Demagnetization Parameters Evaluation of Magnetic Shields Based on Anhysteretic Magnetization Curve
Abstract
:1. Introduction
2. Evaluation Method of Demagnetization Parameters
2.1. Principle of Demagnetization
2.2. Theoretical Calculation of Magnetization under Different Demagnetization Conditions
3. Measurement of Magnetization after Demagnetization with Different Parameters
4. Demagnetization Experiment of MSR
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Robbes, D. Highly Sensitive Magnetometers—A Review. Sens. Actuators A Phys. 2006, 129, 86–93. [Google Scholar] [CrossRef]
- Pang, H.; Liu, F.; Fan, W.; Wu, J.; Yuan, Q.; Wu, Z.; Quan, W. Analysis and Suppression of Thermal Magnetic Noise of Ferrite in the SERF Co-Magnetometer. Materials 2022, 15, 6971. [Google Scholar] [CrossRef] [PubMed]
- Allmendinger, F.; Heil, W.; Karpuk, S.; Kilian, W.; Scharth, A.; Schmidt, U.; Schnabel, A.; Sobolev, Y.; Tullney, K. New Limit on Lorentz-Invariance- and CPT-Violating Neutron Spin Interactions Using a Free-Spin-Precession 3He-129Xe Comagnetometer. Phys. Rev. Lett. 2014, 112, 110801. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Rolfs, K.; Fan, I.; Haude, S.; Kilian, W.; Li, L.; Schnabel, A.; Voigt, J.; Trahms, L. Revisiting 129Xe Electric Dipole Moment Measurements Applying a New Global Phase Fitting Approach. New J. Phys. 2021, 23, 063076. [Google Scholar] [CrossRef]
- Boto, E.; Holmes, N.; Leggett, J.; Roberts, G.; Shah, V.; Meyer, S.S.; Muñoz, L.D.; Mullinger, K.J.; Tierney, T.M.; Bestmann, S.; et al. Moving Magnetoencephalography towards Real-World Applications with a Wearable System. Nature 2018, 555, 657–661. [Google Scholar] [CrossRef]
- Iivanainen, J.; Zetter, R.; Grön, M.; Hakkarainen, K.; Parkkonen, L. On-Scalp MEG System Utilizing an Actively Shielded Array of Optically-Pumped Magnetometers. NeuroImage 2019, 194, 244–258. [Google Scholar] [CrossRef]
- Altarev, I.; Babcock, E.; Beck, D.; Burghoff, M.; Chesnevskaya, S.; Chupp, T.; Degenkolb, S.; Fan, I.; Fierlinger, P.; Frei, A.; et al. A Magnetically Shielded Room with Ultra Low Residual Field and Gradient. Rev. Sci. Instrum. 2014, 85, 075106. [Google Scholar] [CrossRef]
- Altarev, I.; Bales, M.; Beck, D.H.; Chupp, T.; Fierlinger, K.; Fierlinger, P.; Kuchler, F.; Lins, T.; Marino, M.G.; Niessen, B.; et al. A Large-Scale Magnetic Shield with 10^6 Damping at MHz Frequencies. J. Appl. Phys. 2015, 117, 183903. [Google Scholar] [CrossRef]
- Cohen, D.; Schläpfer, U.; Ahlfors, S.; Hämäläinen, M.; Halgren, E. New Six-Layer Magnetically-Shielded Room for MEG. In Proceedings of the 13th International Conference on Biomagnetism, Jena, Germany, 10–14 August 2002. [Google Scholar]
- Holmes, N.; Rea, M.; Chalmers, J.; Leggett, J.; Edwards, L.J.; Nell, P.; Pink, S.; Patel, P.; Wood, J.; Murby, N.; et al. A Lightweight Magnetically Shielded Room with Active Shielding. Sci. Rep. 2022, 12, 13561. [Google Scholar] [CrossRef]
- He, K.; Wan, S.; Sheng, J.; Liu, D.; Wang, C.; Li, D.; Qin, L.; Luo, S.; Qin, J.; Gao, J.-H. A High-Performance Compact Magnetic Shield for Optically Pumped Magnetometer-Based Magnetoencephalography. Rev. Sci. Instrum. 2019, 90, 064102. [Google Scholar] [CrossRef]
- Ma, D.; Lu, J.; Fang, X.; Dou, Y.; Wang, K.; Gao, Y.; Li, S.; Han, B. A Novel Low-Noise Mu-Metal Magnetic Shield with Winding Shape. Sens. Actuators A Phys. 2022, 346, 113884. [Google Scholar] [CrossRef]
- Sun, J.; Lu, Y.; Zhang, L.; Le, Y.; Zhao, X. A Method to Measure Permeability of Permalloy in Extremely Weak Magnetic Field Based on Rayleigh Model. Materials 2022, 15, 7353. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Ren, J.; Li, J.; Huang, Y. Measurement and Analysis of Magnetic Properties of Permalloy for Magnetic Shielding Devices under Different Temperature Environments. Materials 2023, 16, 3253. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.J.; Savukov, I.; Newman, S. Magnetocardiography with a 16-Channel Fiber-Coupled Single-Cell Rb Optically Pumped Magnetometer. Appl. Phys. Lett. 2019, 114, 143702. [Google Scholar] [CrossRef]
- Rea, M.; Holmes, N.; Hill, R.M.; Boto, E.; Leggett, J.; Edwards, L.J.; Woolger, D.; Dawson, E.; Shah, V.; Osborne, J.; et al. Precision Magnetic Field Modelling and Control for Wearable Magnetoencephalography. NeuroImage 2021, 241, 118401. [Google Scholar] [CrossRef]
- Bork, J.; Hahlbohm, H.-D.; Klein, R. The 8-Layered Magnetically Shielded Room of the PTB: Design and Construction. In Proceedings of the 12th International Conference on Biomagnetism, Helsinki, Finland, 13–17 August 2000. [Google Scholar]
- Sun, Z.; Schnabel, A.; Burghoff, M.; Li, L. Calculation of an Optimized Design of Magnetic Shields with Integrated Demagnetization Coils. AIP Adv. 2016, 6, 075220. [Google Scholar] [CrossRef]
- Yang, K.; Lu, J.; Wang, Z.; Sun, B.; Ma, Y.; Wang, Y.; Han, B. Minimizing Magnetic Fields of the Low-Noise MnZn Ferrite Magnetic Shield for Atomic Magnetometer. J. Phys. D Appl. Phys. 2022, 55, 015003. [Google Scholar] [CrossRef]
- Nagashima, K.; Sasada, I.; Tashiro, K. High-Performance Bench-Top Cylindrical Magnetic Shield with Magnetic Shaking Enhancement. IEEE Trans. Magn. 2002, 38, 3335–3337. [Google Scholar] [CrossRef]
- Tashiro, K.; Nagano, M.; Kimura, T.; Sasada, I. The Effect of Magnetic Shaking on Nonoriented Silicon Steel Rings. IEEE Trans. Magn. 2005, 41, 4078–4080. [Google Scholar] [CrossRef]
- Thiel, F.; Schnabel, A.; Knappe-Grüneberg, S.; Stollfuß, D.; Burghoff, M. Demagnetization of Magnetically Shielded Rooms. Rev. Sci. Instrum. 2007, 78, 035106. [Google Scholar] [CrossRef]
- Altarev, I.; Fierlinger, P.; Lins, T.; Marino, M.G.; Nießen, B.; Petzoldt, G.; Reisner, M.; Stuiber, S.; Sturm, M.; Taggart Singh, J.; et al. Minimizing Magnetic Fields for Precision Experiments. J. Appl. Phys. 2015, 117, 233903. [Google Scholar] [CrossRef]
- Sun, Z.; Fierlinger, P.; Han, J.; Li, L.; Liu, T.; Schnabel, A.; Stuiber, S.; Voigt, J. Limits of Low Magnetic Field Environments in Magnetic Shields. IEEE Trans. Ind. Electron. 2021, 68, 5385–5395. [Google Scholar] [CrossRef]
- Thiel, F.; Schnabel, A.; Knappe-Grneberg, S.; Stollfu, D.; Burghoff, M. Proposal of a Demagnetization Function. IEEE Trans. Magn. 2007, 43, 2959–2961. [Google Scholar] [CrossRef]
- Thiel, F. Demagnetization of Layered Ferromagnetic Structures for Magnetically Shielding: Frequency Considerations. IEEE Trans. Magn. 2009, 45, 5307–5314. [Google Scholar] [CrossRef]
- Knappe-Grueneberg, S.; Schnabel, A.; Wuebbeler, G.; Burghoff, M. Influence of Demagnetization Coil Configuration on Residual Field in an Extremely Magnetically Shielded Room: Model and Measurements. J. Appl. Phys. 2008, 103, 07E925. [Google Scholar] [CrossRef]
- Voigt, J.; Knappe-Grüneberg, S.; Schnabel, A.; Körber, R.; Burghoff, M. Measures to Reduce the Residual Field and Field Gradient inside a Magnetically Shielded Room by a Factor of More than 10. Metrol. Meas. Syst. 2013, 20, 239–248. [Google Scholar] [CrossRef]
- Sun, Z.; Reisner, M.; Fierlinger, P.; Schnabel, A.; Stuiber, S.; Li, L. Dynamic Modeling of the Behavior of Permalloy for Magnetic Shielding. J. Appl. Phys. 2016, 119, 193902. [Google Scholar] [CrossRef]
- Jiles, D.C. Frequency Dependence of Hysteresis Curves in Conducting Magnetic Materials. J. Appl. Phys. 1994, 76, 5849–5855. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, X.; Shi, M.; Yuan, S.; Zhang, L.; Wang, L.; Han, B. Experimental Studies on the Performance of Magnetic Shields under Different Magnetization Conditions. J. Phys. D Appl. Phys. 2023, 56, 215001. [Google Scholar] [CrossRef]
- Nowicki, M. Anhysteretic Magnetization Measurement Methods for Soft Magnetic Materials. Materials 2018, 11, 2021. [Google Scholar] [CrossRef]
- Nowicki, M.; Szewczyk, R.; Nowak, P. Experimental Verification of Isotropic and Anisotropic Anhysteretic Magnetization Models. Materials 2019, 12, 1549. [Google Scholar] [CrossRef] [PubMed]
Parameter | Ms | c | k | a | α |
---|---|---|---|---|---|
value | A/m | A/m | A/m |
Demagnetization Parameters | Magnetic Flux Density (@0.01 A/m) | Magnetic Flux Density (@0.1 A/m) |
---|---|---|
10 Hz frequency | 0.0277 T | 0.1981 T |
50 Hz frequency | 0.0229 T | 0.1592 T |
100 Hz frequency | 0.0150 T | 0.1392 T |
100 A/m initial amplitude | 0.0277 T | 0.1981 T |
20 A/m initial amplitude | 0.0305 T | 0.2034 T |
5 A/m initial amplitude | 0.0320 T | 0.2100 T |
300 period number | 0.0277 T | 0.1981 T |
100 period number | 0.0276 T | 0.1899 T |
30 period number | 0.0136 T | 0.1151 T |
Linear attenuation | 0.0277 T | 0.1981 T |
Second-order attenuation | 0.0324 T | 0.2051 T |
Logarithmic attenuation | 0.0336 T | 0.2098 T |
AM curve (theoretical value) | 0.0388 T | 0.2187 T |
Parameters | Linear Attenuation | Second-Order Attenuation | Logarithmic Attenuation |
---|---|---|---|
f = 10 Hz, N = 100, I0 = 10 A | 5.5 nT | 5.2 nT | 5.1 nT |
f = 10 Hz, N = 100, I0 = 2 A | 20.4 nT | 19.5 nT | 20.8 nT |
f = 50 Hz, N = 100, I0 = 10 A | 16.8 nT | 16.1 nT | 11.2 nT |
f = 10 Hz, N = 10, I0 = 10 A | 21.4 nT | 19.4 nT | 25.1 nT |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, J.; Shi, M.; Zhang, X.; Ma, Y.; Liu, Y.; Yuan, S.; Han, B. Demagnetization Parameters Evaluation of Magnetic Shields Based on Anhysteretic Magnetization Curve. Materials 2023, 16, 5238. https://doi.org/10.3390/ma16155238
Yang J, Shi M, Zhang X, Ma Y, Liu Y, Yuan S, Han B. Demagnetization Parameters Evaluation of Magnetic Shields Based on Anhysteretic Magnetization Curve. Materials. 2023; 16(15):5238. https://doi.org/10.3390/ma16155238
Chicago/Turabian StyleYang, Jianzhi, Minxia Shi, Xu Zhang, Yuzheng Ma, Yijin Liu, Shuai Yuan, and Bangcheng Han. 2023. "Demagnetization Parameters Evaluation of Magnetic Shields Based on Anhysteretic Magnetization Curve" Materials 16, no. 15: 5238. https://doi.org/10.3390/ma16155238
APA StyleYang, J., Shi, M., Zhang, X., Ma, Y., Liu, Y., Yuan, S., & Han, B. (2023). Demagnetization Parameters Evaluation of Magnetic Shields Based on Anhysteretic Magnetization Curve. Materials, 16(15), 5238. https://doi.org/10.3390/ma16155238