Prediction and Experimental Evaluation of Mechanical Properties of SiC-Reinforced Ti-4.25Al-2V Matrix Composites Produced by Laser Direct Energy Deposition
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of Calculation Methods
- —
- No porosity and cracking, and crack formation and propagation was not considered;
- —
- Volume fraction of reinforcements—1%;
- —
- Particle size—30–90 μm;
- —
- Calculating volume—1.45 × 1.45 × 1.45 mm3;
- —
- A flake-like shape of the particles;
- —
- The bond between particles and matrix was ideal without any defects;
- —
- The numerical model for the tensile sample was in accordance with ASTM E21-20 [28];
- —
- The load was applied in accordance with that used in the experiment.
- —
- The samples measured ∅4 × 20 mm as per ASTM E21-20 for static tests. The finite element size was 0.5 mm.
- —
- One side of the sample was fixed while the total displacement and speed of another side was 10 mm and 0.1 mm/sec, respectively.
2.2. Materials and Equipment
3. Results and Discussion
3.1. Numerical Modeling of Properties of PRCM
3.2. Numerical Modeling and Experimental Verification of Mechanical Behavior of PRCM
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Salunkhe, S.; Rajamani, D. 3—Current trends of metal additive manufacturing in the defense, automobile, and aerospace industries. In Advances in Metal Additive Manufacturing; Woodhead Publishing Reviews: Mechanical Engineering Series; Woodhead Publishing: Sawston, UK, 2023; pp. 147–160. [Google Scholar] [CrossRef]
- Prathyusha, A.; Babu, G.R. A review on additive manufacturing and topology optimization process for weight reduction studies in various industrial applications. Mater. Today Proc. 2022, 62, 109–117. [Google Scholar] [CrossRef]
- Wrobel, R.; Scholes, B.; Hussein, A.; Law, R.; Mustaffar, A.; Reay, D. A metal additively manufactured (MAM) heat exchanger for electric motor thermal control on a high-altitude solar aircraft—Experimental characterization. Therm. Sci. Eng. Prog. 2020, 19, 100629. [Google Scholar] [CrossRef]
- Badkoobeh, F.; Mostaan, H.; Rafiei, M.; Bakhsheshi-Rad, H.R.; RamaKrishna, S.; Chen, X. Additive manufacturing of biodegradable magnesium-based materials: Design strategies, properties, and biomedical applications. J. Magnes. Alloys 2023, 11, 801–839. [Google Scholar] [CrossRef]
- Zhao, N.; Parthasarathy, M.; Patil, S.; Coates, D.; Myers, K.; Zhu, H.; Li, W. Direct additive manufacturing of metal parts for automotive applications. J. Manuf. Syst. 2023, 68, 368–375. [Google Scholar] [CrossRef]
- Gibson, I.; Rosen, D.; Stucker, B. Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing, 2nd ed.; Springer: New York, NY, USA, 2015; Volume XXI, p. 498. [Google Scholar] [CrossRef]
- Carroll, B.E.; Palmer, T.A.; Beese, A.M. Anisotropic tensile behavior of Ti–6Al–4V components fabricated with directed energy deposition additive manufacturing. Acta Mater. 2015, 87, 309–320. [Google Scholar] [CrossRef]
- Sun, C.; Song, M.; Wang, Z.; He, Y. Effect of Particle Size on the Microstructures and Mechanical Properties of SiC-Reinforced Pure Aluminum Composites. J. Mater. Eng. Perform. 2011, 20, 1606–1612. [Google Scholar] [CrossRef]
- Rao, H.; Oleksak, R.P.; Favara, K.; Harooni, A.; Dutta, B.; Maurice, D. Behavior of yttria-stabilized zirconia (YSZ) during laser direct energy deposition of an Inconel 625-YSZ cermet. Addit. Manuf. 2020, 31, 100932. [Google Scholar] [CrossRef]
- Kovalenko, E.; Krasanov, I.; Valdaytseva, E.; Klimova-Korsmik, O.; Gushchina, M. Influence of Laser Direct Energy Deposition Process Parameters on the Structure and Phase Composition of a High-Entropy Alloy FeCoNiCrMn. Metals 2023, 13, 534. [Google Scholar] [CrossRef]
- Kuzminova, Y.O.; Dubinin, O.N.; Gushchina, M.O.; Simonov, A.P.; Konev, S.D.; Sarkeeva, A.A.; Zhilyaev, A.P.; Evlashin, S.A. The mechanical behavior of the Ti6Al4V/Ti/Ti6Al4V composite produced by directed energy deposition under impact loading. Materialia 2023, 27, 101684. [Google Scholar] [CrossRef]
- Kumar, R.; Kumar, M.; Chohan, J.S. The role of additive manufacturing for biomedical applications: A critical review. J. Manuf. Process. 2021, 64, 828–850. [Google Scholar] [CrossRef]
- Promakhov, V.V.; Zhukov, A.S.; Vorozhtsov, A.B.; Schults, N.A.; Kovalchuk, S.V.; Kozhevnikov, S.V.; Olisov, A.V.; Klimenko, V.A. Structure and Mechanical Properties of 3D-Printed Ceramic Samples. Russ. Phys. J. 2019, 62, 876–881. [Google Scholar] [CrossRef]
- Maurya, H.; Jayaraj, J.; Vikram, R.; Juhani, K.; Sergejev, F.; Prashanth, K. Additive manufacturing of TiC-based cermets: A detailed comparison with spark plasma sintered samples. J. Alloys Compd. 2023, 960, 170436. [Google Scholar] [CrossRef]
- Filippov, A.A.; Fomin, V.M.; Malikov, A.G.; Orishich, A.M. Selective laser sintering of cermet mixtures Ti and B4C. AIP Conf. Proc. 2016, 1770, 030095. [Google Scholar] [CrossRef]
- Li, J.; Yu, Z.; Wang, H.; Li, M. Microstructure and Mechanical Properties of an in situ Synthesized TiB and TiC Reinforced Titanium Matrix Composite Coating. J. Wuhan Univ. Technol.-Mater. Sci. Ed. 2012, 27, 1–8. [Google Scholar] [CrossRef]
- Jin, G.; Li, Y.; Cui, H.; Cui, X.; Cai, Z. Microstructure and Tribological Properties of In Situ Synthesized TiN Reinforced Ni/Ti Alloy Clad Layer Prepared by Plasma Cladding Technique. J. Mater. Eng. Perform. 2016, 25, 2412–2419. [Google Scholar] [CrossRef]
- Xi, L.; Ding, K.; Gu, D.; Guo, S.; Cao, M.; Zhuang, J.; Lin, K.; Okulov, I.; Sarac, B.; Eckert, J.; et al. Interfacial structure and wear properties of selective laser melted Ti/(TiC+TiN) composites with high content of reinforcements. J. Alloys Compd. 2021, 870, 159436. [Google Scholar] [CrossRef]
- Krakhmalev, P.; Yadroitsev, I. Microstructure and properties of intermetallic composite coatings fabricated by selective laser melting of Ti–SiC powder mixtures. Intermetallics 2014, 46, 147–155. [Google Scholar] [CrossRef]
- Li, N.; Xiong, Y.; Xiong, H.; Shi, G.; Blackburn, J.; Liu, W.; Qin, R. Microstructure, formation mechanism and property characterization of Ti + SiC laser cladded coatings on Ti6Al4V alloy. Mater. Charact. 2019, 148, 43–51. [Google Scholar] [CrossRef]
- Wang, Z.; Du, J.; Su, G.; Sun, Y.; Zhang, C.; Kong, X. Microstructure, preparation and properties of TiC-Fe/FeCoCrNiMn cermet with a core-rim structure. Vacuum 2022, 200, 110984. [Google Scholar] [CrossRef]
- Gan, X.; Xie, D.; Yang, Q.; Zhou, K.; Xiong, H. Ti(C, N)-based cermets by vacuum sintering using Commercial Composite powders: Morphology evolution, Composition and related properties. Vacuum 2019, 170, 108983. [Google Scholar] [CrossRef]
- Xing, J.; Du, C.; He, X.; Zhao, Z.; Zhang, C.; Li, Y. Finite Element Study on the Impact Resistance of Laminated and Textile Composites. Polymers 2019, 11, 1798. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buryachenko, V.; Roy, A.; Lafdi, K.; Anderson, K.; Chellapilla, S. Multi-scale mechanics of nanocomposites including interface: Experimental and numerical investigation. Compos. Sci. Technol. 2005, 65, 2435–2465. [Google Scholar] [CrossRef]
- Yıldırım, F.; Demirel, B.; Bulucu, E.D. Investigation of the mechanical properties of calcite reinforced polypropylene by using digimat-mean field homogenization and ansys FEM. Mater. Today Commun. 2022, 33, 105023. [Google Scholar] [CrossRef]
- Stasa, F.L. Applied Finite Element Analysis for Engineers; CBS Publishing: New York, NY, USA, 1985; p. 659. ISBN 0-03-910744. [Google Scholar]
- Moaveni, S. Finite Element Analysis: Theory and Application with ANSYS, 4th ed.; Pearson Education Limited: Harlow, UK, 2015; p. 936. ISBN 978-0-13-384080-3. [Google Scholar]
- ASTM E21-20; Standard Test Methods for Elevated Temperature Tension Tests of Metallic Materials. ASTM International: West Conshohocken, PA, USA, 2021; Volume 03.01, p. 9. [CrossRef]
- Bistrova, Y.; Shirokina, E.; Mendagaliev, R.; Gushchina, M.; Unt, A. Research of Mechanical Properties of Cold Resistant Steel 09CrNi2MoCu after Direct Laser Deposition. Key Eng. Mater. 2019, 822, 418–424. [Google Scholar] [CrossRef]
- Shalnova, S.A.; Volosevich, D.V.; Sannikov, M.I.; Magidov, I.S.; Mikhaylovskiy, K.V.; Turichin, G.A.; Klimova-Korsmik, O.G. Direct energy deposition of SiC reinforced Ti–6Al–4V metal matrix composites: Structure and mechanical properties. Ceram. Int. 2022, 48, 35076–35084. [Google Scholar] [CrossRef]
- Li, X.; Zhang, W. Interfacial reaction in SiCf/C/TiAl matrix composites. J. Mater. Res. Technol. 2021, 12, 1227–1234. [Google Scholar] [CrossRef]
- Cahn, R.W.; Haasen, P. Physical Metallurgy, 3rd ed.; North-Holland Physics Publishing: Amsterdam, The Netherlands, 1983; Volume 2, p. 1973. [Google Scholar]
- Ansell, G.; Lenel, F. Criteria for yielding of dispersion-strengthened alloys. Acta Metall. 1960, 8, 612–616. [Google Scholar] [CrossRef] [Green Version]
- Bai, X.; Bessa, M.A.; Melro, A.R.; Camanho, P.P.; Guo, L.; Liu, W.K. High-fidelity micro-scale modeling of the thermo-visco-plastic behavior of carbon fiber polymer matrix composites. Compos. Struct. 2015, 134, 141. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.-S. Diffusional Growth of Creep Cavities—High Temperature Deformation and Fracture of Materials; Woodhead Publishing: Sawston, UK, 2010; pp. 206–216. [Google Scholar] [CrossRef]
- Ramosena, L.A.; Dzogbewu, T.C.; du Preez, W. Direct Metal Laser Sintering of the Ti6Al4V Alloy from a Powder Blend. Materials 2022, 15, 8193. [Google Scholar] [CrossRef]
Laser Power, W | Scan Speed, mm/s | Laser Beam Diameter, mm | Width Offset, mm | Height Offset, mm | Ti-4.25Al-2V Powder Feed Rate, g/min | SiC Powder Feed Rate, g/min | Argon Shielding Gas Flow (L/min) |
---|---|---|---|---|---|---|---|
1800 | 25 | 2.5 | 1.67 | 0.6 | 7.6 | 0.1 | 15 |
Value/ Temperature | 20 °C | 250 °C | 350 °C | 450 °C |
---|---|---|---|---|
Tensile strength, MPa | 1029 | 868 | 806 | 698 |
Tensile strain, % | 6.3 | 7.3 | 8.2 | 8.9 |
Poisson’s ratio | 0.29 | 0.32 | 0.36 | 0.37 |
Test Temperature, °C | Yield Strength, MPa | Tensile Strength, MPa | Elongation, % | |||
---|---|---|---|---|---|---|
Modeling | Experiment | Modeling | Experiment | Modeling | Experiment | |
23 | 970 | 1050 | 1017 | 1090 | 6.6 | 7.5 |
250 | 870 | 710 | 919 | 809 | 7.6 | 9.6 |
350 | 730 | 687 | 850 | 782 | 8.0 | 10.5 |
450 | 700 | 617 | 735 | 720 | 9.1 | 11.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Magidov, I.; Mikhaylovskiy, K.; Shalnova, S.; Topalov, I.; Gushchina, M.; Zherebtsov, S.; Klimova-Korsmik, O. Prediction and Experimental Evaluation of Mechanical Properties of SiC-Reinforced Ti-4.25Al-2V Matrix Composites Produced by Laser Direct Energy Deposition. Materials 2023, 16, 5233. https://doi.org/10.3390/ma16155233
Magidov I, Mikhaylovskiy K, Shalnova S, Topalov I, Gushchina M, Zherebtsov S, Klimova-Korsmik O. Prediction and Experimental Evaluation of Mechanical Properties of SiC-Reinforced Ti-4.25Al-2V Matrix Composites Produced by Laser Direct Energy Deposition. Materials. 2023; 16(15):5233. https://doi.org/10.3390/ma16155233
Chicago/Turabian StyleMagidov, Ilya, Konstanitin Mikhaylovskiy, Svetlana Shalnova, Ilya Topalov, Marina Gushchina, Sergey Zherebtsov, and Olga Klimova-Korsmik. 2023. "Prediction and Experimental Evaluation of Mechanical Properties of SiC-Reinforced Ti-4.25Al-2V Matrix Composites Produced by Laser Direct Energy Deposition" Materials 16, no. 15: 5233. https://doi.org/10.3390/ma16155233
APA StyleMagidov, I., Mikhaylovskiy, K., Shalnova, S., Topalov, I., Gushchina, M., Zherebtsov, S., & Klimova-Korsmik, O. (2023). Prediction and Experimental Evaluation of Mechanical Properties of SiC-Reinforced Ti-4.25Al-2V Matrix Composites Produced by Laser Direct Energy Deposition. Materials, 16(15), 5233. https://doi.org/10.3390/ma16155233