Effects of Iron, Lime, and Porous Ceramic Powder Additives on Methane Production from Brewer’s Spent Grain in the Anaerobic Digestion Process
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Materials Characterization
2.2.2. Anaerobic Digestion Experiment
- Three reactors filled with 150 g of wet inoculum (variant name—D);
- Three reactors filled with 150 g of wet inoculum and 4.71 g of dry BSG (variant name—Fe0&Cf0);
- Three reactors filled with 150 g of wet inoculum, 4.71 g of dry BSG, 0.09 g of iron powder, and 0.09 g of ceramic powder (variant name—Fe3&Cf3);
- Three reactors filled with 150 g of wet inoculum, 4.71 g of dry BSG, 0.145 g of iron powder, and 0.145 g of ceramic powder (variant name—Fe6&Cf6);
- Three reactors filled with 150 g of wet inoculum, 4.71 g of dry BSG, 0.26 g of iron powder, and 0.26 g of ceramic powder (variant name—Fe9&Cf9).
2.2.3. Kinetics Parameter Determination
2.2.4. Substrate Conversion Efficiency
2.2.5. Statistical Analysis
3. Results and Discussion
3.1. Materials
3.2. Anaerobic Digestion
3.3. Kinetics Parameters and Substrate Conversion Efficiency
3.4. Process Residues
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Karlović, A.; Jurić, A.; Ćorić, N.; Habschied, K.; Krstanović, V.; Mastanjević, K. By-Products in the Malting and Brewing Industries-Re-Usage Possibilities. Fermentation 2020, 6, 82. [Google Scholar] [CrossRef]
- Dudek, M.; Świechowski, K.; Manczarski, P.; Koziel, J.A.; Białowiec, A. The Effect of Biochar Addition on the Biogas Production Kinetics from the Anaerobic Digestion of Brewers’ Spent Grain. Energies 2019, 12, 1518. [Google Scholar] [CrossRef]
- Mussatto, S.I.; Dragone, G.; Roberto, I.C. Brewers’ Spent Grain: Generation, Characteristics and Potential Applications. J. Cereal Sci. 2006, 43, 1–14. [Google Scholar] [CrossRef]
- Russ, W.; Mörtel, H.; Meyer-Pittroff, R. Application of Spent Grains to Increase Porosity in Bricks. Constr. Build. Mater. 2005, 19, 117–126. [Google Scholar] [CrossRef]
- Thomas, K.R.; Rahman, P. Brewery Wastes. Strategies for Sustainability. A Review. Asp. Appl. Biol. 2006, 80, 147–153. [Google Scholar]
- Saenge, C.; Cheirsilp, B.; Suksaroge, T.T.; Bourtoom, T. Potential Use of Oleaginous Red Yeast Rhodotorula Glutinis for the Bioconversion of Crude Glycerol from Biodiesel Plant to Lipids and Carotenoids. Process Biochem. 2011, 46, 210–218. [Google Scholar] [CrossRef]
- Syguła, E.; Gałęzowska, M.; Białowiec, A. Enhanced Production of Biogas Using Biochar–Sulfur Composite in the Methane Fermentation Process. Materials 2022, 15, 4517. [Google Scholar] [CrossRef]
- Kostowski, W.; Barzantny, M. Efektywność Energetyczna i Środowiskowa Wybranych Metod Wykorzystania Wodoru Energy and Environmental Efficiency of Selected Methods to Use Hydrogen. Energetyka 2022, 9, 445–450. [Google Scholar]
- Dach, J.; Banasik, P.; Białowiec, A.; Czekała, W.; Chomiuk, D.; Filipiak, I.; Fugol, M.; Kacała, M.; Kowalczyk-Juśko, A.; Kolasiński, M.; et al. Raport Biogaz w Polsce. Magazyn Biomasa. 2020. Available online: https://magazynbiomasa.pl/biogaz-w-polsce-raport-2020-dzis-premiera-publikacji/ (accessed on 25 December 2022).
- Rafiee, A.; Khalilpour, K.R.; Prest, J.; Skryabin, I. Biogas as an energy vector. Biomass Bioenergy. Biomass Bioenergy 2023, 144, 105935. [Google Scholar] [CrossRef]
- Ryckebosch, E.; Drouillon, M.; Vervaeren, H. Techniques for Transformation of Biogas to Biomethane. Biomass Bioenergy 2011, 35, 1633–1645. [Google Scholar] [CrossRef]
- Rejman-Burzyńska, A.; Maksymiak-Lach, H.; Jędrysik, E. Potencjał Energetyczny Biogazu—Ocena Zasobów Surowcowych Do Produkcji Biogazu w Polsce. Chemik 2013, 67, 446–453. [Google Scholar]
- Sakiewicz, P.; Cebula, J.; Piotrowski, K.; Bohdziewicz, J. Kinetics of Methane Fermentation of Selected Post-Processed Poultry Beddings—Possibilities of Process Intensification and Limitations. Eco-Energetics Technol. Environ. Law Econ. 2019, 2, 105–112. [Google Scholar] [CrossRef]
- IEA Bioenergy. Methane Emissions from Biogas Plants; IEA Bioenergy: Denmark, Germany, 2017; ISBN 978-1-910154-35-9. [Google Scholar]
- Ziemiński, K.; Frąc, M. Methane Fermentation Process as Anaerobic Digestion of Biomass: Transformations, Stages and Microorganisms. Afr. J. Biotechnol. 2012, 11, 4127–4139. [Google Scholar] [CrossRef]
- Qiang, H.; Lang, D.L.; Li, Y.Y. High-Solid Mesophilic Methane Fermentation of Food Waste with an Emphasis on Iron, Cobalt, and Nickel Requirements. Bioresour. Technol. 2012, 103, 21–27. [Google Scholar] [CrossRef] [PubMed]
- Khor, W.C.; Rabaey, K.; Vervaeren, H. Low Temperature Calcium Hydroxide Treatment Enhances Anaerobic Methane Production from (Extruded) Biomass. Bioresour. Technol. 2015, 176, 181–188. [Google Scholar] [CrossRef] [PubMed]
- Krishania, M.; Vijay, V.K.; Chandra, R. Methane Fermentation and Kinetics of Wheat Straw Pretreated Substrates Co-Digested with Cattle Manure in Batch Assay. Energy 2013, 57, 359–367. [Google Scholar] [CrossRef]
- Bischof, L.F.; Haurat, M.F.; Hoffmann, L.; Albersmeier, A.; Wolf, J.; Neu, A.; Pham, T.K.; Albaum, S.P.; Jakobi, T.; Schouten, S.; et al. Early Response of Sulfolobus Acidocaldarius to Nutrient Limitation. Front. Microbiol. 2019, 9, 3201. [Google Scholar] [CrossRef]
- Wintsche, B.; Glaser, K.; Sträuber, H.; Centler, F.; Liebetrau, J.; Harms, H.; Kleinsteuber, S. Trace Elements Induce Predominance among Methanogenic Activity in Anaerobic Digestion. Front. Microbiol. 2016, 7, 2034. [Google Scholar] [CrossRef]
- Preeti Rao, P.; Seenayya, G. Improvement of Methanogenesis from Cow Dung and Poultry Litter Waste Digesters by Addition of Iron. World J. Microbiol. Biotechnol. 1994, 10, 211–214. [Google Scholar] [CrossRef]
- Meng, X.; Zhang, Y.; Li, Q.; Quan, X. Adding Fe0 Powder to Enhance the Anaerobic Conversion of Propionate to Acetate. Biochem. Eng. J. 2013, 73, 80–85. [Google Scholar] [CrossRef]
- Takashima, M.; Shimada, K.; Speece, R.E. Minimum Requirements for Trace Metals (Iron, Nickel, Cobalt, and Zinc) in Thermophilic and Mesophilic Methane Fermentation from Glucose. Water Environ. Res. 2011, 83, 339–346. [Google Scholar] [CrossRef]
- Grgas, D.; Rukavina, M.; Bešlo, D.; Štefanac, T.; Crnek, V.; Šiki, T.; Habuda-stani, M. The Bacterial Degradation of Lignin—A Review. Water 2023, 15, 1272. [Google Scholar] [CrossRef]
- Kaar, W.E.; Holtzapple, M.T. Using Lime Pretreatment to Facilitate the Enzymic Hydrolysis of Corn Stover. Biomass Bioenergy 2000, 18, 189–199. [Google Scholar] [CrossRef]
- Chen, S.; Zhang, J.; Wang, X. Effects of Alkalinity Sources on the Stability of Anaerobic Digestion from Food Waste. Waste Manag. Res. J. A Sustain. Circ. Econ. 2015, 33, 1033–1040. [Google Scholar] [CrossRef] [PubMed]
- Świechowski, K.; Rasaq, W.A.; Syguła, E. Anaerobic Digestion of Brewer’s Spent Grain with Biochars—Biomethane Production and Digestate Quality Effects. Front. Energy Res. 2023, 11, 1141684. [Google Scholar] [CrossRef]
- Mainardis, M.; Flaibani, S.; Mazzolini, F.; Peressotti, A.; Goi, D. Techno-Economic Analysis of Anaerobic Digestion Implementation in Small Italian Breweries and Evaluation of Biochar and Granular Activated Carbon Addition Effect on Methane Yield. J. Environ. Chem. Eng. 2019, 7, 103184. [Google Scholar] [CrossRef]
- Chen, L.; Fang, W.; Chang, J.; Liang, J.; Zhang, P.; Zhang, G. Improvement of Direct Interspecies Electron Transfer via Adding Conductive Materials in Anaerobic Digestion: Mechanisms, Performances, and Challenges. Front. Microbiol. 2022, 13, 860749. [Google Scholar] [CrossRef]
- Qiu, L.; Deng, Y.F.; Wang, F.; Davaritouchaee, M.; Yao, Y.Q. A Review on Biochar-Mediated Anaerobic Digestion with Enhanced Methane Recovery. Renew. Sustain. Energy Rev. 2019, 115, 109373. [Google Scholar] [CrossRef]
- PN-EN 14346:2011 Standard; Waste Characteristics. Calculation of Dry Mass on the Basis of Dry Residue or Water Content. Polish Committee for Standardization: Warsaw, Poland, 2011.
- PN-EN 15169:2011 Standard; Waste Characteristics. Determination of Organic Matter Content for Waste, Slurry and Sludge. Polish Committee for Standardization: Warsaw, Poland, 2011.
- PN-EN ISO 118852009; Water Quality—Determination of Selected Elements by Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) (ISO 11885:2007). Polish Committee for Standardization: Warsaw, Poland, 2007.
- Abdelwahab, T.A.M.; Fodah, A.E.M. Utilization of Nanoparticles for Biogas Production Focusing on Process Stability and Effluent Quality. SN Appl. Sci. 2022, 4, 332. [Google Scholar] [CrossRef]
- Chen, Y.; Cheng, J.J.; Creamer, K.S. Inhibition of Anaerobic Digestion Process: A Review. Bioresour. Technol. 2008, 99, 4044–4064. [Google Scholar] [CrossRef]
- Andriamanohiarisoamanana, F.J.; Shirai, T.; Yamashiro, T.; Yasui, S.; Iwasaki, M.; Ihara, I.; Nishida, T.; Tangtaweewipat, S.; Umetsu, K. Valorizing Waste Iron Powder in Biogas Production: Hydrogen Sulfide Control and Process Performances. J. Environ. Manag. 2018, 208, 134–141. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Q.; Zhang, Y.; Ni, B.-J. Zero Valent Iron Significantly Enhances Methane Production from Waste Activated Sludge by Improving Biochemical Methane Potential Rather Than Hydrolysis Rate. Sci. Rep. 2015, 5, 8263. [Google Scholar] [CrossRef]
- Cao, X.; Wang, Y.; Liu, T. Effects of Iron Powder Addition and Thermal Hydrolysis on Methane Production and the Archaeal Community during the Anaerobic Digestion of Sludge. Int. J. Environ. Res. Public Health 2022, 19, 4470. [Google Scholar] [CrossRef]
- Lohani, S.P.; Havukainen, J. Anaerobic Digestion: Factors Affecting Anaerobic Digestion Process. In Energy, Environment, and Sustainability; Springer Nature: Berlin/Heidelberg, Germany, 2018; pp. 343–359. [Google Scholar]
- Zhang, Y.; Liang, Y.; Chen, J.; Chen, H. Effect of Lime Loading on the Performance of Simultaneous Lime Treatment and Dry Anaerobic Digestion of Smooth Cordgrass. Energy Sources Part A Recovery Util. Environ. Eff. 2016, 38, 3048–3054. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, Q.; Zheng, P.; Wang, Y. Anaerobic Digestion of Food Waste Stabilized by Lime Mud from Papermaking Process. Bioresour. Technol. 2014, 170, 270–277. [Google Scholar] [CrossRef]
- Drosg, B. Process Monitoring in Biogas Plants; IEA Bioenergy: Denmark, Germany, 2013. [Google Scholar]
- Dong, J.; Zhao, Y.; Hong, M.; Zhang, W. Influence of Alkalinity on the Stabilization of Municipal Solid Waste in Anaerobic Simulated Bioreactor. J. Hazard. Mater. 2009, 163, 717–722. [Google Scholar] [CrossRef]
- Montalvo, S.; Guerrero, L.; Borja, R.; Sánchez, E.; Milán, Z.; Cortés, I.; Angeles de la la Rubia, M. Application of Natural Zeolites in Anaerobic Digestion Processes: A Review. Appl. Clay Sci. 2012, 58, 125–133. [Google Scholar] [CrossRef]
- Cavali, M.; Libardi Junior, N.; de Almeida Mohedano, R.; Belli Filho, P.; da Costa, R.H.R.; de Castilhos Junior, A.B. Biochar and Hydrochar in the Context of Anaerobic Digestion for a Circular Approach: An Overview. Sci. Total Environ. 2022, 822, 153614. [Google Scholar] [CrossRef] [PubMed]
- Ward, A.J.; Hobbs, P.J.; Holliman, P.J.; Jones, D.L. Optimisation of the Anaerobic Digestion of Agricultural Resources. Bioresour. Technol. 2008, 99, 7928–7940. [Google Scholar] [CrossRef]
- Sánchez-Sánchez, C.; González-González, A.; Cuadros-Salcedo, F.; Cuadros-Blázquez, F. Using Low-Cost Porous Materials to Increase Biogas Production: A Case Study in Extremadura (Spain). J. Clean. Prod. 2018, 198, 1165–1172. [Google Scholar] [CrossRef]
- Shi, Y.; Liu, M.; Li, J.; Yao, Y.; Tang, J.; Niu, Q. The Dosage-Effect of Biochar on Anaerobic Digestion under the Suppression of Oily Sludge: Performance Variation, Microbial Community Succession and Potential Detoxification Mechanisms. J. Hazard. Mater. 2022, 421, 126819. [Google Scholar] [CrossRef]
- Montalvo, S.; Díaz, F.; Guerrero, L.; Sánchez, E.; Borja, R. Effect of Particle Size and Doses of Zeolite Addition on Anaerobic Digestion Processes of Synthetic and Piggery Wastes. Process Biochem. 2005, 40, 1475–1481. [Google Scholar] [CrossRef]
- Koch, K.; Hafner, S.D.; Weinrich, S.; Astals, S.; Holliger, C. Power and Limitations of Biochemical Methane Potential (BMP) Tests. Front. Energy Res. 2020, 8, 63. [Google Scholar] [CrossRef]
- Koch, K.; Hafner, S.D.; Weinrich, S.; Astals, S. Identification of Critical Problems in Biochemical Methane Potential (BMP) Tests from Methane Production Curves. Front. Environ. Sci. 2019, 7, 178. [Google Scholar] [CrossRef]
- Tzenos, C.A.; Kalamaras, S.D.; Economou, E.-A.; Romanos, G.E.; Veziri, C.M.; Mitsopoulos, A.; Menexes, G.C.; Sfetsas, T.; Kotsopoulos, T.A. The Multifunctional Effect of Porous Additives on the Alleviation of Ammonia and Sulfate Co-Inhibition in Anaerobic Digestion. Sustainability 2023, 15, 9994. [Google Scholar] [CrossRef]
- Deng, G.; Zhang, T.; Wang, W.; Lv, Y.; Deng, H.; Lu, W.; Cheng, X. Enhancement from Anaerobic Digestion of Food Waste by Conductive Materials: Performance and Mechanism. ACS Omega 2022, 7, 40782–40788. [Google Scholar] [CrossRef] [PubMed]
- Wambugu, C.W.; Rene, E.R.; van de Vossenberg, J.; Dupont, C.; van Hullebusch, E.D. Role of Biochar in Anaerobic Digestion Based Biorefinery for Food Waste. Front. Energy Res. 2019, 7, 14. [Google Scholar] [CrossRef]
- Cai, J.; He, P.; Wang, Y.; Shao, L.; Lü, F. Effects and Optimization of the Use of Biochar in Anaerobic Digestion of Food Wastes. Waste Manag. Res. J. A Sustain. Circ. Econ. 2016, 34, 409–416. [Google Scholar] [CrossRef]
- Akunna, J.C. Anaerobic Treatment of Brewery Wastes. In Brewing Microbiology; Elsevier: Amsterdam, The Netherlands, 2015; pp. 407–424. [Google Scholar]
- Czekała, W.; Lewicki, A.; Pochwatka, P.; Czekała, A.; Wojcieszak, D.; Jóźwiakowski, K.; Waliszewska, H. Digestate Management in Polish Farms as an Element of the Nutrient Cycle. J. Clean. Prod. 2020, 242, 118454. [Google Scholar] [CrossRef]
- Li, Y.; Alaimo, C.P.; Kim, M.; Kado, N.Y.; Peppers, J.; Xue, J.; Wan, C.; Green, P.G.; Zhang, R.; Jenkins, B.M.; et al. Composition and Toxicity of Biogas Produced from Different Feedstocks in California. Environ. Sci. Technol. 2019, 53, 11569–11579. [Google Scholar] [CrossRef]
- Bharathiraja, B.; Sudharsana, T.; Jayamuthunagai, J.; Praveenkumar, R.; Chozhavendhan, S.; Iyyappan, J. Biogas Production—A Review on Composition, Fuel Properties, Feed Stock and Principles of Anaerobic Digestion. Renew. Sustain. Energy Rev. 2018, 90, 570–582. [Google Scholar] [CrossRef]
- Häfner, F.; Hartung, J.; Möller, K. Digestate Composition Affecting N Fertiliser Value and C Mineralisation. Waste Biomass Valorization 2022, 13, 3445–3462. [Google Scholar] [CrossRef]
Variant Name, - | D | Fe/L/Cf0 | Fe/L/Cf1 | Fe/L/Cf3 | Fe/L/Cf5 | Fe/L/Cf7 | Fe/L/Cf9 | Fe/L/Cf12 |
---|---|---|---|---|---|---|---|---|
Substrate, gwet * | 0.00 | 11.7 | ||||||
Substrate, gTS | 0.00 | 3.00 | ||||||
Substrate, gVS | 0.00 | 2.88 | ||||||
Inoculum, gwet | 150 | |||||||
Inoculum, gTS | 7.95 | |||||||
Inoculum, gVS | 0.00 | 4.71 | ||||||
SIR by TS, - | - | 0.38 | ||||||
SIR by VS, - | - | 0.61 | ||||||
Additive material, gTS | - | - | 0.03 | 0.09 | 0.145 | 0.20 | 0.26 | 0.35 |
Additive material, gTS × L−1 | - | - | 0.20 | 0.60 | 0.95 | 1.34 | 1.70 | 2.30 |
Additive material to a substrate by TS, % | - | - | 1 | 3 | 5 | 7 | 9 | 12 |
Substrate Type | Wet Mass of Substrate, g | Dry Mass of Substrate, g | Volatile Solids of a Substrate, g | Inoculum Type | Wet Mass of Inoculum, g | Dry Mass of Inoculum, g | Volatile Solids of Inoculum, g | Type of Additive Materials | Mass of Additive Materials, g × L−1 | Reactors Type | Stirring | Total Volume, ml | Working Volume, mL | AD Temperature, °C | AD Duration Time, day | SIR by TS, - | SIR by VS, - | Main Effects/Findings | References |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Brewer’s spent grain | 11.7 | 3.0 | 2.88 | Agriculture biogas plant digestate | 150 | 7.95 | 4.71 | Iron powder | 0, 0.2, 0.6, 0.95, 1.34, 1.70, 2.30 | Batch | Yes | 400 | 153 | 37 | 30 | 0.38 | 0.61 | × Fe supplementation increased methane yield in each experiment; the highest increase of 9.8% was obtained at doses of 0.6 0.6 g × L−1 | This study |
Dairy manure | 600 | 54.0 | 44.3 | Dairy manure | n.a | n.a | n.a | Iron powder | 0, 2, 3, 4, 8, 12, 20 | Batch | n.i | 1000 | 600 | 38 | 48 | n.a | n.a | × No effect on methane yield, × Reduction of H2S in biogas by 93–99%, × Increase in hydrolysis rate constant two-fold, × Lag-phase reduced to half | [36] |
Waste activated sludge | n.i | n.i | n.i | Waste activated sludge | n.a | n.a | n.a | Iron powder | 0, 1.0, 4.0 | Batch | n.i | n.i | n.i | 35 | 20 | n.i | n.i | × Significant methane yield increase by 9 and 21% × No significant effect on k value | [37] |
Waste activated sludge | n.i | n.i | n.i | Waste activated sludge | n.a | n.a | n.a | Iron powder, clean scrap, rusty scrap | 0, 10 | Batch | n.i | n.i | n.i | 35 | 20 | n.i | n.i | × Significant methane yield increase by 11, 22, and 30% × No significant effect on k value | [37] |
Dewatered sludge | n.i | n.i | n.i | Anaerobically digested sludge | n.i | n.i | n.i | Iron powder | 1.34 | Batch | Yes | 2000 | 1400 | 37 | 21 | n.i | n.i | × Increase in methane yield by 18.15%, × Reduction of the diversity in the archaeal community, × Promotion of the growth of hydrogenotrophic methanogens, × Enhance in transportation and metabolism of carbohydrates and lipids by the archaeal community | [38] |
Artificial wastewater | n.i | n.i | n.i | Seed sludge | n.i | TSS 12.9 g × L−1 | VSS 3.1 g × L−1 | Iron powder | 0, 0.01565, 0.02108, 0.02899 | Continuous | n.i | n.i | 2000 | 35 | 95 | n.a | n.a | × Enhance propionate conversion, × Increase of acetate production and COD removal, × Reduction of H2 and acceleration of homoacetogenesis × Accumulation of propionate could be alleviated by accelerating the conversion of propionate by iron powder | [22] |
Brewer’s spent grain | 11.7 | 3 | 2.88 | Agriculture biogas plant digestate | 150 | 7.95 | 4.71 | Lime (Ca(OH)2) | 0, 0.2, 0.6, 0.95, 1.34, 1.70, 2.31 | Batch | Yes | 400 | 153 | 37 | 30 | 0.38 | 0.61 | × Lime supplementation decreased methane yield in each experiment by 3.3–6.7% | This study |
Smooth cordgrass | 200 | 80 | n.i | Anaerobic seed cultures | 210 | 11.3 | 5.6 | Lime (Ca(OH)2) | 0, 3, 6, 10 | Batch, Leaching bed reactors | n.i | n.i | 410 | 35 | 26 | 7.1 | n.i | × Biogas yield inhibition by 7.1, 20, and 75.7% | [40] |
Smooth cordgrass | 1280 | 510 | n.i | Anaerobic seed cultures | 770 | 41.6 | 20.5 | Lime (Ca(OH)2) | 4, 7, 12 | Leaching bed reactors | No | 6000 | 2050 | 35 | 48 | n.a | n.i | × Biogas yield decreased by 10.8, and 37% concerning the reactor with the lowest lime load, × Reduction of k value with increasing lime load 0.016, 0.011, and 0.005 d−1, × Methanogenic bacteria were more inhibited compared to other anaerobic bacteria | [40] |
Food waste | 50 | 10.1 | 2.0 | Sewage sludge | 100 | 4.0 | 2.3 | Lime mud from the papermaking process (CaCO3, CaO) | 0, 2, 6, 10, 14 | Batch | n.i | 800 | 500 | 37 | 40 | 2.53 | 0.89 | × methane yield increase and enhancement of process stability, × Improved speed and balance of producing acid and methane, × Lime dosage increased organic substrate degradation, × doses of 2 and 14 g × L−1 show the lowest methane yield | [41] |
Food waste | 200 | 5.2 | 5.0 | Sewage sludge | 100 | 5.1 | 2.4 | Lime mud from papermaking (LPM), waste eggshell (WES), CaCO3, NaHCO3 | 0, 8 | Batch | n.i | 1000 | 500 | 37 | 36 | 1.02 | 2.12 | × improved pH-buffering capacity and inhibition alleviation of methanogenic process, × When there is a simultaneous presence of an alkalinity source and micronutrients, it enhances the stability of the process. × Buffer capacity from largest to smallest are LMP, CaCO3, WES, NaHCO3 | [26] |
Municipal solid waste (MSW) | 7500 | n.i | n.i | Leachate from MSW landfill | n.i | n.i | n.i | Na2CO3, NaHCO3, NaOH | n.i | Landfill simulated reactor | Leachate recalculation three times per week | n.i | n.i | 25 | 80 | n.a | n.a | Alkalinity addition: × had positive effects on the stabilization of MSW, × enhanced pH-buffering capacity and alleviates inhibition of methanogenesis, × Accelerated degradation rate of pollutants × had positive impacts on the transformation of nitrogen and total nitrogen removal | [43] |
Brewer’s spent grain | 11.7 | 3 | 2.88 | Agriculture biogas plant digestate | 150 | 7.95 | 4.71 | Milled ceramic powder | 0, 0.2, 0.6, 0.95, 1.34, 1.70, 2.32 | Batch | Yes | 400 | 153 | 37 | 30 | 0.38 | 0.61 | × Ceramic powder did not significantly change methane yield | This study |
Oily sludge | 90 | 2.77 | 0.06 | Oily sludge | n.a | n.a | n.a | Biochar | 0, 5.6, 11,1, 22.2, 44.4 | Batch | Yes | 120 | 90 | 35 | 4 | n.a | n.a | × 5.6 g × L−1 increased methane yield by 218%, × 44.4 g × L−1 decreased methane yield by 32.6%, × high surface area and abundant organic functional groups reshaped the microbial community, × Mitigation of biotoxicity suppression of oily sludge, × strengthening of microbial metabolism under BC added condition, × Strong adsorption of excessive BC (>5.6 g × L−1) inhibited mass transfer and caused negative effects on the AD process | [48] |
× Piggery wastes, × Synthetic waste | n.i | n.i | n.i | Digested piggery waste | n.i | n.i | n.i | × Natural zeolite, × Sand | 0, 0,05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.4 g × gVSS−1 | Batch | Yes | 2500 | n.i | 27–31 | 40 | n.i | n.i | × For piggery waste, the main mechanism of the AD enhancement was high microorganisms immobilization on zeolite, × For synthetic waste, the main mechanisms of the AD enhancement were high microorganisms immobilization and support for ammonia nitrogen reduction | [49] |
Cattle manure processed under high ammonia and sulfate concentrations | n.i | n.i | n.i | Biogas plant digestate | n.i | n.i | n.i | × Bentonite, × Zeolite 13X, × Alkali-modified bentonites and zeolites | 0, 8 | Batch | Yes | 321 | 150 | 37 | 35 | n.i | 1.0 | × Zeolite 13X alleviates ammonia and sulfate co-derived toxicity, × Bentonite did not effectively mitigate the toxicity of ammonia and sulfate | [52] |
Food waste | n.i | n.i | n.i | Inoculated sludge | n.i | n.i | n.i | × Fe-metal organic frameworks (Fe-MOF), × Ketjen Black (KB) | × 0, 0.25, 0.5, 0.75, 1, 1.25 (Fe-MOF), × 0, 0.1, 0.2, 0.3, 0.4, 0.5 (KB) | Batch | Yes | 400 | n.i | 36 | 25 | n.i | 1.0 | × addition of 0.5 g × L−1 of Fe-MOF increased methane yield by 27.5%, and shortened lag phase by 34.1%, × addition of 0.2 g × L−1 of KB increased methane yield by 29.5%, and shortened lag phase by 49.2%, × Fe-MOF and KB promote the activity of the electron transfer system up to two-fold, × functional groups (−OH, C=O, C=C, and −NH) can increase the buffering capacity of the digestive system | [53] |
Brewer’s spent grain | n.i | 4.73–5.25 | 4.56–5.07 | Agriculture biogas plant digestate | 30 | 0.93 | 0.56 | Biochar made from BSG at 300 °C | 0, 1.5, 4.5, 7.6, 12.1, 15.2 | Batch | Yes | 1000 | 35 | 37 | 21 | 5.7–5.12 | 7.03–7.81 | × 4.5 g × L−1 increased biogas yield by 145% and biogas production constant by 30%, × overdosing with biochar (>12.1 g × L−1) decrease biogas yield | [2] |
Brewer’s spent grain | 10 | n.i | n.i | Anaerobic sludge | 390 | n.i | n.i | × Biochar made from BSG at 300 °C, red spruce woodchips at 500 °C, × Granular activated carbon | around 4.5 | Batch | Yes | 650 | 400 | 35 | 19 | n.i | 0.167 | × Depending on BSG type, the methane yield was improved by 26.6% and acidification was alleviated, or the AD process was inhibited after 7 days and methane yield decreased by 5% | [28] |
Food waste | 76 | 29.0 | 28.1 | Granular sludge | 74 | n.i | n.i | Biochars made from BSG, food waste, and wood waste | 0, 1.3, 2, 3.3, 5, 8 | × Batch, × Continuous up-flow anaerobic sludge blanket reactor (UASB) | Yes | 250 | 150 | 30 | 6 | n.i | 1 | × biogas volume produced biochar was lower than the amount of biogas produced by the control with only food waste, × type of biochar and trace elements concentration in biochar plays a key role in determining the effectiveness of the biochar in enhancing biogas production from food waste, × Biochar enhanced the COD removal efficiency in the test UASB reactor by 37–47%. | [54] |
Brewer’s spent grain | 16.2 | 3.3 | 3.2 | Agriculture biogas plant digestate | 200 | 13.6 | 6.36 | Biochars made from BSG at 300, 450, and 600 °C | 0.3–31 | Batch | Yes | 400 | 203.3 | 37 | 30 | 0.24, 0.49, 0.97 | 0.5, 1.0, 2.0 | × Biochar supplementation increased methane yield by 1.8, 10, and 3.1 for SIR 0.5, 1.0, and 2.0, respectively | [27] |
Food waste | n.i | 1.6–4.0 | n.i | Sludge | n.i | 3.2 | n.i | Biochar | 0, 2, 5, 10 | Batch | n.i | 1000 | 400 | 35 | 200 | n.i | 0.5, 1.0, 1.25 | × Biochar reduced lag phase by 10–20% at SIR 0.5, by 43–54% at SIR 1.0, and by 36.3–54 at SIR 1.25, × Biochar increased methane yield by 100–275% at SIR 0.5, by 100–133 at SIR 1.0, and by 33–100 at SIR 1.25, × The effectiveness of biochar depends on the amount of biochar added and the amount of inoculum used. | [55] |
Variant, - | ymax, mL × gVS−1 | k, d−1 | r, mL × (gVS × d)−1 | t1/2, d | BD, % | VSr, % |
---|---|---|---|---|---|---|
Fe0 | 383.6 ± 2.6 | 0.07 ± 0.00 | 26.4 ± 1.5 | 10.1 ± 0.5 | 62.0 ± 2.1 | 43.0 ± 0.9 |
Fe1 | 389.1 ± 9.9 | 0.07 ± 0.00 | 28.3 ± 0.4 | 9.5 ± 0.4 | 63.9 ± 1.8 | 42.6 ± 0.6 |
Fe3 | 403.1 ± 9.2 | 0.08 ± 0.01 | 31.7 ± 1.5 | 8.8 ± 0.6 | 68.1 ± 0.7 | 43.6 ± 0.5 |
Fe5 | 360.3 ± 1.6 | 0.08 ± 0.00 | 29.1 ± 1.7 | 8.6 ± 0.5 | 60.6 ± 2.0 | 44.2 ± 1.9 |
Fe7 | 373.2 ± 0.1 | 0.08 ± 0.00 | 29.3 ± 0.9 | 8.8 ± 0.3 | 62.2 ± 0.7 | 43.4 ± 0.7 |
Fe9 | 383.4 ± 4.5 | 0.07 ± 0.00 | 26.8 ± 0.6 | 9.9 ± 0.1 | 61.5 ± 1.3 | 44.3 ± 1.5 |
Fe12 | 378.6 ± 5.3 | 0.07 ± 0.01 | 27.8 ± 1.6 | 9.5 ± 0.7 | 61.6 ± 0.7 | 40.7 ± 0.7 |
L0 | 320.2 ± 7.2 | 0.12 ± 0.01 | 40.1 ± 5.2 | 5.6 ± 0.6 | 58.8 ± 3.3 | 44.7 ± 0.0 |
L1 | 305.0 ± 2.0 | 0.11 ± 0.01 | 33.9 ± 3.0 | 6.3 ± 0.5 | 54.8 ± 1.6 | 45.6 ± 0.8 |
L3 | 306.6 ± 3.0 | 0.12 ± 0.00 | 37.2 ± 0.6 | 5.7 ± 0.0 | 55.9 ± 0.8 | 45.1 ± 1.3 |
L5 | 315.2 ± 5.3 | 0.11 ± 0.01 | 35.5 ± 1.0 | 6.2 ± 0.3 | 56.9 ± 0.7 | 42.9 ± 1.1 |
L7 | 314.4 ± 4.9 | 0.10 ± 0.00 | 32.3 ± 1.1 | 6.8 ± 0.1 | 55.6 ± 1.7 | 44.4 ± 0.0 |
L9 | 329.5 ± 13 | 0.11 ± 0.01 | 35.5 ± 0.8 | 6.4 ± 0.4 | 58.9 ± 2.3 | 44.8 ± 0.3 |
L12 | 316.7 ± 0.3 | 0.10 ± 0.01 | 32.5 ± 2.7 | 6.8 ± 0.6 | 56.0 ± 1.6 | 45.2 ± 0.1 |
Cf0 | 298.7 ± 1.8 | 0.24 ± 0.01 | 71.7 ± 2.5 | 2.9 ± 0.1 | 61.9 ± 0.7 | 44.7 ± 2.1 |
Cf1 | 296.2 ± 2.3 | 0.24 ± 0.01 | 70.6 ± 2.0 | 2.9 ± 0.1 | 61.3 ± 0.7 | 45.6 ± 1.0 |
Cf3 | 299.0 ± 6.7 | 0.24 ± 0.00 | 72.4 ± 2.9 | 2.9 ± 0.0 | 61.7 ± 1.8 | 45.1 ± 0.4 |
Cf5 | 296.0 ± 2.5 | 0.25 ± 0.01 | 73.3 ± 1.6 | 2.8 ± 0.1 | 61.1 ± 0.8 | 42.9 ± 0.8 |
Cf7 | 312.7 ± 6.7 | 0.22 ± 0.00 | 69.7 ± 2.9 | 3.1 ± 0.0 | 64.8 ± 6.2 | 44.4 ± 2.4 |
Cf9 | 292.7 ± 1.5 | 0.23 ± 0.01 | 68.1 ± 2.4 | 3.0 ± 0.1 | 60.3 ± 0.2 | 44.8 ± 0.7 |
Cf12 | 300.7 ± 2.0 | 0.23 ± 0.00 | 70.0 ± 1.0 | 3.0 ± 0.0 | 62.0 ± 0.7 | 45.2 ± 1.5 |
Variant, - | VS, % | C, % | H, % | N, % | S, % | O, % | AC, % | pH, - | EC, µS × cm−1 |
---|---|---|---|---|---|---|---|---|---|
Fe0 | 63.7 ± 0.1 | 35.5 ± 1.1 | 5.0 ± 0.1 | 4.2 ± 0.3 | 1.4 ± 0.1 | 19.1 ± 0.4 | 36.3 ± 0.1 | 8.07 ± 0.01 | 33.80 ± 0.00 |
Fe1 | 64.2 ± 0.3 | 34.0 ± 0.4 | 4.5 ± 0.0 | 4.2 ± 0.2 | 1.3 ± 0.2 | 21.5 ± 0.2 | 35.8 ± 0.3 | 8.11 ± 0.01 | 34.50 ± 1.27 |
Fe3 | 62.8 ± 2.7 | 32.5 ± 0.9 | 4.2 ± 0.2 | 3.9 ± 0.2 | 1.4 ± 0.3 | 22.2 ± 0.4 | 37.2 ± 2.7 | 8.09 ± 0.01 | 34.70 ± 0.14 |
Fe5 | 62.8 ± 0.8 | 31.7 ± 2.1 | 4.0 ± 0.3 | 3.8 ± 0.1 | 1.5 ± 0.4 | 23.3 ± 0.7 | 37.2 ± 0.8 | 8.11 ± 0.02 | 34.30 ± 0.42 |
Fe7 | 63.9 ± 0.2 | 35.0 ± 1.3 | 4.5 ± 0.4 | 4.6 ± 0.5 | 1.5 ± 0.1 | 19.7 ± 0.6 | 36.1 ± 0.2 | 8.11 ± 0.01 | 34.20 ± 0.57 |
Fe9 | 63.0 ± 0.9 | 34.3 ± 0.4 | 4.3 ± 0.3 | 4.5 ± 0.1 | 1.4 ± 0.0 | 19.9 ± 0.2 | 37.0 ± 0.9 | 8.14 ± 0.00 | 34.45 ± 0.21 |
Fe12 | 64.5 ± 0.3 | 32.5 ± 1.6 | 4.2 ± 0.3 | 4.4 ± 0.6 | 1.4 ± 0.1 | 23.4 ± 0.6 | 35.5 ± 0.3 | 8.13 ± 0.00 | 34.70 ± 0.14 |
L0 | 62.4 ± 1.2 | 33.1 ± 2.3 | 4.3 ± 0.6 | 3.7 ± 0.1 | 1.2 ± 0.0 | 21.3 ± 0.7 | 37.6 ± 1.2 | 7.92 ± 0.02 | 34.95 ± 0.07 |
L1 | 63.4 ± 0.1 | 32.1 ± 0.3 | 4.1 ± 0.0 | 4.1 ± 0.2 | 1.2 ± 0.1 | 23.1 ± 0.2 | 36.6 ± 0.1 | 7.94 ± 0.00 | 35.70 ± 0.00 |
L3 | 62.5 ± 0.6 | 33.4 ± 1.5 | 4.3 ± 0.3 | 4.1 ± 0.6 | 1.3 ± 0.1 | 20.6 ± 0.6 | 37.5 ± 0.6 | 7.94 ± 0.00 | 33.50 ± 0.07 |
L5 | 62.3 ± 1.7 | 35.3 ± 1.1 | 4.4 ± 0.2 | 4.6 ± 0.6 | 1.2 ± 0.1 | 18.0 ± 0.5 | 37.7 ± 1.7 | 7.95 ± 0.04 | 34.80 ± 0.07 |
L7 | 63.1 ± 0.1 | 33.8 ± 1.0 | 4.4 ± 0.3 | 4.8 ± 0.0 | 1.2 ± 0.2 | 20.1 ± 0.4 | 36.9 ± 0.1 | 7.95 ± 0.01 | 35.15 ± 0.07 |
L9 | 61.6 ± 0.3 | 30.6 ± 1.8 | 3.9 ± 0.4 | 4.6 ± 0.4 | 1.1 ± 0.4 | 22.5 ± 0.7 | 38.4 ± 0.3 | 7.95 ± 0.01 | 35.30 ± 0.07 |
L12 | 61.0 ± 0.1 | 31.6 ± 0.7 | 3.9 ± 0.1 | 4.4 ± 0.0 | 0.8 ± 0.1 | 21.1 ± 0.2 | 39.0 ± 0.1 | 7.94 ± 0.01 | 35.50 ± 0.07 |
Cf0 | 63.4 ± 1.2 | 32.6 ± 0.3 | 4.3 ± 0.1 | 3.9 ± 0.1 | 1.1 ± 0.2 | 22.5 ± 0.2 | 36.6 ± 1.2 | 7.92 ± 0.02 | 34.95 ± 1.06 |
Cf1 | 63.8 ± 1.1 | 32.3 ± 0.5 | 4.2 ± 0.2 | 4.1 ± 0.0 | 1.2 ± 0.1 | 23.1 ± 0.2 | 36.2 ± 1.1 | 7.94 ± 0.02 | 35.70 ± 0.14 |
Cf3 | 63.6 ± 1.6 | 32.5 ± 2.6 | 4.3 ± 0.6 | 4.0 ± 0.4 | 1.1 ± 0.0 | 22.8 ± 0.9 | 36.4 ± 1.6 | 7.94 ± 0.03 | 33.50 ± 0.78 |
Cf5 | 63.6 ± 2.2 | 31.7 ± 5.1 | 4.1 ± 1.0 | 4.2 ± 0.3 | 1.0 ± 0.1 | 23.6 ± 1.6 | 36.4 ± 2.2 | 7.95 ± 0.01 | 34.80 ± 0.99 |
Cf7 | 63.7 ± 1.5 | 30.5 ± 0.7 | 4.1 ± 0.2 | 4.7 ± 0.3 | 1.0 ± 0.0 | 24.4 ± 0.3 | 36.3 ± 1.5 | 7.95 ± 0.03 | 35.15 ± 0.49 |
Cf9 | 62.8 ± 0.9 | 31.7 ± 0.1 | 4.2 ± 0.0 | 4.6 ± 0.2 | 1.1 ± 0.1 | 22.3 ± 0.1 | 37.2 ± 0.9 | 7.95 ± 0.04 | 35.30 ± 0.57 |
Cf12 | 62.1 ± 1.3 | 32.0 ± 0.2 | 4.0 ± 0.1 | 4.4 ± 0.3 | 1.0 ± 0.1 | 21.8 ± 0.2 | 37.9 ± 1.3 | 7.94 ± 0.01 | 35.50 ± 2.33 |
Share, % | Fe | Co | Mo | Se | W | Cu | Zn | Mn |
---|---|---|---|---|---|---|---|---|
Fe0 | 3300 ± 500 | 1.5 ± 0.3 | 1.6 ± 0.3 | <5.0 | <5.0 | 27.5 ± 5.5 | 210 ± 40 | 99 ± 20 |
Fe1 | 3350 ± 500 | 1.6 ± 0.3 | 1.2 ± 0.2 | <5.0 | <5.0 | 25.5 ± 5.5 | 195 ± 40 | 87 ± 18 |
Fe3 | 5400 ± 800 | 2.2 ± 0.5 | 1.6 ± 0.3 | <5.0 | <5.0 | 28.5 ± 5.5 | 220 ± 45 | 96 ± 19 |
Fe5 | 5650 ± 850 | 2.2 ± 0.5 | 1.8 ± 0.4 | <5.0 | <5.0 | 28.5 ± 6.0 | 215 ± 40 | 96.5 ± 19 |
Fe7 | 6950 ± 1050 | 2.8 ± 0.6 | 2.9 ± 0.6 | <5.0 | <5.0 | 31.5 ± 3.0 | 230 ± 45 | 102 ± 19 |
Fe9 | 6400 ± 950 | 2.6 ± 0.5 | 1.4 ± 0.3 | <5.0 | <5.0 | 26.5 ± 5.0 | 200 ± 40 | 86 ± 17 |
Fe12 | 8650 ± 1300 | 3.3 ± 0.7 | 2.0 ± 0.4 | <5.0 | <5.0 | 31.5 ± 6.5 | 240 ± 50 | 104 ± 35 |
L0 | 3500 ± 550 | 1.5 ± 0.3 | 1.7 ± 0.3 | <5.0 | <5.0 | 31.0 ± 6.0 | 190 ± 40 | 100 ± 30 |
L1 | 3550 ± 550 | 1.7 ± 0.3 | 2.2 ± 0.5 | <5.0 | <5.0 | 30.0 ± 6.0 | 200 ± 40 | 97 ± 19 |
L3 | 3350 ± 500 | 1.4 ± 0.3 | 2.3 ± 0.5 | <5.0 | <5.0 | 28.5 ± 5.5 | 180 ± 35 | 96 ± 29 |
L5 | 3150 ± 450 | 1.3 ± 0.3 | 1.9 ± 0.4 | <5.0 | <5.0 | 27.0 ± 5.5 | 175 ± 35 | 92 ± 18 |
L7 | 3800 ± 550 | 2.1 ± 0.4 | 2.1 ± 1.8 | <5.0 | <5.0 | 33.5 ± 6.5 | 195 ± 40 | 104 ± 20 |
L9 | 3550 ± 550 | 1.6 ± 0.3 | 2.3 ± 0.5 | <5.0 | <5.0 | 30.5 ± 6.0 | 205 ± 40 | 103 ± 19 |
L12 | 3500 ± 500 | 1.6 ± 0.3 | 2.2 ± 0.5 | <5.0 | <5.0 | 29.5 ± 6.0 | 195 ± 40 | 97 ± 19 |
Cf0 | 3520 ± 520 | 1.5 ± 0.5 | 1.6 ± 0.6 | <5.0 | <5.0 | 29.3 ± 7.5 | 200 ± 45 | 99 ± 25 |
Cf1 | 3450 ± 520 | 1.6 ± 0.6 | 1.7 ± 0.7 | <5.0 | <5.0 | 27.0 ± 8.5 | 198 ± 55 | 93 ± 35 |
Cf3 | 3250 ± 650 | 1.8 ± 0.6 | 1.9 ± 0.6 | <5.0 | <5.0 | 28.5 ± 8.5 | 200 ± 50 | 97 ± 30 |
Cf5 | 3400 ± 650 | 1.7 ± 0.6 | 1.8 ± 0.5 | <5.0 | <5.0 | 27.75 ± 8 | 195 ± 50 | 94 ± 30 |
Cf7 | 3680 ± 800 | 2.4 ± 0.5 | 2.5 ± 1.2 | <5.0 | <5.0 | 32.5 ± 7.5 | 213 ± 45 | 103 ± 30 |
Cf9 | 3530 ± 750 | 2.1 ± 0.5 | 1.8 ± 0.4 | <5.0 | <5.0 | 28.5 ± 8.0 | 203 ± 50 | 94 ± 30 |
Cf12 | 3520 ± 900 | 2.5 ± 0.6 | 2.1 ± 0.6 | <5.0 | <5.0 | 30.5 ± 8.0 | 218 ± 50 | 100 ± 30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Syguła, E.; Rasaq, W.A.; Świechowski, K. Effects of Iron, Lime, and Porous Ceramic Powder Additives on Methane Production from Brewer’s Spent Grain in the Anaerobic Digestion Process. Materials 2023, 16, 5245. https://doi.org/10.3390/ma16155245
Syguła E, Rasaq WA, Świechowski K. Effects of Iron, Lime, and Porous Ceramic Powder Additives on Methane Production from Brewer’s Spent Grain in the Anaerobic Digestion Process. Materials. 2023; 16(15):5245. https://doi.org/10.3390/ma16155245
Chicago/Turabian StyleSyguła, Ewa, Waheed A. Rasaq, and Kacper Świechowski. 2023. "Effects of Iron, Lime, and Porous Ceramic Powder Additives on Methane Production from Brewer’s Spent Grain in the Anaerobic Digestion Process" Materials 16, no. 15: 5245. https://doi.org/10.3390/ma16155245
APA StyleSyguła, E., Rasaq, W. A., & Świechowski, K. (2023). Effects of Iron, Lime, and Porous Ceramic Powder Additives on Methane Production from Brewer’s Spent Grain in the Anaerobic Digestion Process. Materials, 16(15), 5245. https://doi.org/10.3390/ma16155245