The Effects of Zirconium and Yttrium Addition on the Microstructure and Hardness of AlCuMgMn Alloy when Applying In Situ Heating during the Laser Melting Process
Abstract
:1. Introduction
2. Materials and Methods
2.1. Alloy Preparation
2.2. Sample Preparation for Microstructure Investigation
2.3. Heat Treatment Process
2.4. Laser Melting Process
2.5. In Situ Heating during Laser Melting
2.6. Hardness and Microhardness
3. Results and Discussion
3.1. As-Cast Microstructure
3.2. Laser Melting of AlCuMgMn Cast Alloy
3.3. Evaluation of the Microstructure during the Homogenization Process
3.4. Laser Melting Processing of the Homogenized Alloy
Room-Temperature Process
3.5. Heating Platform Process
3.6. Hardness of the LMZ
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lumley, R.N. Fundamentals of Aluminium Metallurgy: Production, Processing and Applications; Elsevier: Amsterdam, The Netherlands, 2010; ISBN 9781845696542. [Google Scholar]
- Dursun, T.; Soutis, C. Recent Developments in Advanced Aircraft Aluminium Alloys. Mater. Des. 2014, 56, 862–871. [Google Scholar] [CrossRef]
- Nakai, M.; Eto, T. New Aspect of Development of High Strength Aluminum Alloys for Aerospace Applications. Mater. Sci. Eng. A 2000, 285, 62–68. [Google Scholar] [CrossRef]
- Yadav, V.K.; Gaur, V.; Singh, I.V. Corrosion-Fatigue Behavior of Welded Aluminum Alloy 2024-T3. Int. J. Fatigue 2023, 173, 107675. [Google Scholar] [CrossRef]
- Kermanidis, A.T. Aircraft Aluminum Alloys: Applications and Future Trends. In Revolutionizing Aircraft Materials and Processes; Springer International Publishing: Cham, Switzerland, 2020; pp. 21–55. [Google Scholar]
- Kotadia, H.R.; Gibbons, G.; Das, A.; Howes, P.D. A Review of Laser Powder Bed Fusion Additive Manufacturing of Aluminium Alloys: Microstructure and Properties. Addit. Manuf. 2021, 46, 102155. [Google Scholar] [CrossRef]
- Kumar, M.; Gibbons, G.J.; Das, A.; Manna, I.; Tanner, D.; Kotadia, H.R. Additive Manufacturing of Aluminium Alloy 2024 by Laser Powder Bed Fusion: Microstructural Evolution, Defects and Mechanical Properties. Rapid Prototyp. J. 2021, 27, 1388–1397. [Google Scholar] [CrossRef]
- Patil, D.C.; Venkateswarlu, K.; Kori, S.A.; Das, G.; Das, M.; Alhajeri, S.N.; Langdon, T.G. Mechanical Property Evaluation of an Al-2024 Alloy Subjected to HPT Processing. IOP Conf. Ser. Mater. Sci. Eng. 2014, 63, 012085. [Google Scholar] [CrossRef]
- Kumar Sinha, A.; Pramanik, S.; Yagati, K.P. Research Progress in Arc Based Additive Manufacturing of Aluminium Alloys—A Review. Measurement 2022, 200, 111672. [Google Scholar] [CrossRef]
- Hu, Z.; Nie, X.; Qi, Y.; Zhang, H.; Zhu, H. Cracking Criterion for High Strength Al–Cu Alloys Fabricated by Selective Laser Melting. Addit. Manuf. 2021, 37, 101709. [Google Scholar] [CrossRef]
- Sheng, L.Y.; Yang, F.; Xi, T.F.; Guo, J.T.; Ye, H.Q. Microstructure Evolution and Mechanical Properties of Ni3Al/Al2O3 Composite during Self-Propagation High-Temperature Synthesis and Hot Extrusion. Mater. Sci. Eng. A 2012, 555, 131–138. [Google Scholar] [CrossRef]
- Zhang, H.; Zhu, H.; Nie, X.; Qi, T.; Hu, Z.; Zeng, X. Fabrication and Heat Treatment of High Strength Al-Cu-Mg Alloy Processed Using Selective Laser Melting. Proc. SPIE 2016, 9738, 97380X. [Google Scholar]
- Zhang, J.; Gao, J.; Song, B.; Zhang, L.; Han, C.; Cai, C.; Zhou, K.; Shi, Y. A Novel Crack-Free Ti-Modified Al-Cu-Mg Alloy Designed for Selective Laser Melting. Addit. Manuf. 2021, 38, 101829. [Google Scholar] [CrossRef]
- Nie, X.; Zhang, H.; Zhu, H.; Hu, Z.; Ke, L.; Zeng, X. Analysis of Processing Parameters and Characteristics of Selective Laser Melted High Strength Al-Cu-Mg Alloys: From Single Tracks to Cubic Samples. J. Mater. Process. Technol. 2018, 256, 69–77. [Google Scholar] [CrossRef]
- Zhang, H.; Zhu, H.; Qi, T.; Hu, Z.; Zeng, X. Selective Laser Melting of High Strength Al-Cu-Mg Alloys: Processing, Microstructure and Mechanical Properties. Mater. Sci. Eng. A 2016, 656, 47–54. [Google Scholar] [CrossRef]
- Mosleh, A.O.; Khalil, A.M.; Loginova, I.S.; Solonin, A.N. Influence of Adding Modifying Elements and Homogenization Annealing on Laser Melting Process of the Modified AlZnMgCu with 4%Si Alloys. Materials 2021, 14, 6154. [Google Scholar] [CrossRef] [PubMed]
- Sheikhi, M.; Ghaini, F.M.; Torkamany, M.J.; Sabbaghzadeh, J. Characterisation of Solidification Cracking in Pulsed Nd:YAG Laser Welding of 2024 Aluminium Alloy. Sci. Technol. Weld. Join. 2009, 14, 161–165. [Google Scholar] [CrossRef]
- Khalil, A.M.; Ibrahim, M.; Solonin, A.N. Understanding the Effect of Low Melting-Point Phases and Homogenization Annealing on the Liquation Cracks Formation in the Al-Cu Binary System during Laser Melting Process. Mater. Lett. 2023, 334, 133715. [Google Scholar] [CrossRef]
- Larini, F.; Casati, R.; Marola, S.; Vedani, M. Microstructural Evolution of a High-Strength Zr-Ti-Modified 2139 Aluminum Alloy for Laser Powder Bed Fusion. Metals 2023, 13, 924. [Google Scholar] [CrossRef]
- Zhao, H.; Zhao, C.; Xie, W.; Wu, D.; Du, B.; Zhang, X.; Wen, M.; Ma, R.; Li, R.; Jiao, J.; et al. Research Progress of Laser Cladding on the Surface of Titanium and Its Alloys. Materials 2023, 16, 3250. [Google Scholar] [CrossRef]
- Loginova, I.S.; Sazera, M.V.; Kuskov, K.V.; Popov, N.A.; Khalil, A.M.; Solonin, A.N. Special Features of Structure and Phase Transitions of Al–Fe–Cr Alloy under Different Crystallization Conditions in Additive Technologies. Met. Sci. Heat Treat. 2022, 64, 101–107. [Google Scholar] [CrossRef]
- The Aluminium Association International Alloy Designations and Chemical Composition Limits for Wrought Aluminum and Wrought Aluminum Alloys with Support for On-Line Access From: Aluminum Extruders Council Use of the Information; The Aluminum Association: Arlington, VA, USA, 2015; p. 31.
- Zhang, H.; Zhu, H.; Nie, X.; Yin, J.; Hu, Z.; Zeng, X. Effect of Zirconium Addition on Crack, Microstructure and Mechanical Behavior of Selective Laser Melted Al-Cu-Mg Alloy. Scr. Mater. 2017, 134, 6–10. [Google Scholar] [CrossRef]
- Khalil, A.M.; Loginova, I.S.; Pozdniakov, A.V.; Mosleh, A.O.; Solonin, A.N. Evaluation of the Microstructure and Mechanical Properties of a New Modified Cast and Laser-Melted AA7075 Alloy. Materials 2019, 12, 3430. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loginova, I.S.; Popov, N.A.; Solonin, A.N. Liquation and Crystallization Cracks in Aluminum Alloy AA2024 during Selective Laser Melting. Defect Diffus. Forum 2021, 410, 203–208. [Google Scholar] [CrossRef]
- Khalil, A.M.; Loginova, I.S.; Solonin, A.N. Effect of Laser Melting Process on a Modified AA7075 Alloy with Ti-B-Zr Modifiers. J. Mater. Eng. Perform. 2021, 31, 3362–3368. [Google Scholar] [CrossRef]
- Sheikhi, M.; Malek Ghaini, F.; Assadi, H. Solidification Crack Initiation and Propagation in Pulsed Laser Welding of Wrought Heat Treatable Aluminium Alloy. Sci. Technol. Weld. Join. 2014, 19, 250–255. [Google Scholar] [CrossRef]
- Ceмeнoвич, З.B.; Hикoлaeвич, Б.A. Meтaллoвeдeниe Литeйныx Aлюминиeвыx Cплaвoв; MИCиC: Moscow, Russia, 2005; p. 376. [Google Scholar]
- Montanari, R.; Palombi, A.; Richetta, M.; Varone, A. Additive Manufacturing of Aluminum Alloys for Aeronautic Applications: Advantages and Problems. Metals 2023, 13, 716. [Google Scholar] [CrossRef]
Alloy | Alloying Elements, wt.% | ||||||
---|---|---|---|---|---|---|---|
Al | Cu | Mg | Mn | Zr | Y | Others | |
AlCuMgMn | Bal. | 4.9 | 1.2 | 1.3 | - | - | ≤0.1 |
AlCuMgMn-ZrY | Bal. | 5 | 1.4 | 1.2 | 0.4 | 0.6 | ≤0.1 |
Parameter | Unit | Value | Parameter | Unit | Value |
---|---|---|---|---|---|
Power | V | 300 | Scanning speed | mm/s | 1 |
Pulse duration | ms | 12 | Overlap | mm | 0.15 |
Shielding gas | Argon | Frequency | Hz | 5 | |
Pulse shape | Ramp-down | Laser diameter | mm | 0.2–2.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khalil, A.M.; Pozdniakov, A.V.; Solonin, A.N.; Mahmoud, T.S.; Alshah, M.; Mosleh, A.O. The Effects of Zirconium and Yttrium Addition on the Microstructure and Hardness of AlCuMgMn Alloy when Applying In Situ Heating during the Laser Melting Process. Materials 2023, 16, 5477. https://doi.org/10.3390/ma16155477
Khalil AM, Pozdniakov AV, Solonin AN, Mahmoud TS, Alshah M, Mosleh AO. The Effects of Zirconium and Yttrium Addition on the Microstructure and Hardness of AlCuMgMn Alloy when Applying In Situ Heating during the Laser Melting Process. Materials. 2023; 16(15):5477. https://doi.org/10.3390/ma16155477
Chicago/Turabian StyleKhalil, Asmaa M., Andrey V. Pozdniakov, Alexey N. Solonin, Tamer S. Mahmoud, Mohammad Alshah, and Ahmed O. Mosleh. 2023. "The Effects of Zirconium and Yttrium Addition on the Microstructure and Hardness of AlCuMgMn Alloy when Applying In Situ Heating during the Laser Melting Process" Materials 16, no. 15: 5477. https://doi.org/10.3390/ma16155477
APA StyleKhalil, A. M., Pozdniakov, A. V., Solonin, A. N., Mahmoud, T. S., Alshah, M., & Mosleh, A. O. (2023). The Effects of Zirconium and Yttrium Addition on the Microstructure and Hardness of AlCuMgMn Alloy when Applying In Situ Heating during the Laser Melting Process. Materials, 16(15), 5477. https://doi.org/10.3390/ma16155477