Mechanical Performance of 3D-Printed Polyethylene Fibers and Their Durability against Degradation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sample Preparation
2.2.1. Preparation of FDM-Printed PE Fibers
2.2.2. Polarized Light Microscopy (PLM)
2.2.3. UV Exposure and Thermal Degradation
2.2.4. Mechanical Testing
3. Results and Discussion
3.1. Optimization of FDM-Printed Fibers: Influences of Fiber Diameter (Stretching) and Printer Head Temperature
3.2. Degradation of FDM-Printed Fibers: Influences of UV Exposure and Thermal Degradation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhou, S.; Xie, L.; Jia, Y.; Wang, C. Review of cementitious composites containing polyethylene fibers as repairing materials. Polymers 2020, 12, 2624. [Google Scholar] [CrossRef]
- Geyer, R.; Jambeck, J.R.; Lavender, K. Law Production, use, and fate of all plastics ever made. Sci. Adv. 2017, 3, e1700782–e1700786. [Google Scholar] [CrossRef] [Green Version]
- Bunescu, A.; Lee, S.; Li, Q.; Hartwig, J.F. Catalytic Hydroxylation of Polyethylenes. ACS Cent. Sci. 2017, 3, 895–903. [Google Scholar] [CrossRef] [Green Version]
- Natarajan, H.; Haase, H.; Mahltig, B. Polyvinylamine application for functionalization of polyethylene fiber materials. J. Text. Inst. 2017, 108, 615–621. [Google Scholar] [CrossRef]
- Boriskina, S.V. An ode to polyethylene. MRS Energy Sustain. 2019, 6, E14–E24. [Google Scholar] [CrossRef] [Green Version]
- Amjadi, M.; Fatemi, A. Tensile behavior of high-density polyethylene including the effects of processing technique, thickness, temperature, and strain rate. Polymers 2020, 12, 1857. [Google Scholar] [CrossRef]
- Kuzminova, A.; Shelemin, A.; Petr, M.; Kylian, O.; Biederman, H. Barrier coatings on polymeric foils for food packaging. WDS 2013, 13, 128–133. [Google Scholar]
- Hannon, J.C.; Kerry, J.P.; Cruz-Romero, M.; Azlin-Hasim, S.; Morris, M.; Cummins, E. Assessment of the migration potential of nanosilver from nanoparticle-coatedlow-density polyethylene food packaging into food simulants. Food Addit. Contam. A 2016, 33, 167–178. [Google Scholar]
- Lepech, M.D.; Li, V.C. Application of ECC for bridge deck link slabs. Mater. Struct. 2009, 42, 1185–1195. [Google Scholar] [CrossRef]
- Akkouri, N.; Bourzik, O.; Baba, K.; Nounah, A. Experimental study of the thermal and mechanical properties of concrete incorporating recycled polyethylene. Mater. Today Proc. 2022, 58, 1525–1529. [Google Scholar] [CrossRef]
- Park, S.J.; Jang, J.G.; Lee, H.K. Computational investigation of the neutron shielding and activation characteristics of borated concrete with polyethylene aggregate. J. Nucl. Mater. 2014, 452, 205–211. [Google Scholar] [CrossRef]
- Minak, G.; Brugo, T.M.; Fragassa, C. Ultra-high-molecular-weight polyethylene rods as an effective design solution for the suspensions of a cruiser-class solar vehicle. Int. J. Polym. Sci. 2019, 2019, 8317093. [Google Scholar] [CrossRef]
- Zapata, P.A.; Larrea, M.; Tamayo, L.; Rabagliati, F.M.; Azócar, M.I.; Páez, M. Polyethylene/silver-nanofiber composites: A material for antibacterial films. Mater. Sci. Eng. C 2016, 69, 1282–1289. [Google Scholar] [CrossRef] [PubMed]
- Ziabka, M.; Mertas, A.; Król, W.; Bobrowski, A.; Chlopek, J. High density polyethylene containing antibacterial silver nanoparticles for medical applications. Macromol. Symp. 2012, 315, 218–225. [Google Scholar] [CrossRef]
- Cui, W.; Bian, Y.; Zeng, H.; Zhang, X.; Zhang, Y.; Weng, X.; Xin, S.; Jin, Z. Structural and tribological characteristics of ultra-low-wear polyethylene as artificial joint materials. J. Mech. Behav. Biomed. Mater. 2020, 104, 103629–103639. [Google Scholar] [CrossRef] [PubMed]
- Bardají, D.K.R.; Moretto, J.A.S.; Furlan, J.P.R.; Stehling, E.G. A mini-review: Current advances in polyethylene biodegradation. World J. Microbiol. Biotechnol. 2020, 36, 32. [Google Scholar] [CrossRef] [PubMed]
- Munaro, M.; Akcelrud, L. Correlations between composition and crystallinity of LDPE/HDPE blends. J. Polym. Res. 2008, 15, 83–88. [Google Scholar] [CrossRef]
- Weideman, E.A.; Perold, V.; Ryan, P.G. Little evidence that dams in the Orange-Vaal River system trap floating microplastics or microfibres. Mar. Pollut. Bull. 2019, 149, 110664. [Google Scholar] [CrossRef]
- Khanam, P.N.; AlMaadeed, M.A.A. Processing and characterization of polyethylene-based composites. Adv. Manuf. Polym. Compos. Sci. 2015, 1, 63–79. [Google Scholar] [CrossRef]
- Shebani, A.; Klash, A.; Elhabishi, R.; Abdsalam, S.; Elbreki, H.; Elhrari, W. The influence of LDPE content on the mechanical properties of HDPE/LDPE blends. Res. Dev. Mater. Sci. 2018, 7, 79–85. [Google Scholar]
- Schirmeister, C.G.; Hees, T.; Licht, E.H.; Mülhaupt, R. 3D printing of high density polyethylene by fused filament fabrication. Addit. Manuf. 2019, 28, 152–159. [Google Scholar] [CrossRef]
- Li, V.C.; Bos, F.P.; Yu, K.; McGee, W.; Ng, T.Y.; Figueiredo, S.C.; Nefs, K.; Mechtcherine, V.; Nerella, V.N.; Pan, J.; et al. On the emergence of 3D printable engineered, strain hardening cementitious composites (ECC/SHCC). Cem. Concr. Res. 2020, 132, 106038–106052. [Google Scholar] [CrossRef]
- Zhu, B.; Pan, J.; Nematollahi, B.; Zhou, Z.; Zhang, Y.; Sanjayan, J. Development of 3D printable engineered cementitious composites with ultra-high tensile ductility for digital construction. Mater. Des. 2019, 181, 108088–108100. [Google Scholar] [CrossRef]
- Ogura, H.; Nerella, V.N.; Mechtcherine, V. Developing and testing of strain-hardening cement-based composites (SHCC) in the context of 3D-printing. Materials 2018, 11, 1375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ding, T.; Xiao, J.; Zou, S.; Zhou, X. Anisotropic behavior in bending of 3D printed concrete reinforced with fibers. Compos. Struct. 2020, 254, 112808–112818. [Google Scholar] [CrossRef]
- Mohd Radzuan, N.A.; Khalid, N.N.; Foudzi, F.M.; Rajendran Royan, N.R.; Sulong, A.B. Mechanical Analysis of 3D Printed Polyamide Composites under Different Filler Loadings. Polymers 2023, 15, 1846. [Google Scholar] [CrossRef]
- Sedlak, J.; Joska, Z.; Jansky, J.; Zouhar, J.; Kolomy, S.; Slany, M.; Svasta, A.; Jirousek, J. Analysis of the Mechanical Properties of 3D-Printed Plastic Samples Subjected to Selected Degradation Effects. Materials 2023, 16, 3268. [Google Scholar] [CrossRef]
- Montoya-Ospina, M.C.; Zeng, J.; Tan, X.; Osswald, T.A. Material extrusion additive manufacturing with polyethylene vitrimers. Polymers 2023, 15, 1332. [Google Scholar] [CrossRef]
- Gao, X.; Qi, S.; Kuang, X.; Su, Y.; Li, J.; Wang, D. Fused Filament Fabrication of Polymer Materials: A Review of Interlayer Bond. Addit. Manuf. 2021, 37, 101658–101672. [Google Scholar] [CrossRef]
- Quintana, J.L.C.; Redmann, A.; Capote, G.A.M.; Pérez-Irizarry, A.; Bechara, A.; Osswald, T.A.; Lakes, R. Viscoelastic properties of fused filament fabrication parts. Addit. Manuf. 2019, 28, 704–710. [Google Scholar] [CrossRef]
- Weingrill, H.M.; Resch-Fauster, K.; Lucyshyn, T.; Zauner, C. High-density polyethylene as phase-change material: Long-term stability and aging. Polym. Test. 2019, 76, 433–442. [Google Scholar] [CrossRef]
- Montazer, Z.; Najaf, M.B.H.; Levin, D.B. Challenges with verifying microbial degradation of polyethylene. Polymers 2020, 12, 123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quintana, A.; Celina, M.C. Overview of DLO modeling and approaches to predict heterogeneous oxidative polymer degradation. Polym. Degrad. Stabil. 2018, 149, 173–191. [Google Scholar] [CrossRef]
- Furneaux, G.C.; Ledbury, K.J.; Davis, A. Photo-oxidation of thick polymer samples—Part I: The variation of photo-oxidation with depth in naturally and artificially weathered low density polyethylene. Polym. Degrad. Stabil. 1981, 3, 431–442. [Google Scholar] [CrossRef]
- Chamas, A.; Moon, H.; Zheng, J.; Qiu, Y.; Tabassum, T.; Jang, J.H.; Abu-Omar, M.; Scott, S.L.; Suh, S. Degradation rates of plastics in the environment. ACS Sustain. Chem. Eng. 2020, 8, 3494–3511. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, Y.; Zhang, S.; Chen, J.; Guo, B.; Chen, D. Mechanical Performance of 3D-Printed Polyethylene Fibers and Their Durability against Degradation. Materials 2023, 16, 5182. https://doi.org/10.3390/ma16145182
Xiao Y, Zhang S, Chen J, Guo B, Chen D. Mechanical Performance of 3D-Printed Polyethylene Fibers and Their Durability against Degradation. Materials. 2023; 16(14):5182. https://doi.org/10.3390/ma16145182
Chicago/Turabian StyleXiao, Yao, Shikai Zhang, Jingyi Chen, Baoling Guo, and Dong Chen. 2023. "Mechanical Performance of 3D-Printed Polyethylene Fibers and Their Durability against Degradation" Materials 16, no. 14: 5182. https://doi.org/10.3390/ma16145182
APA StyleXiao, Y., Zhang, S., Chen, J., Guo, B., & Chen, D. (2023). Mechanical Performance of 3D-Printed Polyethylene Fibers and Their Durability against Degradation. Materials, 16(14), 5182. https://doi.org/10.3390/ma16145182