Assessment of Processing Parameters of Pack Silicon Cementation onto P265GH Grade Steel
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
36.47X2X4 − 42.26X3X4 + 40.30X1X2X3 − 50.6X1X2X4 − 40.08X1X3X4
16.99X2X4 + 66.66X1X2X3 + 56.09X2X3X4 + 12.78X1X2X3X4
4. Discussion
↓
Si2N+ → (Si2N+)↓ → (Si)↓; (N) ↓
ads. ads. ads.
ads.
ads.
- -
- They allow anticipation by calculation of the silicon cemented thickness layer under strictly specified conditions.
- -
- They allow the determination/quantification of the way in which the level of a certain independent parameter can be compensated at a given time by modifying the other influencing factors.
- -
- They allow the automatic management of the process.
- -
- They allow the construction of graphic representations, as shown in Figure 7, which facilitate the quick determination of how the factors with significant influence must be correlated, within an acceptable error range, to obtain a certain imposed layer thickness.
5. Conclusions
- Powdery FeSi75C represents a potent active component of powdery solid mixtures used in the silicon saturation process of metal products.
- The most intense layer growth kinetics is observed with a powdered solid mixture with high values of the active component correlated with low values of the one with the role of activation.
- The mechanism of silicon adsorption during thermochemical processing has both an atomic and an ionic character.
- The calculated regression equations of the interactions between the independent parameters of the thermochemical processing and, respectively, the dependent ones (the total thickness of the silicized layer), ensure a multitude of facilities: (i) the optimization of the process; (ii) the estimation of the total thickness of the silicized layer under strictly specified conditions; (iii) the determination of how the deficit or excess of a certain independent parameter can be compensated (if it can be compensated) by changing the others.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Leahovici, L.S.; Voroşnin, L.G.; Şcerbakov, E.R.D.; Panin, G.G. Siliconization of Metals and Alloys; Scientific and Technical Publishing House: Minsk, Russia, 1972; pp. 149, 167, 188–210. (In Russian) [Google Scholar]
- Lahtin, I.M.; Arzamasov, B.N. Thermochemical Treatments of Steels; Metallurghia (Metallurgy Publishing House): Moscow, Russia, 1985; pp. 221–229. (In Russian) [Google Scholar]
- Minkevici, A.N. Thermochemical Treatments of Metals and Alloys; Technical Publishing House: Bucharest, Romania, 1968; pp. 295–308. (In Russian) [Google Scholar]
- Cojocaru, M.O. Processing by Thermochemical Treatments of Metal Products. In Handbook on Materials Science and Engineering-Volume 5; AGIR Publishing House: Bucharest, Romania, 2011; pp. 329–333. (In Romanian) [Google Scholar]
- Sen, U.; Ozdemir, O.; Yilmaz, S.; Sen, S. Kinetics of Iron Silicide Deposited on AISI D2 Steel by Pack Method. In Proceedings of the 22nd International Conference on Metallurgy and Materials (METAL 2013), Brno, Czech Republic, 15–17 May 2013; p. 965, ISBN 978-80-87294-39-0. [Google Scholar]
- Popoola, A.P.I.; Aigbodion, V.S.; Fayomi, O.S.I.; Abdulwahab, M. Experimental Study of the Effect of Siliconizing Parameters of Thermochemical Treatment of low Carbon Steel. Silicon 2016, 8, 201–210. [Google Scholar] [CrossRef]
- Najafizadeh, M.; Ghasempour-Mouziraji, M.; Zhang, D. Silicon Diffusion in Silicide Coatings Deposition by the Pack Cementation Method on AISI D2 Tool Steel. Silicon 2021, 14, 3349–3356. [Google Scholar] [CrossRef]
- Najafizadeh, M.; Ghasempour-Mouziraji, M. Multi-objective optimization of process parameters in pack siliconizing on AISI D2 Steel. Silicon 2020, 13, 2233–2242. [Google Scholar] [CrossRef]
- Efe, G.C.; Yener, T.; Altinsoy, I.; Ipek, M.; Bindal, C.; Zeytin, S. Characterization of pack-siliconized 31CrMoV9 steel. Emerg. Mater. Res. 2020, 9, 913–920. [Google Scholar] [CrossRef]
- Mukherji, A.; Prabhakaram, P. Diffusion coatings on steel. Anti-Corros. Methods Mater. 1978, 25, 5–12. [Google Scholar] [CrossRef]
- Khadum, S.H.; Waheed, M.S. Pack Cementation Coating for 304 & 316L Stainless Steel Alloys by Using Silicon Zing Process. Eng. Technol. J. 2009, 27, 373–385. [Google Scholar] [CrossRef]
- Wang, C.; Li, K.; He, Q.; Huo, C.; Shi, X. Oxidation and ablation resistant properties of pack-siliconized Si-C protective coating for carbon/carbon composites. J. Alloys Compd. 2018, 741, 937–950. [Google Scholar] [CrossRef]
- Zira, V.N.; Obogai, L.E. Effect of Siliconizing (Thermochemical Treatment) on the Corrosion and Wear Bahaviour of Heat-Treated Low Carbon Steel. NIPES J. Sci. Technol. Res. 2020, 2, 248. [Google Scholar] [CrossRef]
- Tian, F.; Wu, C.; Zhu, B.; Wang, L.; Liu, Y.; Zhang, Y. Research of Microstructure, Friction and Wear on Siliconized Aluminum-Bronze with Different Silicon Powder Ratio. Front. Mater. 2021, 7, 620500. [Google Scholar] [CrossRef]
- Efe, G.C.; Ipek, M.; Bindal, C.; Zeytin, S. Pack Siliconizing of Ti6Al4V Alloy. Acta Phys. Pol. A 2017, 132, 760–762. [Google Scholar] [CrossRef]
- Tepe, E.F.; Yener, T.; Efe, G.F. Effect of Temperature on Pack Siliconizing of Ti6Al4V Alloy. J. Smart Syst. Res. 2022, 3, 11–21. [Google Scholar]
- Najafizadeh, M.; Ghasempour-Mouziraji, M. Effect of Pack Siliconizing on Mechanical Properties of a Tool from Steel AISI D2: Experiment and Optimization. Met. Sci. Heat Treat. 2022, 64, 45–50. [Google Scholar] [CrossRef]
- EN 10028-1:2017; Flat Products Made of Steels for Pressure Purposes. European Committee for Standardization—CEN-CENELEC Management Centre: Brussels; Belgium, 2017.
- Taloi, D.; Florian, E.; Bratu, C.; Berceanu, E. Optimization of Metallurgical Processes; Didactic and Pedagogical Publishing House: Bucharest, Romania, 1983; pp. 79–96. (In Romanian) [Google Scholar]
- Dimitriu, S.; Taloi, D. Mathematical Modeling Methods of Technological Processes; Printech Publishing House: Bucuharest, Romania, 2014; pp. 181–206. (In Romanian) [Google Scholar]
- HSC Chemistry Software, version 6.12; Outotec Research Oy: Pori, Finland, 2007.
% | C | Si | Mn | P | S | Cu | Ni | Cr | Mo | V | Al | Nb | Ti | N | Fe |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Fe-ARMCO | 0.02 | 0.07 | 0.12 | 0.017 | 0.011 | 0.01 | 0.01 | 0.003 | 0.004 | 0.0005 | 0.006 | - | - | 0.008 | rest |
P265GH | 0.10 | 0.23 | 1.05 | 0.014 | 0.004 | 0.03 | 0.02 | 0.04 | 0.004 | 0.002 | 0.043 | 0.001 | 0.002 | 0.009 | rest |
SR EN ISO 10028-2:2017 | Max 0.20 | Max 0.40 | 0.80–1.40 | Max 0.025 | Max 0.015 | Max 0.30 | Max 0.30 | Max 0.30 | Max 0.08 | Max 0.02 | Min 0.020 | Max 0.020 | Max 0.03 | Max 0.012 | rest |
X0 | T, [°C] X1 | t, [h] X2 | FeSi75, [%] X3 | NH4Cl, [%] X4 | δt—Experimental, [μm] | ||
---|---|---|---|---|---|---|---|
Fe-ARMCO | P265GH | ||||||
Variation interval (ΔXi) | Coded variable | 100 °C | 2h | 10% | 3% | - | - |
High value (Xi0 + ΔXi) | (+1)/1150 °C | (+1)/5 h | (+1) 60% | (+1) 9% | - | - | |
Standard value (Xi0) | (0)/1050 °C | (0)/3 h | (0) 50% | (0) 6% | - | - | |
Low value (Xi0 − ΔXi) | (−1)/950 °C | (−1)/1 h | (−1) 40% | (−1) 3% | - | - | |
Exp. 1 | (+1) | (+1)/1150 °C | (+1)/5 h | (+1) 60% | (+1) 9% | 233.76 | 672.47 |
Exp. 2 | (+1) | (+1)/1150 °C | (+1)/5 h | (+1) 60% | (−1) 3% | 612.81 | 487.29 |
Exp. 3 | (+1) | (+1)/1150 °C | (+1)/5 h | (−1) 40% | (+1) 9% | 192.56 | 177.41 |
Exp. 4 | (+1) | (+1)/1150 °C | (−1)/1 h | (+1) 60% | (+1) 9% | 148.96 | 148.34 |
Exp. 5 | (+1) | (−1)/950 °C | (+1)/5 h | (+1) 60% | (+1) 9% | 85.06 | 0.00 |
Exp. 6 | (+1) | (+1)/1150 °C | (+1)/5 h | (−1) 40% | (−1) 3% | 270.94 | 296.76 |
Exp. 7 | (+1) | (+1)/1150 °C | (−1)/1 h | (+1) 60% | (−1) 3% | 171.17 | 139.42 |
Exp. 8 | (+1) | (+1)/1150 °C | (−1)/1 h | (−1) 40% | (+1) 9% | 261.38 | 288.81 |
Exp. 9 | (+1) | (−1)/950 °C | (−1)/1 h | (+1) 60% | (+1) 9% | 137.38 | 0.00 |
Exp. 10 | (+1) | (−1)/950 °C | (+1)/5 h | (−1) 40% | (+1) 9% | 0.00 | 0.00 |
Exp. 11 | (+1) | (−1)/950 °C | (+1)/5 h | (+1) 60% | (−1) 3% | 122.94 | 0.00 |
Exp. 12 | (+1) | (−1)/950 °C | (−1)/1 h | (−1) 40% | (+1) 9% | 0.00 | 0.00 |
Exp. 13 | (+1) | (−1)/950 °C | (−1)/1 h | (+1) 60% | (−1) 3% | 179.44 | 136.53 |
Exp. 14 | (+1) | (−1)/950 °C | (+1)/5 h | (−1) 40% | (−1) 3% | 165.98 | 219.79 |
Exp. 15 | (+1) | (+1)/1150 °C | (−1)/1 h | (−1) 40% | (−1) 3% | 0.00 | 33.43 |
Exp. 16 | (+1) | (−1)/950 °C | (−1)/1 h | (−1) 40% | (−1) 3% | 0.00 | 9.85 |
Statistical Parameter | Fe-ARMCO | P265GH | ||
---|---|---|---|---|
S02 | 658.26 | t0.05;16 = 2.12 | 427.34 | t0.05;16 = 2.12 |
Sbi2; Sbij2 | 41.14 | 26.709 | ||
Δbi; Δbij… | ±13.59 | ±10.95 |
Coefficients | Fe-ARMCO | P265GH | ||
---|---|---|---|---|
b0 | 166.95 | Δbi; Δbij… = ±13.59 | 163.13 | Δbi; Δbij… = ±10.95 |
b1 | 75.05 | 117.36 | ||
b2 | 50.91 | 68.58 | ||
b3 | 32.86 | 34.87 | ||
b4 | −13.65 | −2.26 | ||
b12 | 40.15 | 59.4 | ||
b13 | 22.36 | 46.51 | ||
b14 | −13.63 | 43.51 | ||
b23 | −12.26 | 23.35 | ||
b24 | −36.47 | −16.99 | ||
b34 | −42.26 | 9.43 | ||
b123 | 40.30 | 66.66 | ||
b124 | −50.60 | −7.81 | ||
b234 | 9.57 | 56.09 | ||
b134 | −40.08 | −2.19 | ||
b1234 | −11.71 | 12.78 |
Statistical Parameter | Fe-ARMCO | P265GH | ||
---|---|---|---|---|
Ftabular | 19.16 | V1 = 3; V2 = 2 | 19.25 | V1 = 4; V2 = 2 |
S2conc | 4775.5 | 530.16 | ||
Fcalculated | 7.25 | 1.24 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cojocaru, M.O.; Branzei, M.; Morariu, M.D. Assessment of Processing Parameters of Pack Silicon Cementation onto P265GH Grade Steel. Materials 2023, 16, 5397. https://doi.org/10.3390/ma16155397
Cojocaru MO, Branzei M, Morariu MD. Assessment of Processing Parameters of Pack Silicon Cementation onto P265GH Grade Steel. Materials. 2023; 16(15):5397. https://doi.org/10.3390/ma16155397
Chicago/Turabian StyleCojocaru, Mihai Ovidiu, Mihai Branzei, and Mircea Dan Morariu. 2023. "Assessment of Processing Parameters of Pack Silicon Cementation onto P265GH Grade Steel" Materials 16, no. 15: 5397. https://doi.org/10.3390/ma16155397
APA StyleCojocaru, M. O., Branzei, M., & Morariu, M. D. (2023). Assessment of Processing Parameters of Pack Silicon Cementation onto P265GH Grade Steel. Materials, 16(15), 5397. https://doi.org/10.3390/ma16155397