Circulating Flow–Electric-Field-Configuration-Enhanced Cadmium Cementation from Sulfate Systems and Its Optimization Mechanism
Abstract
:1. Introduction
2. Experiment
2.1. Material
2.2. Equipment
2.3. Procedure
3. Analysis and Discussion
3.1. Analysis of the Apparent Reaction Process
3.1.1. Cadmium Sponge Separation Process
3.1.2. Apparent Reaction Process
- (1)
- Initial reaction phase: The concentration decline rate is greater than (3 mg/L)/s, the pH is less than 5, and the thickness of the anode sponge cadmium is less than 3 mm.
- (2)
- Sponge cadmium formation phase: The concentration decline rate is greater than (3 mg/L)/s, pH, and the thickness of the sponge on the anode surface is greater than 3 mm.
- (3)
- Sponge exfoliation phase: The concentration decline rate is less than (3 mg/L)/s, the pH change is less than ±0.1, and the anode sponge cadmium is exfoliated.
- (4)
- Reaction complete phase: The concentration percentage is close to 0, the pH change is less than ±0.1, and no new sponge appears.
3.2. Moderating Effect of Circulating Flow–Electric Fields
3.2.1. Effect of Circulating Flow Rate
3.2.2. Effect on Apparent Reaction Processes
3.2.3. Effect on Cadmium Sponge Morphology
3.2.4. Effects of Element Distribution
3.3. Mechanistic Analysis of Flow Field Enhancement
3.3.1. Steps Analysis of Coupled Flow–Electric Field Cementation
- (1)
- The diffusion of hydrated cadmium ions from the solution into the around the zinc.
- (2)
- The diffusion of these hydrated cadmium ions across the boundary layer to the cathode surface.
- (3)
- The zinc as an anode loses electrons to the cathodic region.
- (4)
- The hydrated cadmium ions dehydrate the film and gain electrons into metal and attached to the cathode region.
- (5)
- Zinc loses electrons to turn into zinc ions, forming hydrated ions.
- (6)
- Hydrated zinc ions leave the anode surface and diffuse towards the liquid phase boundary layer.
- (7)
- Hydrated zinc ions leave the boundary layer and diffuse into the solution properly.
3.3.2. Determination of Limiting Step
3.3.3. Determination of Diffusion Coefficient
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Callaghan, R.M.; Cadmium Statistics and Information|U.S. Geological Survey. Available online: https://www.usgs.gov/centers/national-minerals-information-center/cadmium-statistics-and-information (accessed on 16 May 2023).
- Ohba, K. Transport and Toxicity of Cadmium. Jpn. J. Hyg. 2018, 73, 269–274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sandrin, T.R.; Chech, A.M.; Maier, R.M. A Rhamnolipid Biosurfactant Reduces Cadmium Toxicity during Naphthalene Biodegradation. Appl. Environ. Microbiol. 2000, 66, 4585–4588. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Renu; Agarwal, M.; Singh, K. Heavy Metal Removal from Wastewater Using Various Adsorbents: A Review. J. Water Reuse Desalination 2016, 7, 387–419. [Google Scholar] [CrossRef]
- Ding, W.; Wang, Y.; Zeng, W.; Xu, H.; Chen, B. Preparation of Heavy Metal Trapping Flocculant Polyacrylamide-Glutathione and Its Application for Cadmium Removal from Water. Polymers 2023, 15, 500. [Google Scholar] [CrossRef]
- Li, Z.; Liang, Y.; Hu, H.; Shaheen, S.M.; Zhong, H.; Tack, F.M.G.; Wu, M.; Li, Y.-F.; Gao, Y.; Rinklebe, J.; et al. Speciation, Transportation, and Pathways of Cadmium in Soil-Rice Systems: A Review on the Environmental Implications and Remediation Approaches for Food Safety. Environ. Int. 2021, 156, 106749. [Google Scholar] [CrossRef]
- Okereafor, U.; Makhatha, M.; Mekuto, L.; Uche-Okereafor, N.; Sebola, T.; Mavumengwana, V. Toxic Metal Implications on Agricultural Soils, Plants, Animals, Aquatic Life and Human Health. Int. J. Environ. Res. Public Health 2020, 17, 2204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Achternbosch, M.; Kupsch, C.; Sardemann, G.; Bräutigam, K.-R. Cadmium Flows Caused by the Worldwide Production of Primary Zinc Metal. J. Ind. Ecol. 2009, 13, 438–454. [Google Scholar] [CrossRef]
- Zhang, C.; Min, X.; Zhang, J.; Wang, M.; Li, Y.; Fei, J. Reductive Clean Leaching Process of Cadmium from Hydrometallurgical Zinc Neutral Leaching Residue Using Sulfur Dioxide. J. Clean. Prod. 2016, 113, 910–918. [Google Scholar] [CrossRef]
- Safarzadeh, M.S.; Moradkhani, D.; Ilkhchi, M.O. Determination of the Optimum Conditions for the Cementation of Cadmium with Zinc Powder in Sulfate Medium. Chem. Eng. Process. Process Intensif. 2007, 46, 1332–1340. [Google Scholar] [CrossRef]
- Younesi, S.R.; Alimadadi, H.; Alamdari, E.K.; Marashi, S.P.H. Kinetic Mechanisms of Cementation of Cadmium Ions by Zinc Powder from Sulphate Solutions. Hydrometallurgy 2006, 84, 155–164. [Google Scholar] [CrossRef]
- Rao, M.D.; Meshram, A.; Verma, H.R.; Singh, K.K.; Mankhand, T.R. Study to Enhance Cementation of Impurities from Zinc Leach Liquor by Modifying the Shape and Size of Zinc Dust. Hydrometallurgy 2020, 195, 105352. [Google Scholar] [CrossRef]
- Kim, M.J.; Park, I.J.; Kim, D.W.; Jung, H.C. A Study on the Cementation Reaction of Cadmium by Zinc Powders from Leaching Solution of Waste Nickel-Cadmium Batteries. J. Korean Inst. Resour. Recycl. 2019, 28, 23–31. [Google Scholar] [CrossRef]
- Taha, A.; SaHa, E.-G. Effect of Surfactants on the Cementation of Cadmium. J. Colloid Interface Sci. 2004, 280, 9–17. [Google Scholar] [CrossRef]
- Hu, Q.; Yang, J.; Nan, T.; Xie, X.; Ye, Y. Study on the Electrically Enhanced Process for Cadmium Removal by a Pulse in a Sulfuric Acid System. Process Saf. Environ. Prot. 2022, 159, 944–952. [Google Scholar] [CrossRef]
- Ding, W.; Zeng, W.; Wang, Y.; Xu, H.; Chen, B.; Zheng, X. Cadmium Depth Separation Method in Polymetallic Sulfate Solution: Flow-Electric Field Enhanced Cementation Combined with M5640 Extraction. Inorganics 2022, 11, 12. [Google Scholar] [CrossRef]
- Nan, T.; Yang, J.; Wang, W.; Li, L.; Yang, J. Process and Anodic Reaction Mechanism of Cadmium Electrically Enhanced Cementation on Zinc Plate under an Ultrasonic Field in Ammoniacal System. Trans. Nonferrous Met. Soc. China 2019, 29, 1967–1974. [Google Scholar] [CrossRef]
- Ku, Y.; Wu, M.-H.; Shen, Y.-S. A Study on the Cadmium Removal from Aqueous Solutions by Zinc Cementation. Sep. Sci. Technol. 2002, 37, 571–590. [Google Scholar] [CrossRef]
- Aurousseau, M.; Pham, N.T.; Ozil, P. Effects of Ultrasound on the Electrochemical Cementation of Cadmium by Zinc Powder. Ultrason. Sonochem. 2004, 11, 23–26. [Google Scholar] [CrossRef]
- Pham, N.T.; Aurousseau, M.; Gros, F.; Ozil, P. Improvement of a Cementation Process by Ultrasound: Case of the Cadmium? Zinc Couple at a RDE. J. Appl. Electrochem. 2005, 35, 249–258. [Google Scholar] [CrossRef]
- Amin, N.K.; El-Ashtoukhy, E.-S.Z.; Abdelwahab, O. Rate of Cadmium Ions Removal from Dilute Solutions by Cementation on Zinc Using a Rotating Fixed Bed Reactor. Hydrometallurgy 2007, 89, 224–232. [Google Scholar] [CrossRef]
- Zhang, L.; Cheng, J.; Yang, Y.; Wen, Y.; Wang, X.; Cao, G. Study of Zinc Electrodes for Single Flow Zinc/Nickel Battery Application. J. Power Sources 2008, 179, 381–387. [Google Scholar] [CrossRef]
- Huang, Y.; Geng, Y.; Han, G.; Cao, Y.; Peng, W.; Zhu, X.; Zhang, T.; Dou, Z. A Perspective of Stepwise Utilization of Hazardous Zinc Plant Purification Residue Based on Selective Alkaline Leaching of Zinc. J. Hazard. Mater. 2020, 389, 122090. [Google Scholar] [CrossRef]
- Milchev, A. Electrochemical Phase Formation: Some Fundamental Concepts. J. Solid State Electrochem. 2011, 15, 1401–1415. [Google Scholar] [CrossRef]
- Guo, L.; Oskam, G.; Radisic, A.; Hoffmann, P.; Searson, P.C. Island Growth in Electrodeposition. J. Phys. D Appl. Phys. 2011, 44, 443001. [Google Scholar] [CrossRef]
- Wu, Z.; Yang, S.; Wu, W. Shape Control of Inorganic Nanoparticles from Solution. Nanoscale 2016, 8, 1237–1259. [Google Scholar] [CrossRef]
- Cervantes, R.L.; Murr, L.E.; Arrowood, R.M. Copper Nucleation and Growth during the Corrosion of Aluminum Alloy 2524 in Sodium Chloride Solutions. J. Mater. Sci. 2001, 36, 4079–4088. [Google Scholar] [CrossRef]
- Isaev, V.A.; Grishenkova, O.V.; Zaikov, Y.P. Theory of Cyclic Voltammetry for Electrochemical Nucleation and Growth. Small 2018, 22, 2775–2778. [Google Scholar] [CrossRef]
- Wright, T.W.; Ramesh, K.T. Statistically Informed Dynamics of Void Growth in Rate Dependent Materials. Int. J. Impact Eng. 2009, 36, 1242–1249. [Google Scholar] [CrossRef]
- Yang, D.; Xie, G.; Zeng, G.; Wang, J.; Li, R. Mechanism of Cobalt Removal from Zinc Sulfate Solutions in the Presence of Cadmium. Hydrometallurgy 2006, 81, 62–66. [Google Scholar] [CrossRef]
- Chen, J.; Lei, Y.; Zhu, C.; Sun, C.; Xu, Q.; Cheng, H.; Zou, X.; Lu, X. Morphology and Distribution of Cemented Product Formed via Cementation over Zn in Zinc Sulfate Solution Relevant to Roast-Leach-Electrowin Process. Hydrometallurgy 2022, 210, 105847. [Google Scholar] [CrossRef]
- Gonçalves, D.C.A.; Majuste, D.; Ciminelli, V.S.T. Improvements in the Selective Cementation of Cd and Ni/Co from Zinc Industrial Electrolyte. Hydrometallurgy 2021, 201, 105572. [Google Scholar] [CrossRef]
- Abdel-Rahman, H.H.; Moustafa, A.H.E.-D.; Abd-Elhamid, S.M.; Kassem, M.G.A.A. Recovery of Copper from Synthetic Solution by Cementation on Moving Bead of Zinc Spheres. Electrochemistry 2014, 82, 88–93. [Google Scholar] [CrossRef]
- Wang, L.; Gui, W.; Teo, K.L.; Loxton, R.; Yang, C. Optimal Control Problems Arising in the Zinc Sulphate Electrolyte Purification Process. J. Glob. Optim. 2012, 54, 307–323. [Google Scholar] [CrossRef]
- Viramontes Gamboa, G.; Medina Noyola, M.; López Valdivieso, A. The Effect of Cyanide and Lead Ions on the Cementation Rate, Stoichiometry and Morphology of Silver in Cementation from Cyanide Solutions with Zinc Powder. Hydrometallurgy 2005, 76, 193–205. [Google Scholar] [CrossRef]
- Serdiuk, V.; Pavlenko, I.; Bolshanina, S.; Sklabinskyi, V.; Włodarczak, S.; Krupińska, A.; Matuszak, M.; Bielecki, Z.; Ochowiak, M. Kinetic Features of Cd and Zn Cathodic Formations in the Membrane Electrolysis Process. Fluids 2023, 8, 74. [Google Scholar] [CrossRef]
- Liu, X.; Wang, S.; Peng, Z.; Zhang, G.; Gui, Q.; Zhang, L. Removal of Toxic Cadmium (II) from Zinc Sulfate Solution with Zinc Powder Enhanced by Ultrasound: Kinetics and Mechanism. Sep. Purif. Technol. 2023, 308, 122995. [Google Scholar] [CrossRef]
- Korolczuk, M.; Stepniowska, A.; Tyszczuk, K. Determination of Cadmium by Stripping Voltammetry at a Lead Film Electrode. Int. J. Environ. Anal. Chem. 2009, 89, 727–734. [Google Scholar] [CrossRef]
- Demirkıran, N.; Ekmekyapar, A.; Künkül, A.; Baysar, A. A Kinetic Study of Copper Cementation with Zinc in Aqueous Solutions. Int. J. Miner. Process. 2007, 82, 80–85. [Google Scholar] [CrossRef]
- Wang, Z.; Li, Y.; Ye, C. The Effect of Tri-Sodium Citrate on the Cementation of Gold from Ferric/Thiourea Solutions. Hydrometalurgy 2011, 110, 128–132. [Google Scholar] [CrossRef]
- Sulka, G.D.; Jaskuła, M. Influence of the Sulphuric Acid Concentration on the Kinetics and Mechanism of Silver Ion Cementation on Copper. Hydrometallurgy 2005, 77, 131–137. [Google Scholar] [CrossRef]
- Jeon, S.; Bright, S.; Tabelin, C.B.; Kuze, A.; Ito, M.; Hiroyoshi, N. A Kinetic Study on Enhanced Cementation of Gold Ions by Galvanic Interactions between Aluminum (Al) as an Electron Donor and Activated Carbon (AC) as an Electron Mediator in Ammonium Thiosulfate System. Minerals 2022, 12, 91. [Google Scholar] [CrossRef]
- Makhloufi, L. Removal of Lead Ions from Acidic Aqueous Solutions by Cementation on Iron. Water Res. 2000, 34, 2517–2524. [Google Scholar] [CrossRef]
- Aktas, S. Rhodium Recovery from Rhodium-Containing Waste Rinsing Water via Cementation Using Zinc Powder. Hydrometallurgy 2011, 106, 71–75. [Google Scholar] [CrossRef]
- Farahmand, F.; Moradkhani, D.; Safarzadeh, M.S.; Rashchi, F. Optimization and Kinetics of the Cementation of Lead with Aluminum Powder. Hydrometallurgy 2009, 98, 81–85. [Google Scholar] [CrossRef]
- Sędzimir, J.A. Precipitation of Metals by Metals (Cementation)—Kinetics, Equilibria. Hydrometallurgy 2002, 64, 161–167. [Google Scholar] [CrossRef]
Zn | Cd | Fe | Cu | Co | Ni | |
---|---|---|---|---|---|---|
1 | 50,879 | 22,368 | 406.5 | 338.2 | 4179 | 1175 |
2 | 63,763 | 18,769 | 317.3 | 419.4 | 6416 | 1650 |
3 | 47,544 | 26,548 | 195.6 | 455.9 | 4983 | 1774 |
Avg | 54,062 | 22,561.67 | 306.47 | 404.5 | 5192.67 | 1533 |
Zn | Cd | Fe | Ca | Na | Mn | Mg |
---|---|---|---|---|---|---|
54,062 | 22,561 | 306.47 | 404.5 | 1493 | 5192.67 | 1533 |
Location | Zinc | Cadmium |
---|---|---|
Anode | 5.9% | 94.1% |
Cathode | 12.7% | 87.2% |
Bottom | 7.9% | 92.1% |
Zinc powder | 26.4% | 73.6% |
Location | Zinc | Cadmium |
---|---|---|
anode | 4.5% | 95.5% |
cathode | 9.3% | 90.7% |
Reaction Position | Cementation on Anode (%) | Electrorefining on Cathode (%) |
---|---|---|
No flow field | 64.5 | 35.5 |
LACH | 74.3 | 25.7 |
LCAH | 72.5 | 27.5 |
HACL | 71.6 | 28.4 |
HCAL | 72.7 | 27.3 |
LSH | 73.2 | 26.8 |
HSL | 72.9 | 27.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ding, W.; Wang, Y.; Zeng, W.; Sun, Z. Circulating Flow–Electric-Field-Configuration-Enhanced Cadmium Cementation from Sulfate Systems and Its Optimization Mechanism. Materials 2023, 16, 5463. https://doi.org/10.3390/ma16155463
Ding W, Wang Y, Zeng W, Sun Z. Circulating Flow–Electric-Field-Configuration-Enhanced Cadmium Cementation from Sulfate Systems and Its Optimization Mechanism. Materials. 2023; 16(15):5463. https://doi.org/10.3390/ma16155463
Chicago/Turabian StyleDing, Wenjie, Yunyan Wang, Weizhi Zeng, and Zhumei Sun. 2023. "Circulating Flow–Electric-Field-Configuration-Enhanced Cadmium Cementation from Sulfate Systems and Its Optimization Mechanism" Materials 16, no. 15: 5463. https://doi.org/10.3390/ma16155463
APA StyleDing, W., Wang, Y., Zeng, W., & Sun, Z. (2023). Circulating Flow–Electric-Field-Configuration-Enhanced Cadmium Cementation from Sulfate Systems and Its Optimization Mechanism. Materials, 16(15), 5463. https://doi.org/10.3390/ma16155463