Evaluation of Effective Composite Biosorbents Based on Wood Sawdust and Natural Clay for Heavy Metals Removal from Water
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Composite Biosorbents Preparation
2.3. Samples Characterization
2.4. Adsorption Experiments
2.5. Kinetic Studies
3. Results
3.1. Batch Study of Cu and Ni Ions on Composite Biosorbents
3.2. Characterization of t1Pine-TB
3.3. Kinetic Studies
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Al-Tohamy, R.; Ali, S.S.; Li, F.; Okasha, K.M.; Yehia, A.-G.; Mahmoud, Y.A.-G.; Tamer Elsamahy, T.; Jiao, H.; Yinyi Fu, Y.; Sun, J. A critical review on the treatment of dye-containing wastewater: Ecotoxicological and health concerns of textile dyes and possible remediation approaches for environmental safety. Ecotoxicol. Environ. Saf. 2022, 231, 113160–113177. [Google Scholar] [CrossRef] [PubMed]
- Syafrudin, M.; Kristanti, R.A.; Yuniarto, A.; Hadibarata, T.; Rhee, J.; Al-onazi, W.A.; Algarni, T.S.; Almarri, A.H.; Al-Mohaimeed, A.M. Pesticides in drinking water-a review. Int. J. Environ. Res. Public Health 2021, 18, 468. [Google Scholar] [CrossRef] [PubMed]
- Jian, S.; Cheng, Y.; Ma, X.; Guo, H.; Hu, J.; Zhang, K.; Jiang, S.; Yang, W.; Duan, G. Excellent fluoride removal performance by electrospun La–Mn bimetal oxide nanofibers. New J. Chem. 2022, 46, 490. [Google Scholar] [CrossRef]
- Jian, S.; Chen, Y.; Shi, F.; Liu, Y.; Jiang, W.; Hu, J.; Han, X.; Jiang, S.; Yang, W. Template-free synthesis of magnetic La-Mn-Fe tri-metal oxide nanofibers for efficient fluoride remediation: Kinetics, isotherms, thermodynamics and reusability. Polymers 2022, 14, 5417. [Google Scholar] [CrossRef] [PubMed]
- Hassanin, M.A.; Negm, S.H.; Youssef, M.A.; Sakr, A.K.; Mira, H.I.; Mohammaden, T.F.; Al-Otaibi, J.S.; Hanfi, M.Y.; Sayyed, M.I.; Cheira, M.F. Sustainable remedy waste to generate SiO2 functionalized on graphene oxide for removal of U(VI) ions. Sustainability 2022, 14, 2699. [Google Scholar] [CrossRef]
- Elbshary, R.E.; Gouda, A.A.; El Sheikh, R.; Alqahtani, M.S.; Hanfi, M.Y.; Atia, B.M.; Sakr, A.K.; Gado, M.A. Recovery of W(VI) from wolframite ore using new synthetic schiff base derivative. Int. J. Mol. Sci. 2023, 24, 7423. [Google Scholar] [CrossRef]
- El Hajam, M.; Kandri, N.I.; Plavan, G.-I.; Harrath, A.H.; Mansour, L.; Boufahja, F.; Zerouale, A. Pb2+ ions adsorption onto raw and chemically activated Dibetou sawdust: Application of experimental designs. J. King Saud. Univ. Sci. 2020, 32, 2176–2189. [Google Scholar] [CrossRef]
- Kazeminezhad, I.; Mosivand, S. Elimination of copper and nickel from wastewater by electrooxidation method. J. Magn. Magn. Mater. 2017, 422, 84–92. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Wang, K.; Duan, G.; Chen, Y.; Liu, K.; Hou, H. Efficient removal of high- or low-concentration copper ions using diethylenetriamine-grafted electrospun polyacrylonitrile fibers. New J. Chem. 2023, 47, 5639. [Google Scholar] [CrossRef]
- Kovacova, Z.; Demcak, S.; Balintova, M.; Pla, C.; Zinicovscaia, I. Influence of wooden sawdust treatments on Cu(II) and Zn(II) removal from water. Materials 2020, 13, 3575. [Google Scholar] [CrossRef]
- Salwa, A.A. Batch and fixed-bed column techniques for removal of Cu(II) and Fe(III) using carbohydrate natural polymer modified complexing agents. Carbohydr. Polym. 2011, 83, 1470–1478. [Google Scholar]
- Gautam, R.K.; Sharma, S.K.; Mahiya, S.; Chattopadhyaya, M.C. Chapter 1. Contamination of heavy metals in aquatic media: Transport, toxicity and technologies for remediation. In Heavy Metals in Water; Sharma, S., Ed.; Royal Society of Chemistry: Cambridge, UK, 2014; pp. 1–24. ISBN 978-1-84973-885-9. [Google Scholar]
- Agency for Toxic Substances and Disease Registry (ATSDR). Toxicological Profile for Copper (Draft for Public Comment); U.S. Department of Health and Human Services, Public Health Service: Atlanta, GA, USA, 2022. Available online: https://www.atsdr.cdc.gov/ToxProfiles/tp132.pdf (accessed on 3 May 2023).
- Agency for Toxic Substances and Disease Registry (ATSDR). Toxicological Profile for Nickel; U.S. Department of Health and Human Services, Public Health Service: Atlanta, GA, USA, 2005. Available online: https://www.atsdr.cdc.gov/ToxProfiles/tp15.pdf (accessed on 3 May 2023).
- Chanda, R.; Mithun, A.H.; Hasan, M.A.; Biswas, B.K. Nickel removal from aqueous solution using chemically treated Mahogany sawdust as biosorbent. J. Chem. 2021, 2021, 4558271. [Google Scholar] [CrossRef]
- Ibrahim, N.A.; Abdellatif, F.H.H.; Hasanin, M.S.; Abdellatif, M.M. Fabrication, characterization, and potential application of modified sawdust sorbents for efficient removal of heavy metal ions and anionic dye from aqueous solutions. J. Clean. Prod. 2022, 332, 130021. [Google Scholar] [CrossRef]
- Fu, F.; Wang, Q. Removal of heavy metal ions from wastewaters: A review. J. Environ. Manag. 2011, 92, 407–418. [Google Scholar] [CrossRef]
- Gurgel, L.V.A.; Júnior, O.K.; de Freitas Gil, R.P.; Gil, L.F. Adsorption of Cu(II), Cd(II), and Pb(II) from aqueous single metal solutions by cellulose and mercerized cellulose chemically modified with succinic anhydride. Bioresour. Technol. 2008, 99, 3077–3083. [Google Scholar] [CrossRef] [Green Version]
- Bilal, M.; Ihsanullah, I.; Younas, M.; Ul Hassan Shah, M. Recent advances in applications of low-cost adsorbents for the removal of heavy metals from water: A critical review. Sep. Purif. Technol. 2022, 278, 119510. [Google Scholar] [CrossRef]
- Hossain, N.; Bhuiyan, M.A.; Pramanik, B.K.; Nizamuddin, S.; Griffin, G. Waste materials for wastewater treatment and waste adsorbents for biofuel and cement supplement applications: A critical review. J. Clean. Prod. 2020, 255, 120261. [Google Scholar] [CrossRef]
- Wan, M.W.; Kan, C.C.; Rogel, B.D.; Dalida, M.L.P. Adsorption of copper (II) and lead (II) ions from aqueous solution on chitosan-coated sand. Carbohydr. Polym. 2010, 80, 891–899. [Google Scholar] [CrossRef]
- Mallik, A.K.; Kabir, S.f.; Bin Abdur Rahman, f.; Sakib, M.N.; Efty, S.S.; Rahman, M.M. Cu(II) removal from wastewater using chitosan-based adsorbents: A review. J. Environ. Chem. Eng. 2022, 10, 108048. [Google Scholar] [CrossRef]
- Tran, H.V.; Tran, L.D.; Nguyen, T.N. Preparation of chitosan/magnetite composite beads and their application for removal of Pb(II) and Ni(II) from aqueous solution. Mater. Sci. Eng. C 2010, 30, 304–310. [Google Scholar] [CrossRef] [PubMed]
- Chaudhari, V.; Patkar, M. Removal of nickel from aqueous solution by using corncob as adsorbent. Mater. Today Proc. 2022, 61, 307–314. [Google Scholar] [CrossRef]
- Rahman, M.L.; Fui, C.J.; Ting, T.X.; Sarjadi, M.S.; Arshad, S.E.; Musta, B. Polymer ligands derived from jute fiber for heavy metal removal from electroplating wastewater. Polymers 2020, 12, 2521. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.F.; Zheng, C.S.; Li, W.; Ai, S.Y.; Zhang, Z.G.; Zhou, X.J.; Pang, C.Y.; Chen, H.D.; Zhou, K.H.; Tang, M.D.; et al. Potential use of cotton for remediating heavy metal-polluted soils in southern China. J. Soils Sediments 2017, 17, 2866–2872. [Google Scholar] [CrossRef]
- Gómez-Aguilar, D.L.; Rodríguez-Miranda, J.P.; Salcedo-Parra, O.J. Fruit peels as a sustainable waste for the biosorption of heavy metals in wastewater: A review. Molecules 2022, 27, 2124. [Google Scholar] [CrossRef] [PubMed]
- Šćiban, M.; Radetić, B.; Kevrešan, Ž.; Klašnja, M. Adsorption of heavy metals from electroplating wastewater by wood sawdust. Bioresour. Technol. 2007, 98, 402–409. [Google Scholar] [CrossRef]
- Kaur, J.; Sengupta, P.; Mukhopadhyay, S. Critical review of bioadsorption on modified cellulose and removal of divalent heavy metals (Cd, Pb, and Cu). Ind. Eng. Chem. Res. 2022, 61, 1921–1954. [Google Scholar] [CrossRef]
- Hussain, S.T.; Ali, S.A.K. Removal of heavy metal by ion exchange using bentonite clay. J. Ecol. Eng. 2021, 22, 104–111. [Google Scholar] [CrossRef]
- Šuránek, M.; Melichová, Z.; Kureková, V.; Kljajevic, L.; Nenadovic, S. Removal of nickel from aqueous solutions by natural bentonites from slovakia. Materials 2021, 14, 282. [Google Scholar] [CrossRef]
- Gupta, S.S.; Bhattacharyya, K.G. Adsorption of Ni(II) on clays. J. Colloid Interface Sci. 2006, 295, 21–32. [Google Scholar] [CrossRef]
- Zhang, T.; Wang, W.; Zhao, Y.; Bai, H.; Wen, T.; Kang, S.; Song, G.; Song, S.; Komarneni, S. Removal of heavy metals and dyes by clay-based adsorbents: From natural clays to 1D and 2D nano-composites. Chem. Eng. J. 2021, 420, 127574. [Google Scholar] [CrossRef]
- Novikau, R.; Lujaniene, G. Adsorption behaviour of pollutants: Heavy metals, radionuclides, organic pollutants, on clays and their minerals (raw, modified and treated): A review. J. Environ. Manag. 2022, 309, 114685. [Google Scholar] [CrossRef]
- Vieira, M.G.A.; Almeida Neto, A.F.; Gimenes, M.L.; da Silva, M.G.C. Removal of nickel on Bofe bentonite calcined clay in porous bed. J. Hazard. Mater. 2010, 176, 109–118. [Google Scholar] [CrossRef]
- Liu, A.; Gonzalez, R.D. Adsorption/desorption in a system consisting of humic acid, heavy metals, and clay minerals. J. Colloid Interface Sci. 1999, 218, 225–232. [Google Scholar] [CrossRef] [PubMed]
- Mamyachenkov, S.V.; Adryshev, A.K.; Seraya, N.V.; Khairullina, A.A.; Daumova, G.K. Nanostructured complex sorbent for cleaning heavy metal ions from industrial effluent. Metallurgist 2017, 61, 615–623. [Google Scholar] [CrossRef]
- Mao, S.; Gao, M. Functional organoclays for removal of heavy metal ions from water: A review. J. Mol. Liq. 2021, 334, 116143. [Google Scholar] [CrossRef]
- Kayalvizhi, K.; Alhaji, N.M.I.; Saravanakkumar, D.; Beer Mohamed, S.; Kaviyarasu, K.; Ayeshamariam, A.; Al-Mohaimeed, A.M.; AbdelGawwad, M.R.; Elshikhi, M.S. Adsorption of copper and nickel by using sawdust chitosan nanocomposite beads—A kinetic and thermodynamic study. Environ. Res. 2022, 203, 111814. [Google Scholar] [CrossRef] [PubMed]
- Meez, E.; Rahdar, A.; Kyzas, G.Z. Sawdust for the removal of heavy metals from water: A review. Molecules 2021, 26, 4318. [Google Scholar] [CrossRef]
- Argun, M.E.; Dursun, S.; Ozdemir, C.; Karatas, M. Heavy metal adsorption by modified oak sawdust: Thermodynamics and kinetics. Heavy metal adsorption by modified oak sawdust: Thermodynamics and kinetics. J. Hazard. Mater. 2007, 141, 77–85. [Google Scholar] [CrossRef]
- Adak, A.; Bandyopadhyay, M.; Pal, A. Removal of anionic surfactant from wastewater by alumina: A case study. Colloids Surf. A Physicochem. Eng. Asp. 2005, 254, 165–171. [Google Scholar] [CrossRef]
- Dorzhieva, O.V.; Zakusin, S.V.; Tyupina, E.A.; Krupskaya, V.V.; Zhuhlistov, A.P. Modification of the adsorption properties of montmorillonite by the thermochemical treatment. Sorbtsionnye Khromatogr. Protsessy 2018, 15, 874–883. [Google Scholar]
- Lionetto, F.; Del Sole, R.; Cannoletta, D.; Vasapollo, G.; Maffezzoli, A. Monitoring wood degradation during weathering by cellulose crystallinity. Materials 2012, 5, 1910–1922. [Google Scholar] [CrossRef] [Green Version]
- Velarde, L.; Nabavi, M.S.; Escalera, E.; Antti, M.L.; Akhtar, F. Adsorption of heavy metals on natural zeolites: A review. Chemosphere 2023, 328, 138508. [Google Scholar] [CrossRef] [PubMed]
- Elgarhy, A.H.; Mahran, B.N.A.; Liu, G.; Salem, T.A.; ElSayed, E.E.; Ibrahim, L.A. Comparative study for removal of phosphorus from aqueous solution by natural and activated bentonite. Sci. Rep. 2022, 12, 19433. [Google Scholar] [CrossRef]
- Olu-Owolabi, B.I.; Popoola, D.B.; Unuabonah, E.I. Removal of Cu2+ and Cd2+ from aqueous solution by bentonite clay modified with binary mixture of goethite and humic acid. Water Air Soil Pollut. 2010, 211, 459–474. [Google Scholar] [CrossRef]
- Masindi, V.; Mugera, G.W. The potential of ball-milled South African bentonite clay for attenuation of heavy metals from acidic wastewaters: Simultaneous sorption of Co2+, Cu2+, Ni2+, Pb2+, and Zn2+ ions. J. Environ. Chem. Eng. 2015, 3, 2416–2425. [Google Scholar] [CrossRef]
- Pirarčiová, L.; Krajňák, A.; Rosskopfová, O.; Galamboš, M.; Rajec, P. Adsorption of nickel on andesitic bentonite Lieskovec. J. Radioanal. Nucl. Chem. 2015, 304, 851–858. [Google Scholar] [CrossRef]
- Bhattacharyya, K.G.; Sen Gupta, S. Pb(II) uptake by kaolinite and montmorillonite in aqueous medium: Influence of acid activation of the clays. Colloids Surf. A Physicochem. Eng. Asp. 2006, 277, 191–200. [Google Scholar] [CrossRef]
- Turan, N.G.; Elevli, S.; Mesci, B. Adsorption of copper and zinc ions on illite: Determination of the optimal conditions by the statistical design of experiments. Appl. Clay Sci. 2011, 52, 392–399. [Google Scholar] [CrossRef]
- Annadurai, G.; Juang, R.-S.; Lee, D. Adsorption of heavy metals from water using banana and orange peels. Water Sci. Technol. 2003, 47, 185–190. [Google Scholar] [CrossRef]
- Stefan Demcaka, S.; Balintova, M.; Demcakova, M.; Csach, K.; Inga Zinicovscaia, I.; Nikita Yushin, N.; Frontasyeva, M. Effect of alkaline treatment of wooden sawdust for the removal of heavy metals from aquatic environments. Desalin. Water Treat. 2019, 155, 207–215. [Google Scholar] [CrossRef] [Green Version]
- Du, W.; Cui, S.; Xing Fang, X.; Wang, Q.; Liu, G. Adsorption of Cd(II), Cu(II), and Zn(II) by granules prepared using sludge from a drinking water purification plant. J. Environ. Chem. Eng. 2020, 8, 104530. [Google Scholar] [CrossRef]
- Siswoyo, E.; Mihara, Y.; Tanaka, S. Determination of key components and adsorption capacity of a low cost adsorbent based on sludge of drinking water treatment plant to adsorb cadmium ion in water. Appl. Clay Sci. 2014, 97–98, 146–152. [Google Scholar] [CrossRef]
Sample Name | Kind of Sawdust | Sawdust Treatment | Kind of Bentonite |
---|---|---|---|
t1Pine-TB | Pine | H3PO4 | Taganskoe deposit Ca-bentonite |
t1Aspen-TB | Aspen | H3PO4 | Taganskoe deposit Ca-bentonite |
t1Birch-TB | Birch | H3PO4 | Taganskoe deposit Ca-bentonite |
nPine-TB | Pine | not treated | Taganskoe deposit Ca-bentonite |
t1Pine-KB | Pine | H3PO4 | Khakass deposit Bentonite |
t2Pine-KB | Pine | HCl | Khakass deposit Bentonite |
Composite Biosorbent | q of Cu Ions (mg/g) | Cu Ions Removal (%) | q of Ni Ions (mg/g) | Ni Ions Removal (%) |
---|---|---|---|---|
t1Pine-TB | 4.9 | 98.2 | 5.2 | 96.3 |
t1Aspen-TB | 4.4 | 88.6 | 2.9 | 52.4 |
t1Birch-TB | 1.4 | 31.2 | 2.2 | 31.9 |
Kind of Bentonite | Sawdust Treatment | Biosorbent Name | q of Cu Ions (mg/g) | Cu Ions Removal (%) | q of Ni Ions (mg/g) | Ni Ions Removal (%) |
---|---|---|---|---|---|---|
Taganskoe Ca-bentonite | Not treated | nPine-TB | 3.1 | 73.8 | 3.3 | 77.3 |
Taganskoe Ca-bentonite | H3PO4 | t1Pine-TB | 4.9 | 98.2 | 5.2 | 96.3 |
Khakass bentonite | H3PO4 | t1Pine-KB | 4.2 | 96.3 | 4.7 | 84.1 |
Khakass bentonite | HCl | t2Pine-KB | 3.8 | 87.7 | 4.6 | 83.9 |
FTIR Band (cm−1) | Functional Group and Vibration Type | ||
---|---|---|---|
t1Pine-TB | t1Aspen-TB | t1Birch-TB | |
1739 | 1739 | 1739 | C=O stretching of unconjugated ketone, carbonyl, and aliphatic xylan groups |
1645 | 1640 | 1640 | C=O stretching conjugated to aromatic ring in wood and OH deformation of water in bentonite |
- | 1595 | 1595 | C=O stretching conjugated to aromatic ring |
1510 | 1507 | 1507 | Aromatic structure stretching |
1463 | 1470 | 1470 | CH2 deformation stretching in lignin and xylan |
1425 | 1425 | 1425 | Aromatic structure combined with C–H in-plane deforming and stretching |
1385 | 1385 | 1385 | Aliphatic C–H stretching of methyl and phenol OH |
1317 | 1321 | 1321 | Guaiacyl and syringyl condensated units, aromatic ring breathing |
1270 | - | - | Guaiacyl ring breathing with C=O stretching |
- | 1250 | 1250 | C–C and C–O stretching |
1160 | 1165 | 1165 | C–O–C stretching of pyranose rings, C=O stretching of aliphatic groups |
1111 | 1111 | 1111 | Antisymmetric in-phase ring stretching |
1040 | 1040 | 1040 | C–O deformation in primary alcohols, C–O stretch unconjugated, aromatic C–H in-plane deformation in wood and Si–O stretching in bentonite |
920 | 920 | 920 | Cellulose P–chains, C–H stretching out of plane of aromatic ring in wood and hydroxyl bending Al2OH vibration in bentonite |
798 | 798 | - | Si–O stretching of quartz and silica |
778 | 778 | - | Si–O stretching of quartz |
Heavy Metal | Adsorbent | Adsorption Capacity (mg/g) | Ref. |
---|---|---|---|
Cu(II) | Bentonite with goethite and humic acid | 10 | [47] |
Cu(II) | South African bentonite | 3.3 | [48] |
Ni(II) | South African bentonite | 1.3 | [48] |
Ni(II) | Lieskovec bentonite | 10.62 | [49] |
Pb(II) | Acid modified kaolinite | 6.25 | [50] |
Cu(II) | Illite | 4.06 | [51] |
Zn(II) | Orange peels | 5 | [52] |
Zn(II) | Hornbeam treated with NaOH | 4.82 | [53] |
Cd (II) | Granular sludge-clay adsorbent | 1.530 | [54] |
Zn(II) | Granular sludge-clay adsorbent | 1.230 | [54] |
Cd(II) | Sludge | 5.3 | [55] |
Ni(II) | t1Pine-TB | 5.2 | This work |
Cu(II) | t1Pine-TB | 4.9 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Del Sole, R.; Fogel, A.A.; Somin, V.A.; Vasapollo, G.; Mergola, L. Evaluation of Effective Composite Biosorbents Based on Wood Sawdust and Natural Clay for Heavy Metals Removal from Water. Materials 2023, 16, 5322. https://doi.org/10.3390/ma16155322
Del Sole R, Fogel AA, Somin VA, Vasapollo G, Mergola L. Evaluation of Effective Composite Biosorbents Based on Wood Sawdust and Natural Clay for Heavy Metals Removal from Water. Materials. 2023; 16(15):5322. https://doi.org/10.3390/ma16155322
Chicago/Turabian StyleDel Sole, Roberta, Alena A. Fogel, Vladimir A. Somin, Giuseppe Vasapollo, and Lucia Mergola. 2023. "Evaluation of Effective Composite Biosorbents Based on Wood Sawdust and Natural Clay for Heavy Metals Removal from Water" Materials 16, no. 15: 5322. https://doi.org/10.3390/ma16155322
APA StyleDel Sole, R., Fogel, A. A., Somin, V. A., Vasapollo, G., & Mergola, L. (2023). Evaluation of Effective Composite Biosorbents Based on Wood Sawdust and Natural Clay for Heavy Metals Removal from Water. Materials, 16(15), 5322. https://doi.org/10.3390/ma16155322