The Effect of Substitution of Mn by Pd on the Structure and Thermomagnetic Properties of the Mn1−xPdxCoGe Alloys (Where x = 0.03, 0.05, 0.07 and 0.1)
Abstract
:1. Introduction
2. Sample Preparation and Experimental Details
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Warburg, E. Magnetische untersuchugen. Ann. Phys. 1881, 13, 141. [Google Scholar] [CrossRef] [Green Version]
- Pecharsky, V.K.; Gschneidner, K.A., Jr. Giant Magnetocaloric Effect in Gd5Si2Ge2. Phys. Rev. Lett. 1997, 78, 4494–4497. [Google Scholar] [CrossRef]
- Pecharsky, V.K.; Gschneidner, K.A., Jr. Magnetocaloric effect and magnetic refrigeration. J. Magn. Magn. Mater. 1999, 200, 44–56. [Google Scholar] [CrossRef]
- Botello-Zubiate, M.E.; Grijalva-Castillo, M.C.; Soto-Parra, D.; Sáenz-Hernández, R.J.; Santillán-Rodríguez, C.R.; Matutes-Aquino, J.A. Preparation of La0.7Ca0.3−xSrxMnO3 Manganites by Four Synthesis Methods and Their Influence on the Magnetic Properties and Relative Cooling Power. Materials 2019, 12, 309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, A.; Muller, K.H.; Gutfleisch, O. Magnetocaloric effect in the LaFe11.8−xCoxSi1.2 melt-spun ribbons. J. Alloys Compd. 2008, 450, 18–21. [Google Scholar] [CrossRef]
- Gębara, P.; Pawlik, P.; Hasiak, M. Alteration of negative lattice expansion of the La(Fe,Si)13-type phase in LaFe11.14−xCo0.66NixSi1.2 alloys. J. Magn. Magn. Mater. 2017, 422, 61–65. [Google Scholar] [CrossRef]
- Law, J.Y.; Franco, V.; Ramanujan, R.V. The magnetocaloric effect of partially crystalline Fe-B-Cr-Gd alloys. J. Appl. Phys. 2012, 111, 113919. [Google Scholar] [CrossRef]
- Wang, J.T.; Wang, D.S.; Chen, C.F.; Nashima, O.; Kanomata, T.; Mizuseki, H.; Kawazoe, Y. Vacancy induced structural and magnetic transition in MnCo1−xGe. Appl. Phys. Lett. 2006, 89, 262504. [Google Scholar] [CrossRef]
- Pal, S.K.; Frommen, C.; Kumar, S.; Hauback, B.C.; Fjellvag, H.; Woodcock, T.G.; Nielsch, K.; Helgesen, G. Comparative phase transformation and magnetocaloric effect study of Co and Mn substitution by Cu in MnCoGe compounds. J. Alloys Compd. 2019, 775, 22. [Google Scholar] [CrossRef] [Green Version]
- Si, X.; Zhou, K.; Zhang, R.; Ma, X.; Zhang, Z.; Liu, Y. Prediction of magnetocaloric effect and spontaneous magnetization in Cu-doped MnCoGe system. Mater. Res. Express 2018, 5, 126104. [Google Scholar] [CrossRef]
- Liu, J.; Gottschall, T.; Skokov, K.P.; Moore, J.D.; Gutfleisch, O. Giant magnetocaloric effect driven by structural transitions. Nat. Mater. 2012, 11, 620–626. [Google Scholar] [CrossRef] [PubMed]
- Ma, S.C.; Ge, Q.; Hu, Y.F.; Wang, L.; Liu, K.; Jiang, Q.Z.; Wang, D.H.; Hu, C.C.; Huang, H.B.; Cao, G.P.; et al. Driving higher magnetic field sensitivity of the martensitic transformation in MnCoGe ferromagnet. Appl. Phys. Lett. 2017, 111, 192406. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, H.; Tao, K.; Wang, Y.; Wu, M.; Long, Y. Giant magnetocaloric effect induced by reemergence of magnetostructural coupling in Si-doped Mn0.95CoGe compounds. Mater. Des. 2017, 114, 410–415. [Google Scholar] [CrossRef]
- Ma, S.C.; Zheng, Y.X.; Xuan, H.C.; Shen, L.J.; Cao, Q.Q.; Wang, D.H.; Zhong, Z.C.; Du, Y.W. Large room temperature magnetocaloric effect with negligible magnetic hysteresis losses in Mn1−xVxCoGe alloys. J. Magn. Magn. Mater. 2012, 324, 135–139. [Google Scholar] [CrossRef]
- Trung, N.T.; Biharie, V.; Zhang, L.; Caron, L.; Buschow, K.H.J.; Brück, E. From single- to double-first-order magnetic phase transition in magnetocaloric Mn1−xCrxCoGe compounds. Appl. Phys. Lett. 2010, 96, 162507. [Google Scholar] [CrossRef] [Green Version]
- Gębara, P.; Śniadecki, Z. Structure, magnetocaloric properties and thermodynamic modeling of enthalpies of formation of (Mn,X)-Co-Ge (X = Zr, Pd) alloys. J. Alloys Compd. 2019, 796, 153–159. [Google Scholar] [CrossRef]
- Ren, Q.; Hutchison, W.D.; Wang, J.; Studer, A.J.; Campbell, S.J. Magnetic and structural transitions tuned through valence electron concentration in magnetocaloric Mn(Co1−xNix)Ge. Chem. Mater. 2018, 30, 1324–1334. [Google Scholar] [CrossRef] [Green Version]
- Qian, F.; Zhu, Q.; Miao, X.; Fan, J.; Zhong, G.; Yang, H. Tailoring the magneto-structural coupling in Mn1−xZrxCoGe alloys. J. Mater. Sci. 2021, 56, 1472–1480. [Google Scholar] [CrossRef]
- Kutynia, K.; Gębara, P. Tuning of the structure and magnetocaloric effect of Mn1−xZrxCoGe alloys (where x = 0.03, 0.05, 0.07 and 0.1). Materials 2021, 14, 3129. [Google Scholar] [CrossRef]
- Kraus, W.; Nolze, G. PowderCell 2.0 for Windows. Powder Differ. 1998, 13, 256. [Google Scholar]
- Bażela, W.; Szytuła, A.; Todorović, J.; Tomkowicz, Z.; Zięba, A. Crystal and magnetic structure of NiMnGe. Phys. Status Solidi A 1976, 38, 721–729. [Google Scholar] [CrossRef]
- Johnson, V. Diffusionless orthorhombic to hexagonal transitions in ternary silicides and germanides. Inorg. Chem. 1975, 14, 1117–1120. [Google Scholar] [CrossRef]
- Gschneidner, K.A., Jr.; Mudryk, Y.; Pecharsky, V.K. On the nature of the magnetocaloric effect of the first-order magnetostructural transition. Scr. Mater. 2012, 67, 572–577. [Google Scholar] [CrossRef]
- Kaeswurm, B.V.; Franco, K.P.; Skokov, O. Gutfleisch, Assessment of the magnetocaloric effect in La,Pr(Fe,Si) under cycling. J. Magn. Magn. Mater. 2016, 406, 259–265. [Google Scholar] [CrossRef]
- Pecharsky, V.K.; Gschneider, K.A., Jr. Magnetocaloric effect from indirect measurements: Magnetization and heat capacity. J. Appl. Phys. 1999, 86, 565–575. [Google Scholar] [CrossRef]
- Świerczek, J. Medium range ordering and some magnetic properties of amorphous Fe90Zr7B3 alloy. J. Magn. Magn. Mater. 2010, 322, 2696–2702. [Google Scholar] [CrossRef]
- Tishin, A.M.; Spichkin, Y.I. The Magnetocaloric Effect and Its Applications; CRC Press: Boca Raton, FL, USA, 2003. [Google Scholar]
- Diaz-Garcia, A.; Moreno-Ramirez, L.M.; Law, J.Y.; Albertini, F.; Fabbrici, S.; Franco, V. Characterization of thermal hysteresis in magnetocaloric NiMnIn Heusler alloys by Temperature First Order Reversal Curves (TFORC). J. Alloys Compd. 2021, 867, 159184. [Google Scholar] [CrossRef]
- Li, Y.; Zeng, Q.; Wei, Z.; Liu, E.; Han, X.; Du, Z.; Li, L.; Xi, X.; Wang, W.; Wang, S.; et al. An efficient scheme to tailor the magnetostructural transitions by staged quenching and cyclical ageing in hexagonal martensitic alloys. Acta Mater. 2019, 174, 289–299. [Google Scholar] [CrossRef]
- Tozkoparan, O.; Yildirim, O.; Yüzüak, E.; Duman, E.; Dincer, I. Magnetostructural transition in Co-Mn-Ge systems tuned by valence electron concentration. J. Alloys Compd. 2019, 791, 208–214. [Google Scholar] [CrossRef]
- Wood, M.E.; Potter, W.H. General analysis of magnetic refrigation and its optimization using a new concept: Maximization of refrigerant capacity. Cryogenics 1985, 25, 667–683. [Google Scholar] [CrossRef]
- Pierunek, N.; Śniadecki, Z.; Marcin, J.; Skorvanek, I.; Idzikowski, B. Magnetocaloric effect of amorphous Gd65Fe10Co10Al10 × 5 (X = Al, Si, B) alloys. IEEE Trans. Magn. 2014, 50, 6971595. [Google Scholar] [CrossRef]
- Law, J.Y.; Franco, V.; Moreno-Ramírez, L.M.; Conde, A.; Karpenkov, D.Y.; Radulov, I.; Skokov, K.P.; Gutfleisch, O. A quantitative criterion for determining the order of magnetic phase transitions using the magnetocaloric effect. Nat. Commun. 2018, 9, 2680. [Google Scholar] [CrossRef] [Green Version]
- Franco, V.; Conde, A.; Provenzano, V.; Shull, R.D. Scaling analysis of the magnetocaloric effect in Gd5Si2Ge1.9X\(X = Al,Cu,Ga,Mn,Fe,Co). J. Magn. Magn. Mater. 2010, 322, 218–223. [Google Scholar] [CrossRef]
- Świerczek, J. Superparamagnetic behavior and magnetic entropy change in partially crystallized Fe–Mo–Cu–B alloy. Phys. Status Solidi A 2014, 211, 1567–1576. [Google Scholar] [CrossRef]
- Moreno-Ramirez, L.M.; Law, J.Y.; Borrego, J.M.; Barcza, A.; Greneche, J.M.; Franco, V. First-order phase transition in high-performance La(Fe,Mn,Si)13H despite negligible hysteresis. J. Alloys Compd. 2023, 950, 169883. [Google Scholar] [CrossRef]
- Gębara, P.; Hasiak, M. Determination of Phase Transition and Critical Behavior of the As-Cast GdGeSi-(X) Type Alloys (Where X = Ni, Nd and Pr). Materials 2021, 14, 185. [Google Scholar] [CrossRef]
Alloy | Recognized Phases | Lattice Constant [Å] ± 0.001 | Volume Fraction [%] |
---|---|---|---|
Mn0.97Pd0.03CoGe | hex Ni2Ti-type | a = 4.073 | 93 |
c = 5.283 | |||
ort NiTiSi-type | a = 5.939 | 7 | |
b = 3.823 | |||
c = 7.053 | |||
Mn0.95Pd0.05CoGe | hex Ni2Ti-type | a = 4.075 | 34 |
c = 5.285 | |||
ort NiTiSi-type | a = 5.942 | 66 | |
b = 3.824 | |||
c = 7.055 | |||
Mn0.93Pd0.07CoGe | hex Ni2Ti-type | a = 4.079 | 52 |
c = 5.285 | |||
ort NiTiSi-type | a = 5.943 | 48 | |
b = 3.825 | |||
c = 7.056 | |||
Mn0.9Pd0.1CoGe | hex Ni2Ti-type | a = 4.081 | 45 |
c = 5.286 | |||
ort NiTiSi-type | a = 5.944 | 55 | |
b = 3.827 | |||
c = 7.058 |
Sample | Magnetic Field Change Δ(μ0H) [T] | Magnetic Entropy Change ΔSM [J (kg K)−1] | Cooling Capacity RC [J kg−1] |
---|---|---|---|
Mn0.97Pd0.03CoGe | 1 | 2.67 | 90 |
2 | 4.64 | 154 | |
3 | 6.82 | 267 | |
4 | 7.75 | 317 | |
5 | 8.88 | 402 | |
Mn0.95Pd0.05CoGe | 1 | 5.41 | 104 |
2 | 10.37 | 249 | |
3 | 15.62 | 365 | |
4 | 20.98 | 499 | |
5 | 23.99 | 646 | |
Mn0.93Pd0.07CoGe | 1 | 3.91 | 93 |
2 | 6.50 | 165 | |
3 | 9.65 | 225 | |
4 | 13.10 | 320 | |
5 | 15.63 | 463 | |
Mn0.9Pd0.1CoGe | 1 | 2.02 | 39 |
2 | 4.33 | 86 | |
3 | 6.67 | 131 | |
4 | 8.82 | 209 | |
5 | 11.09 | 238 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kutynia, K.; Przybył, A.; Gębara, P. The Effect of Substitution of Mn by Pd on the Structure and Thermomagnetic Properties of the Mn1−xPdxCoGe Alloys (Where x = 0.03, 0.05, 0.07 and 0.1). Materials 2023, 16, 5394. https://doi.org/10.3390/ma16155394
Kutynia K, Przybył A, Gębara P. The Effect of Substitution of Mn by Pd on the Structure and Thermomagnetic Properties of the Mn1−xPdxCoGe Alloys (Where x = 0.03, 0.05, 0.07 and 0.1). Materials. 2023; 16(15):5394. https://doi.org/10.3390/ma16155394
Chicago/Turabian StyleKutynia, Karolina, Anna Przybył, and Piotr Gębara. 2023. "The Effect of Substitution of Mn by Pd on the Structure and Thermomagnetic Properties of the Mn1−xPdxCoGe Alloys (Where x = 0.03, 0.05, 0.07 and 0.1)" Materials 16, no. 15: 5394. https://doi.org/10.3390/ma16155394
APA StyleKutynia, K., Przybył, A., & Gębara, P. (2023). The Effect of Substitution of Mn by Pd on the Structure and Thermomagnetic Properties of the Mn1−xPdxCoGe Alloys (Where x = 0.03, 0.05, 0.07 and 0.1). Materials, 16(15), 5394. https://doi.org/10.3390/ma16155394