Effect of Cu as a Minority Alloying Element on the Corrosion Behaviour of Amorphous and Crystalline Al-Ni-Si Alloy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Characterisation Methods
2.3. Corrosion Test Methods
3. Results
3.1. Gravimetric Studies
3.2. Electrochemical Corrosion Tests
4. Discussions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Russew, K.; Stojanova, L. Glassy Metals; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar] [CrossRef]
- Wang, D.; Ding, H.; Ma, Y.; Gong, P.; Wang, X. Research Progress on Corrosion Resistance of Metallic Glasses. J. Chin. Soc. Corros. Prot. 2021, 41, 277–288. Available online: https://www.jcscp.org/EN/10.11902/1005.4537.2020.089 (accessed on 18 June 2023).
- Naka, M.; Hashimoto, K.; Masumoto, T. Corrosion resistivity of amorphous Fe alloys containing Chromium. J. Jpn. Inst. Met. 1974, 38, 835–841. [Google Scholar] [CrossRef] [Green Version]
- Souzaa, A.C.; Ribeiroa, D.V.; Kiminam, C.S. Corrosion resistance of Fe-Cr-based amorphous alloys: An overview. J. Non-Crystall. Sol. 2016, 442, 56–66. [Google Scholar] [CrossRef]
- Pang, S.J.; Zhang, T.; Asami, K.; Inoue, A. Synthesis of Fe–Cr–Mo–C–B–P bulk metallic glasses with high corrosion resistance. Acta Mater. 2002, 50, 489–494. [Google Scholar] [CrossRef]
- Kiminami, C.S.; Souza, C.A.C.; Bonavina, L.F.; Bolfarini, C.; Botta, W.J. Partial crystallization and corrosion resistance of amorphous Fe-Cr-M-B (M = Mo, Nb) alloys. J. Non-Cryst. Solids 2010, 356, 2651–2657. [Google Scholar] [CrossRef]
- Mariano, N.A.; Souza, C.A.C.; May, J.E.; Kuri, S.E. Influence of Nb content on the corrosion resistance and saturation magnetic density of FeCuNbSiB alloys. Mater. Sci. Eng. A 2003, 354, 1–5. [Google Scholar] [CrossRef]
- Botta, W.J.; Berger, J.E.; Kiminami, C.S.; Roche, V.; Nagueira, R.P.; Bolfarini, C. Corrosion resistance of Fe-based amorphous alloys. J. Alloys Compd. 2014, 586, 105–110. [Google Scholar] [CrossRef]
- Hertsyk, O.M.; Kovbuz, M.O.; Hula, T.H. Corrosion Resistance of Modified Amorphous Alloys Based on Iron in Sulfuric Acid. Mater. Sci. 2021, 56, 755–763. [Google Scholar] [CrossRef]
- Pang, S.; Hang, T.Z.; Asami, K.; Inoue, A. Corrosion behaviour of Zr-(Nb)Al-Ni-Cu glassy alloys. Mater. Trans. 2001, 42, 376–379. [Google Scholar] [CrossRef] [Green Version]
- Mudali, U.K.; Scudino, S.; Kühn, U.; Eckert, J.; Gebert, A. Polarisation behaviour of the Zr57Ti8Nb2.5Cu13.9Ni11.1Al7.5 alloy in different microstructural states in acid solutions. Scr. Mater. 2004, 50, 1379–1384. [Google Scholar] [CrossRef]
- Raw, V.R.; Kuhn, U.; Wolff, U.; Schneider, F.; Eckert, J.; Reiche, R.; Gebert, A. Corrosion behaviour of Zr-based bulk glass-forming alloys containing Nb or Ti. Mater. Lett. 2002, 57, 173–177. [Google Scholar] [CrossRef]
- Wans, D.P.; Wang, L.; Wang, J.O. Relationship between amorphous structure and corrosion behaviour in a Zr-Ni metallic glass. Corros. Sci. 2012, 59, 88–95. [Google Scholar] [CrossRef]
- Chunming, W.; Yang, S.; Youwen, Y.; Da, Z.; Xiongwei, L.; Shuping, P.; Cijun, S. Amorphous magnesium alloy with high corrosion resistance fabricated by laser powder bed fusion. J. Alloys Compd. 2022, 897, 163247. [Google Scholar] [CrossRef]
- Liming, X.; Xingwan, L.; Kang, S.; Rao, F.; Gang, W. Corrosion behaviour in magnesium-Based Alloys for Biomedical Applications. Materials 2022, 15, 2613. [Google Scholar] [CrossRef]
- Esmaily, M.; Svensson, J.E.; Fajardo, S.N.; Birbilis, G.S.; Frankel, S.; Virtanen, R.; Arrabal, T.S.; Johansson, L.G. Fundamentals and advances in magnesium alloy corrosion. Prog. Mater. Sci. 2017, 89, 92–193. [Google Scholar] [CrossRef]
- Bala, H.; Szymura, S. Acid corrosion of amorphous and crystalline Cu-Zr alloys. Appl. Surf. Sci. 1989, 35, 41–51. [Google Scholar] [CrossRef]
- Li, C.; Wang, Y.; Geng, H. Crystallization Behaviour and Corrosion Resistance of Cu50Zr40Ag10 Amorphous Alloy. J. Inorg. Organomet. Polym. 2011, 21, 919–924. [Google Scholar] [CrossRef]
- Xie, C.; Milosev, I.; Renner, F.; Kokalj, A.; Bruna, P.; Crespo, D. Corrosion resistance of crystalline and amorphous CuZr alloys in NaCl aqueus environment and effect of corrosion inhibitors. J. Alloys Compd. 2021, 879, 160464. [Google Scholar] [CrossRef]
- Inoue, A. Amorphous, nanoquasicrystalline and nanocrystalline alloys in Al-based systems. Prog. Mater. Sci. 1998, 43, 365–520. [Google Scholar] [CrossRef]
- Louzguine-Luzgin, D.V. Aluminium-base amorphous and nanocrystalline materials. Met. Sci. Heat. Treat. 2012, 53, 472–477. [Google Scholar] [CrossRef]
- Sweitzer, J.; Shiflet, G.; Scully, J.R. Localized corrosion of Al90Fe5Gd5 and Al87Ni8. 7Y4. 3 alloys in the amorphous, nanocrystalline and crystalline states: Resistance to micrometer-scale pit formation. Electrochim. Acta 2003, 48, 1223–1234. [Google Scholar] [CrossRef]
- Zhang, L.M.; Ma, A.L.; Hu, H.X.; Zheng, B.J.; Yang, B.J.; Wang, J.Q. Effect of Microalloing with Ti or Cr on the Corrosion Behavoir of Al-Ni-Y Amorphous Alloys. Corrosion 2018, 74, 66–74. [Google Scholar] [CrossRef] [PubMed]
- Akiyama, E.; Habazaki, H.; Kawashima, A.; Asami, K.; Hashimoto, K. Corrosion-resistant amorphous aluminium alloys and structure of passive films. Mater. Sci. Eng. A 1997, 226–228, 920–924. [Google Scholar] [CrossRef]
- Principe, E.L.; Shaw, B.A.; Davis, G.D. Role of Oxide/Metal Interface in Corrosion Resistance: Al-W and Al-Mo Systems. Corrosion 2003, 59, 295–313. [Google Scholar] [CrossRef]
- Yoshioka, H.; Yoshida, S.; Kawashima, A.; Asami, K.; Hashimoto, K. The pitting corrosion behaviour of rapidly solidified aluminium alloys. Corros. Sci. 1986, 26, 809–812. [Google Scholar] [CrossRef]
- Karfidov, E.A.; Rusanov, B.A.; Sidorov, V.E.; Nikitina, E.V.; Janichkovic, D.; Svec, S.R.P. Corrosion-electrochemical behaviour of Al–Ni-Co-Nd. Amorph. Alloys Melts 2022, 2, 189–195. [Google Scholar] [CrossRef]
- Aburada, T.; Unlu, N.; Fitz-Gerald, J.M.; Shiflet, G.J.; Scully, J.R. Effect of Ni as a minority alloying element on the corrosion behaviour in Al–Cu–Mg–(Ni) metallic glasses. Scr. Mater. 2008, 58, 623–626. [Google Scholar] [CrossRef]
- Dyakova, V.; Kostova, Y.; Spasova, H. Influence of Ni as Minority Alloying Element on the Corrosion Behaviour of Amorphous Al-Cu-Mg Alloys in Chloride Solution. In Proceedings of the 14th International Scientific and Practical Conference “Environment. Technology. Resources”, Rezekne, Latvia, 15–16 June 2023; Available online: http://journals.rta.lv/index.php/ETR/article/view/7201/5993 (accessed on 13 June 2023).
- Dyakova, V.L.; Tzaneva, B.R.; Kostova, Y.G. Influence of Zn as Minority Alloying Element on the Uniform and Local Corrosion of Amorphous Rapidly Solidified AlCuMg(Zn) Ribbons. In Proceedings of the AIP Conference, TehSys, Plovdiv, Bulgaria, 27 May 2021. [Google Scholar] [CrossRef]
- Hara, M.; Hashimoto, K.; Masumoto, T. Anodic characteristics of amorphous palladium-iridium-phosphorus alloys in a hot concentrated sodium chloride solution. J. Non-Cryst. Solids 1983, 54, 85–100. [Google Scholar] [CrossRef]
- Chen, N.; Qin, C.L.; Xie, G.Q.; Louzguine-Luzgin, D.V.; Inoue, A. Investigation of a ductile and corrosion-resistant Pd79Au1.5Ag3Si16.5 bulk metallic glass. J. Mater. Res. 2010, 25, 1943–1949. [Google Scholar] [CrossRef]
- Hara, M.; Hashimoto, K.; Masumoto, T. Anodic characteristics of amorphous ternary palladium-phosphorus alloys containing ruthenium, rhodium, iridium, or platinum in a hot concentrated sodium chloride solution. J. Appl. Electrochem. 1983, 13, 295–306. [Google Scholar] [CrossRef]
- Chen, N.; Martin, L.; Luzguine-Luzgin, D.; Inoe, A. Role of Alloying Additions in Glass Formation and Properties of Bulk Metallic Glasses. Materaials 2010, 3, 5320. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Xiao, J.; Wang, W.; Zhao, J.; Michel, F.; Deng, C.; Cai, W. Effects of alloying concentration on the aqueous corrosion and passivation of aluminium-manganese-molybdenum concentrated alloys. Corros. Sci. 2022, 198, 110–137. [Google Scholar] [CrossRef]
- Shabestari, S.G.; Moemmeni, H. Effect of copper and solidification conditions on the microstructure and mechanical properties of Al–Si–Mg alloys. J. Mater. Procesing Technol. 2004, 153–154, 193–198. [Google Scholar] [CrossRef]
- Zeren, M. Effect of copper and silicon content on mechanical properties in Al–Cu–Si–Mg alloys. J. Mater. Procesing Technol. 2005, 169, 292–298. [Google Scholar] [CrossRef]
- Setiady, A.; Soegijono, B. The Effect of Copper on Corrosion Resistance and Structure of Al-8% wt Si Alloys for Engine Block Application. In Proceedings of the IOP Conference Series: Materials Science and Engineering, 694, 1st International Symposium on Advances and Innovations in Mechanical Engineering, Jakarta, Indonesia, 9–10 October 2019. [Google Scholar] [CrossRef] [Green Version]
- Bakare, M.; Voisey, K.; Chokethawai, K.; McCartney, D. Corrosion behaviour of crystalline and amorphous forms of the glass forming alloy Fe43Cr16Mo16C15B10. J. Alloys Compd. 2012, 527, 210–218. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Dong, L.; Hu, B.; Chen, B. The Effect of Cu Addition on Corrosion Resistance of Al-Si-Mg-Cr Alloy. Metals 2023, 13, 795. [Google Scholar] [CrossRef]
- Chen, H.; Zhang, X.; Li, Y. Effect of the Secondary Phase on the Corrosion of Al-Zn-Mg-Cu Alloy. Int. J. Metall. Met. Phys. 2020, 5, 058. [Google Scholar] [CrossRef]
- Gao, M.; Lu, W.; Yang, B.; Zhang, S.; Wang, J. High corrosion and wear resistance of Al-based amorphous metallic coating synthesized by HVAF spraying. J. Alloys Compd. 2018, 735, 1363–1373. [Google Scholar] [CrossRef]
- Coimrao, D.D.; Zepon, G.; Koga, G.Y. Corrosion properties of amorphous, partially, and fully crystallized Fe68Cr8Mo4Nb4B16 alloy. J. Alloys Compd. 2020, 826, 154123. [Google Scholar] [CrossRef]
- Mehmood, M.; Zhang, B.P.; Akiyama, E.; Habazaki, H.; Kawashima, A.; Asami, K.; Hashimoto, K. Experimental evidence for the critical size of heterogeneity areas for pitting corrosion of Cr-Zr alloys in 6 M HCl. Corros. Sci. 1998, 40, 1–17. [Google Scholar] [CrossRef]
- Schroeder, V.; Gilbert, C.J.; Ritchie, R.O. Comparison of the corrosion behaviour of a bulk amorphous metal, Zr41.2Ti13.8Cu12.5Ni10Be22.5, with its crystallized form. Scr. Mater. 1998, 38, 1481–1485. [Google Scholar] [CrossRef]
- Li, W.H.; Chana, K.C.; Xiaa, L.; Liuc, L.; He, Y.Z. Thermodynamic, corrosion and mechanical properties of Zr-based bulk metallic glasses in relation to heterogeneous structures. Mater. Sci. Eng. A 2012, 534, 157–162. [Google Scholar] [CrossRef]
- Safavi, M.S.; Mehdad, F.; Ahadzadeh, I. Feasible strategies for promoting the mechano-corrosion performance of Ni-Co based coatings: Which one is better? Surf. Coat. Technol. 2021, 420, 127337. [Google Scholar] [CrossRef]
- Miao, Y.; Tiancheng, C.; Dapeng, Z.; Rongzhi, L.; Jibin, P.; Changsheng, L. Improved oxidation and hot corrosion resistance of the NiSiAlY alloy at 750 °C. Mater. Today Commun. 2021, 29, 102939. [Google Scholar] [CrossRef]
- Dyakova, V.; Stefanov, G.; Penkov, I.; Kovacheva, D.; Marinkov, N.; Mourdjeva, Y.; Gyurov, S. Influence of Zn on Glass Forming Ability and Crystallization Behaviour of Rapidly Solidified Al-Cu-Mg (Zn) alloys. J. Chem. Technol. Metall. 2020, 57, 622–630. Available online: https://journal.uctm.edu/node/j2022-3/23_21-64_br_3_pp_622-630.pdf (accessed on 18 June 2023).
- Perepezko, J.H.; Hebert, R.J. Amorphous aluminium alloys—Synthesis and stability. JOM 2002, 54, 34–39. [Google Scholar] [CrossRef]
- Egami, T.; Waseda, Y. Atomic size effect on the formability of metallic glasses. J. Non-Cryst. Solids 1984, 64, 113–134. [Google Scholar] [CrossRef]
- Xue-Kui, X.; Magdalena, T.S.; Yan-Hui, L.; Wei-Hua, W.; Yue, W. Structural changes induced by microalloying in Cu46Zr47−x Al7Gdx metallic glasses. Scr. Mater. 2009, 61, 967–969. [Google Scholar] [CrossRef]
- Dyakova, V.; Spasova, H.; Kostova, Y.; Mourdjeva, Y.; Stefanov, G. Effect of Cu as Minority Alloying Element on Glass Forming Ability and Crystallization Behaviour of Rapidly Solidified Al-Si-Ni Ribbons. In Proceedings of the 14th International Scientific and Practical Conference Environment. Technologies. Resources, Rezekne, Latvia, 15–16 June 2023; Available online: http://journals.rta.lv/index.php/ETR/article/view/7200/5992 (accessed on 13 June 2023).
- Dyakova, V.L.; Stefanov, G.N.; Kovacheva, D.G.; Mourdjeva, Y.S.; Marinkov, N.E.; Penkov, I.G.; Georgiev, J.S. Influence of Zr and Zn as Minority Alloying Elements on Glass Forming Ability and Crystallization Behaviour of Rapidly Solidified AlCuMg ribbons. In Proceedings of the AIP Conference, TehSys, Plovdiv, Bulgaria, 27 May 2021; Available online: https://aip.scitation.org/doi/abs/10.1063/5.0090746 (accessed on 1 September 2022).
- Birringer, R.; Gleiter, H.; Klein, P.; Marquardt, P. Nanocrystalline materials an approach to a novel solid structure with gas-like disorder? Phys. Lett. A 1984, 102, 365–369. [Google Scholar] [CrossRef]
- ASTM G31-21; Standard Guide for Laboratory Immersion Corrosion Testing of Metals. American Technical Standard: Washington, DC, USA, 1 January 2021.
- Ram, L.K.; Park, J.M.; Soo Jee, S.; Kim, S.Y.; Kim, S.J.; Eun-Sung, L.; Kim, W.T.; Gebert, A.; Eckert, J.; Kim, D.H. Effect of thermal stability of the amorphous substrate on the amorphous oxide growth on Zr–Al–(Cu,Ni) metallic glass surfaces. Corr. Sci. 2013, 73, 1–6. [Google Scholar] [CrossRef]
- Hsu, P.; Bates, T. Formation of X-ray amorphous and crystalline aluminium hydroxides. Mineral. Mag. J. Mineral. Soc. 1964, 33, 749–768. [Google Scholar] [CrossRef]
- Muller, I.L.; Galvele, J.R. Pitting potential of high purity binary aluminium alloys—I. Al-Cu alloys. Pitting and intergranular corrosion. Corros. Sci. 1977, 17, 179. [Google Scholar] [CrossRef]
- Tao, M.J. Surface Composition and Corrosion Behavior of an AlCu Alloy. Ph.D. Thesis, Sorbonne University Pierre and Marie Curie Campus, Paris, France, 2016. [Google Scholar]
Designation of the Alloy | Al [at.%] | Ni [at.%] | Si [at.%] | Cu [at.%] |
---|---|---|---|---|
Al-Ni-Si | 73.50 | 16.08 | 10.42 | - |
Al-Ni-Si-Cu | 73.97 | 14.94 | 8.76 | 2.33 |
Corrosion Rate CR [g m−2h−1] | ||||||
---|---|---|---|---|---|---|
Designation of the Alloy | CR25 T = 25 °C | CR50 T = 50 °C | A | B | C | D |
Al74Ni16Si10 am | 0.35 × 10−2 | 0.67 × 10−2 | 2.9 | 8.4 | 1.9 | - |
Al74Ni16Si10 ncr | 1.02 × 10−2 | 5.63 × 10−2 | - | 5.5 | ||
Al74Ni15Si9Cu2 am | 0.92 × 10−2 | 0.95 × 10−2 | 3.3 | 7.7 | 1 | - |
Al74Ni15Si9Cu2 ufcr | 3.07 × 10−2 | 7.3 × 10−2 | - | 2.4 |
Designation of the Alloy | RS (Ω) | Rct (MΩ) | CPE (µΩ.sn) | n |
---|---|---|---|---|
Al74Ni16Si10-am | 256.0 | 24.51 | 0.064 | 0.924 |
Al74Ni15Si9Cu2-am | 295.0 | 8.36 | 0.059 | 0.945 |
Al74Ni16Si10-ncr | 310.7 | 1.52 | 0.051 | 0.925 |
Al74Ni15Si9Cu2-ufcr | 248.9 | 0.85 | 0.008 | 0.931 |
Designation of the Alloy | Ecorr (V) | Jcorr (µA/cm2) | Epitt (V) |
---|---|---|---|
Al74Ni16Si10-am | −0.326 ± 0.043 | 0.009 ± 0.002 | −0.029 ± 0.050 |
Al74Ni15Si9Cu2-am | −0.349 ± 0.044 | 0.005 ± 0.003 | 0.068 ± 0.046 |
Al74Ni16Si10-ncr | −0.669 ± 0.010 | 14.60 ± 4.20 | - |
Al74Ni15Si9Cu2-ufcr | −0.557 ± 0.034 | 0.508 ± 0.077 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dyakova, V.; Kostova, Y.; Tzaneva, B.; Spasova, H.; Kovacheva, D. Effect of Cu as a Minority Alloying Element on the Corrosion Behaviour of Amorphous and Crystalline Al-Ni-Si Alloy. Materials 2023, 16, 5446. https://doi.org/10.3390/ma16155446
Dyakova V, Kostova Y, Tzaneva B, Spasova H, Kovacheva D. Effect of Cu as a Minority Alloying Element on the Corrosion Behaviour of Amorphous and Crystalline Al-Ni-Si Alloy. Materials. 2023; 16(15):5446. https://doi.org/10.3390/ma16155446
Chicago/Turabian StyleDyakova, Vanya, Yoanna Kostova, Boriana Tzaneva, Hristina Spasova, and Daniela Kovacheva. 2023. "Effect of Cu as a Minority Alloying Element on the Corrosion Behaviour of Amorphous and Crystalline Al-Ni-Si Alloy" Materials 16, no. 15: 5446. https://doi.org/10.3390/ma16155446
APA StyleDyakova, V., Kostova, Y., Tzaneva, B., Spasova, H., & Kovacheva, D. (2023). Effect of Cu as a Minority Alloying Element on the Corrosion Behaviour of Amorphous and Crystalline Al-Ni-Si Alloy. Materials, 16(15), 5446. https://doi.org/10.3390/ma16155446