.49 | 85.44 | - |
2500 rpm | Colored (blue) | 50.16 | 15.26 | −57.18 | −42.55 | 16.38 | −57.53 | 73.40 | - |
3000 rpm | Colored (blue) | 53.59 | 10.46 | −52.69 | −39.13 | 11.58 | −53.04 | 66.92 | - |
2000 rpm | Decolored (colorless) | 88.96 | −3.54 | −0.68 | −3.76 | −2.42 | −1.03 | - | 4.59 |
2500 rpm | Decolored (colorless) | 90.06 | −2.38 | −0.32 | −2.65 | −1.26 | −0.68 | - | 3.01 |
3000 rpm | Decolored (colorless) | 88.87 | −3.34 | −0.01 | −3.84 | −2.23 | −0.36 | - | 4.45 |
Sample | Heating Process (°C) | ΔHm 1 (J/g) | Cooling Process (°C) | ΔHc 2 (J/g) | Ce (%) | Ee (%) | ||
---|---|---|---|---|---|---|---|---|
Tonset,H | Tpeak,H | Tonset,C | Tpeak,C | |||||
RT compositions | 31.78 | 35.52 | 146 | 28.06 | 27.49 | 130.92 | - | - |
RTPUU microcapsules | 31.79 | 35.97 | 91.078 | 25.45 | 21.62 (α) 3 18.06 (β) 4 | 91.153 | 62.38 | 90.74 |
Sample | Color Change | Discoloration Temperature (°C) | ||||||
---|---|---|---|---|---|---|---|---|
T1 | T2 | T3 | T4 | TC | TD | ΔT | ||
RTPUU microcapsules with B225 | Blue ⇌ colorless | 18.30 | 27.80 | 25.20 | 33.80 | 23.05 | 29.50 | 6.45 |
RTPUU microcapsules without B225 | Blue ⇌ colorless | 17.50 | 27.60 | 26.80 | 35.00 | 22.55 | 30.90 | 8.35 |
Sample | State | L* | A* | B* | dL* | Da* | Db* | ΔEC | ΔED |
---|---|---|---|---|---|---|---|---|---|
Matte art paper | Benchmark sample | 93.45 | −1.20 | 0.76 | 0 | 0 | 0 | - | - |
RTPUU microcapsules with B225 | Colored (blue) | 32.42 | 42.09 | −73.33 | −61.03 | 43.28 | −74.09 | 105.29 | - |
RTPUU microcapsules without B225 | Colored (blue) | 33.77 | 38.98 | −72.77 | −59.68 | 40.18 | −73.53 | 102.87 | - |
RTPUU microcapsules with B225 | Decolored (colorless) | 90.35 | −2.48 | −2.36 | −3.10 | −1.28 | −3.12 | - | 4.57 |
RTPUU microcapsules without B225 | Decolored (colorless) | 88.53 | −2.77 | −2.51 | −4.92 | −1.57 | −3.27 | - | 6.12 |
Reagent | Dissolution | Color Change | ||
---|---|---|---|---|
RT Compositions | RTPUU Microcapsules | RT Compositions | RTPUU Microcapsules | |
Benzene | Dissolved | Undissolved | Colorless | Invariant |
Toluene | Dissolved | Undissolved | Colorless | Invariant |
Xylene | Dissolved | Undissolved | Colorless | Invariant |
Chloroform | Dissolved | Undissolved | Colorless | Invariant |
1 mol/L HCl | Undissolved | Undissolved | Faded | Invariant |
1 mol/L H2SO4 | Undissolved | Undissolved | Faded | Invariant |
1 mol/L NaOH | Undissolved | Undissolved | Faded | Invariant |
Sample | RT Compositions (Components and Amounts) | Discoloration Temperature (°C) | ||||||
---|---|---|---|---|---|---|---|---|
Leuco Dye | Developer | Solvent | T1 | T2 | T3 | T4 | ΔT | |
(I) 21 °C Red | Red 520 1: 5.50 parts | BPAF: 11.00 parts | Me-st: 10.00 parts | 9.00 | 18.30 | 11.00 | 21.20 | 2.45 |
Me-pa 4: 40.00 parts | ||||||||
(II) 31 °C Blue | CVL: 5.00 parts | BPAF: 12.50 parts | Me-st: 50.00 parts | 18.30 | 27.80 | 25.20 | 33.80 | 6.45 |
(III) 45 °C Black | Black-15 2: 6.25 parts | BPAF: 6.25 parts | Me-st: 6.25 parts | 30.70 | 39.20 | 41.70 | 47.20 | 9.50 |
Me-be 5: 50.00 parts | ||||||||
(IV) 55 °C Green | Green 300 3: 2.65 parts | BPAF: 5.25 parts | Me-li 6: 56.00 parts | 41.00 | 48.60 | 47.50 | 55.80 | 6.85 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, H.; Deng, Y.; Ye, Y.; Liu, X. Reversible Thermochromic Microcapsules and Their Applications in Anticounterfeiting. Materials 2023, 16, 5150. https://doi.org/10.3390/ma16145150
Liu H, Deng Y, Ye Y, Liu X. Reversible Thermochromic Microcapsules and Their Applications in Anticounterfeiting. Materials. 2023; 16(14):5150. https://doi.org/10.3390/ma16145150
Chicago/Turabian StyleLiu, Haisheng, Yuhao Deng, Yang Ye, and Xingqiang Liu. 2023. "Reversible Thermochromic Microcapsules and Their Applications in Anticounterfeiting" Materials 16, no. 14: 5150. https://doi.org/10.3390/ma16145150
APA StyleLiu, H., Deng, Y., Ye, Y., & Liu, X. (2023). Reversible Thermochromic Microcapsules and Their Applications in Anticounterfeiting. Materials, 16(14), 5150. https://doi.org/10.3390/ma16145150